Section 4.1: Inverse Functions

A function is said to be **one-to-one** (1-1) if there are no two distinct numbers in the domain of f that produce the same value. In other words, two different x values cannot have the same y value. If a function has an inverse, then we say it's **invertible**.

If a function is 1-1, then it has an inverse function, denoted as f^{-1} , which reverses what the first function did. The domain of f is the range of f^{-1} and the range of f is the domain of f^{-1} .

Example: Celsius to Fahrenheit: $\frac{9}{5}C + 32 = F$ and Fahrenheit to Celsius: $\frac{5}{9}(F - 32) = C$

Geometrically

Math 1431 Section 4.1

Property of Inverse Functions

Let f and g be two functions such that $(f \circ g)(x) = x$ for every x in the domain of g and $(g \circ f)(x) = x$ for every x in the domain of f then f and g are inverses of each other.

Given a functions whose graph is known or the given the graph of a function, we can use the Horizontal Line Test to determine if the function is 1-1.

Example 1: Is the following graph of $f(x) = 2x^{\frac{3}{7}}$ 1-1?

Example 2: Is the function, $f(x) = (x + x^2)^7$ 1-1?

Example 3: Is
$$f(x) = 3 \sin x$$
 invertible on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$?

A function is **monotonic** if it is always increasing or always decreasing on its domain.

Recall:

- If f'(x) > 0 on its domain, then f is increasing and; hence, monotonic.
- If f'(x) < 0 on its domain, then f is decreasing and; hence, monotonic.

Theorem: If f is monotonic, then f is an invertible function.

Example 4: Is the following function 1-1? If so, give the equation of the inverse function. $f(x) = \frac{x-1}{x+1}$ Sometimes it's too long or too difficult to find the equation of the inverse, yet we may want to know if a function has an inverse or not.

Example 5: Is $f(x) = x^3 + 3x$ invertible?

Example 6: Let $f(x) = x^3 - kx^2 + 2x$. For what values of k is f(x) one-to-one?

Finding the Derivative of the Inverse Function

Theorem: If f(x) is continuous and invertible then $f^{-1}(x)$ is continuous.

Theorem: If f(x) is differentiable (so must be continuous) and invertible, and $f'(x) \neq 0$, then $f^{-1}(x)$ is differentiable.

If f(a) = b and $f'(a) \neq 0$, then $(f^{-1})'(b) = \frac{1}{f'(a)}$.

Example 7: For $f(x) = x^3$, we know that f(2) = 8. Find $(f^{-1})'(8)$.

Example 8: If *f* is invertible, and f(1) = 2, f(3) = 1, f'(1) = 4, f'(3) = 5, f'(2) = 6, find $(f^{-1})'(1)$.

Example 9: Given $f(x) = x^5 + 1$, find $(f^{-1})'(33)$ if possible.

Example 10: If $f(x) = \sin x + 5\cos x$, $x \in \left[0, \frac{\pi}{2}\right]$, find $\left(f^{-1}\right)'(3\sqrt{2})$.

Math 1431 Section 4.1

Example 11: Let $f(x) = x^5 + 2x^3 + 2x$. The point (-5, -1) is on the graph of $f^{-1}(x)$. Find $(f^{-1})'(-5)$, then give an equation for the tangent line to the graph of $f^{-1}(x)$ at the point (-5, -1).

Try this one: Is the following function 1-1? If so, give the equation of the inverse function. $g(x) = x + \frac{4}{x}$

Let $f(x) = \frac{1}{3}x^3 - x^2 + kx$. For what values of k is f(x) invertible?