Section 3.6 Curve Sketching

Vertical Asymptotes

If $f(x) \to \pm \infty$ as $x \to c^+$ or $x \to c^-$, then the line x = c is a vertical asymptote for f(x).

We can see the vertical asymptotes very easily from its graph. But also recall how to find them algebraically. *Recall: Simplify the function. Any variable factor left in the denominator, set equal to 0 and solve for x.*

- A function may have no vertical asymptotes, such as: $f(x) = \frac{x}{\sqrt{x^2 + 4}}$
- A function may have only one vertical asymptote, such as: $f(x) = \frac{\sqrt{x}}{4\sqrt{x} x}$

• A function may have many vertical asymptotes, such as: $f(x) = \frac{x^2}{1 - 2\sin x}$

Horizontal Asymptotes

As we saw in Section 1.3, the behavior of a function as $x \to \pm \infty$ determines the **horizontal** asymptotes.

- If $\lim_{x\to\infty} f(x) = L$, then the line y = L is a (rightward) horizontal asymptote.
- If $\lim_{x \to -\infty} f(x) = L$, then the line y = L is a (leftward) horizontal asymptote.

Recall the shortcut for rational functions: Compare the degrees.

$$f(x) = \frac{x+1}{x^2-4}$$
 H. A.:

$$f(x) = \frac{x^2}{5x^2 + 1};$$
 H. A.:

$$f(x) = \frac{x^5}{x^3 - 2x};$$
 H. A.:

These rules work because for p > 0 and provided $\frac{1}{x^p}$ is defined, $\lim_{x \to \infty} \frac{1}{x^p} = 0$ and $\lim_{x \to -\infty} \frac{1}{x^p} = 0$.

For example, $f(x) = \frac{x^2}{5x^2 + 1}$ has H.A. $y = \frac{1}{5}$ because:

Example 1: Find the horizontal asymptotes for each of the following functions.

a.
$$f(x) = \frac{x}{\sqrt{x^2 + 4}}$$

b.
$$f(x) = \frac{\sqrt{x}}{4\sqrt{x} - x}$$

Vertical Tangents

Suppose that f(x) is continuous at x = c. If $f'(x) \to \infty$ or $f'(x) \to -\infty$ as $x \to c$, then we say that the function has a **vertical tangent** at the point (c, f(c)).

Vertical tangents will only happen with *some* radical functions. They may be found by observing that:

- f(c) is defined.
- f'(c) is undefined.
- The sign chart for f' across x = c has *no sign change*.

Be careful when creating a sign chart for some radicals, don't forget find any critical points for the function.

Vertical Cusps

Suppose that f(x) is continuous at x = c. If $f'(x) \to \infty$ as $x \to c$ from one side and $f'(x) \to -\infty$ as $x \to c$ from the other side, then we say that the function has a **vertical cusp** at the point (c, f(c)).

Cusps will only happen with *some* radical functions. They may be found by observing that:

- f(c) is defined.
- f'(c) is undefined.
- The sign chart for f' across x = c has *a sign change*.

Be careful when creating a sign chart for some radicals, don't forget find any critical points for the function.

Example 2: For the following functions, determined whether the function has a vertical tangent, cusp or neither at the given value.

a. $f(x) = 5(x-8)^{\frac{4}{5}}$ at c = 8

Check list:

- Is f(c) is defined?
- Is f'(c) is undefined?
- Create a sign chart. Does the sign chart for f' across x = c have *a* sign change or not?

b.
$$f(x) = 9x^{\frac{3}{5}} - 2x^{\frac{6}{5}}$$
 at $c = 0$

Check list:

- Is f(c) is defined?
- Is f'(c) is undefined?
- Create a sign chart. Does the sign chart for f' across x = c have *a* sign change or not?

Curve Sketching

Using Calculus to Graph a Function.

1. Determine the **domain** of the function f.

For radicals:

- The domain of any odd root will be $(-\infty, \infty)$.
- *The domain of any even root, set the radicand (inside)* ≥ 0 *and solve.* ٠
- 2. Find any **asymptotes**—for functions with fractions.
- 3. Determine any intercepts of the function. To find the x-intercepts, we need to solve the equation f(x) = 0 and to find the y-intercepts, evaluate the function at 0 (if 0 is in the domain of f).
- 4. Find the **first derivative**, f'. Determine any critical points, intervals of increase/decrease, local extreme points, vertical tangents and cusps.
- 5. Find the second derivative, f''. Study the sign of f'' to understand concavity of the function and determine any points of inflection.
- 6. Plot the **points of interest** (intercepts, local or absolute extreme points, points of inflection).
- 7. Sketch the graph of f using the information gathered in the previous steps. Make sure that the function has the right shape (concaves up/down, rises/falls) on the corresponding intervals.

Example 3: Use the information given to sketch the graph of function f.

$$f(x) = \frac{4x-4}{x^2}$$
Domain: $(-\infty, 0) \cup (0, \infty)$
Intercept: x-intercept: 1
Asymptotes: x-axis and y-axis
Increasing: $(0, 2)$
Decreasing: $(-\infty, 0)$ and $(2, \infty)$
Relative Extrema: Relative Max at $(2, 1)$
Concave Down: $(-\infty, 0)$ and $(0, 3)$
Concave Up: $(3, \infty)$
Points of Inflection: $(3, \frac{8}{9})$
Section 3.6 – Curve Sketching

Section 3.6 – Curve Sketching

Example 4: Use the guide to curve sketching to sketch j	$f(x) = x^4 - 4x^3.$
Domain of $f(x)$:	Asymptotes:
x-intercept(s):	y-intercept(s):

Critical Points: $f'(x) = 4x^3 - 12x^2$ Find when f'(x) = 0: Find when f'(x) is undefined:

f(x):

f '(*x*):

 $f''(x) = 12x^2 - 24x$ Find when f''(x) = 0: Find when f''(x) is undefined:

f(x):

Example 5: Sketch the graph of $f(x) = \frac{2x^2}{x^2 - 1}$. Domain of f(x):

Asymptotes:

x-intercept(s):

y-intercept(s):

Critical Points:

 $f'(x) = \frac{-4x}{(x^2 - 1)^2}$ Find when f'(x) = 0:

Find when f'(x) is undefined:

$f''(x) = \frac{12x^2 + 4}{(x^2 - 1)^3}$ Find when $f''(x) = 0$:	Find when $f''(x)$ is undefined:
---	----------------------------------

f(x):

Try this one: Sketch the graph of $f(x) = x(x-1)^{\frac{1}{3}}$. Domain of f(x): Asymptotes: y-intercept(s): x-intercept(s):

Critical Points:

 $f'(x) = \frac{4x-3}{3(x-1)^{2/3}}$ Find when f'(x) = 0:

Find when f'(x) is undefined:

$$f(x)$$
:

f '(*x*):

$$f''(x) = \frac{4x-6}{9(x-1)^{5/3}}$$
 Find when $f''(x) = 0$:

Find when f''(x) is undefined:

f(x):

10