Section 2.4: Implicit Differentiation

Let's now say that we wish to find \(\frac{dy}{dx} \) for the equation, \(x^2 + y^3 - 2xy = 4 \). We’d have to first solve for \(y \), which is not possible or other times it may be too difficult. To find the derivative of this equation with respect to \(x \), we’ll use what we call implicit differentiation. *Keep in mind, with these problems, \(y \) is an expression in terms of \(x \) (but we don’t know what \(y \) looks like).*

So when taking the derivative of \(y \) that’s in terms of \(x \), use the chain rule.

For example, the derivative of \(y^2 \) in terms of \(x \) is \(2y \cdot \frac{dy}{dx} \).

Steps for Implicit Differentiation

1. Differentiate both sides of the equation with respect to \(x \).
2. Collect all \(\frac{dy}{dx} \) terms.
3. Factor \(\frac{dy}{dx} \).
4. Solve for \(\frac{dy}{dx} \).

In solving in terms of \(x \), take the derivative as usual. In solving in terms of \(y \), use the chain rule.

Example 1: Find \(\frac{dy}{dx} \) if \(2x^2 + y^3 + 4y^2 = x - 5 \).
Example 2: Find $\frac{dy}{dx}$ if $y^3 + 2y^2 - 3y + x = 2$.

Example 3: Find $\frac{dy}{dx}$ if $2 \sin x \cos y = 1$.
Example 4: Find \(\frac{dy}{dx} \) if \(\tan(xy) = 3x + 2y \).

Example 5: Find \(\frac{d^2y}{dx^2} \) if \(x^2 - y^2 = 3 \); Then find \(\frac{d^2y}{dx^2} \bigg|_{x=2} \) when \(y = 1 \).
Example 6: Find the slope of the tangent line to the curve at the point (2, 1), given $x^2 + xy + y^2 = 7$.

Example 7: Find the equation of the tangent line at $\left(-\frac{1}{2}, \frac{-\pi}{6}\right)$ for $x - \cos(4y) = 0$.

Try this one: Find $\frac{d^2y}{dx^2}$ if $x^2 + y^2 = 36$.