Section 2.3: Differentiation Rules

The Product Rule

If f and g are differentiable at x, then so is the product fg. Moreover,

$$(fg)'(x) = f(x)g'(x) + g(x)f'(x)$$

This rule can be extended to the product of more functions:

$$(uvw)' = u'vw + uv'w + uvw'$$

Example 1: Find the derivative of $f(x) = (3x+5)(2x^4 - x)$

Example 2: Find the derivative of $h(x) = x^3 sin(x)$.

The Quotient Rule

If f and g are differentiable at x and $g(x) \neq 0$, then the quotient f / g is differentiable at x and

$$\left(\frac{f}{g}\right)'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{\left[g(x)\right]^2}$$

Example 3: Find the derivative of $h(x) = \frac{x}{2x^2 + 1}$.

Example 4: Find the derivative of $f(x) = \frac{\tan x}{4x+2}$.

What if we wanted the derivative of something like, $f(x) = (5x+1)^7$. Well, to be able to use the rules we've learned so far, we'd have to expand the expression. This would be too much work. We have a rule for finding derivatives involving functions of these type.

The Chain Rule

If g is differentiable at x and f is differentiable at g(x), then the composition $f \circ g$ is differentiable at x. Moreover,

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x).$$

This rule is one of the most important rules of differentiation. It helps us with many complicated functions.

Example 5: Let $f(x) = x^{10}$ and $g(x) = x^3 + x + 1$. If $h(x) = (f \circ g)(x)$, find the derivative of h(x).

Example 6: Find the derivative of $f(x) = sin(-x^2 + 1)$.

Example 7: Find the derivative of $f(x) = \sqrt[4]{6x^4 + 8x}$.

Example 8: Find the derivative of $f(x) = cos^4(\sqrt{x})$

Example 9: Let $g(x) = \frac{1}{x^3 - x}$, find $\frac{dy}{dx}\Big|_{x=2}$.

Example 10: Find an equation for the tangent line to the graph of $f(x) = x^2 \cos(2x)$ at $x = \frac{\pi}{2}$

Example 11: The following information is given about two functions f and g.

$$f(2) = 7, f'(2) = 1, f(5) = 4, f'(5) = 4,$$

 $g(2) = 5, g'(2) = 3, g(5) = 10, g'(5) = 6.$

a. If h(x) = (f / g)(x), find h'(2).

b. If
$$h(x) = [f(x)]^3$$
, find $h'(2)$.

If $h(x) = (f \circ g)(x)$, find h'(1).

The Chain Rule in Leibniz Notation

Let y be a function in terms of u and u be a function in terms of x. As a result, y may be expressed as a function in terms of x. How do we differentiate y with respect to x? Expressing y as a function in terms of x and then differentiating it is an option, but we are looking for a better way.

The chain rule can be written as: $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

That is, the derivative of y with respect to x is the product of the derivative of y with respect to u and the derivative of u with respect to x.

This formula can be extended to more variables; each new variable adds a new link to the chain.

Example 12: If $y = u^3 + 5u$ and $u = x - 2\sqrt{x}$, evaluate $\frac{dy}{dx}\Big|_{x=4}$.

Example 13: Find the second derivative of $g(x) = \frac{x}{x^2 - 1}$.

Example 14: Let $f(x) = (-4x^2 + 25)^2$. Determine the value(s) of x for when f'(x) > 0.

TRY THESE:

Find the slope of the tangent line to the curve $f(x) = \frac{x^2 + x}{x + 5}$ at x = 1. Then find its equation. What is the normal equation?

Find the derivative of each of the following functions:

a. $f(x) = x(-x+3x^2)^{1/3}$ b. $h(x) = (x^2 + \frac{1}{x^2})^3$ c. $y = \sqrt{x}(3x^2 + 5x)$ d. $f(x) = \frac{10x+40}{(x-4)^3}$

Find the second derivative of $f(x) = (x^2 + 2)^5$