Section 4.3: Logarithmic Function

The exponential function is 1-1; therefore, it has an inverse function. The inverse function of the exponential function with base *a* is called the **logarithmic function with base** *a*. The function $f(x) = \log_a x$ is the **logarithmic function with base** *a* with x > 0, a > 0 and $a \ne 1$.

For example, for a > 1*:*

- If a = 10 then $f(x) = \log x$. This is known as the common base.
- If a = e then $f(x) = \ln x$. This is known as the **natural logarithm**.
- $\ln(0)$ is undefined.
- $\ln(1) = 0$

Graphs

The orientation of the logarithmic function depends on its base, $0 \le a \le 1$ or $a \ge 1$.

Both graphs have a vertical asymptote of x = 0 (the y-axis).

Their domain is $(0,\infty)$ and range is $(-\infty,\infty)$.

Example 1: Find the domain of $y = \ln(\ln(x))$.

The logarithmic function with base a satisfies:

• $\log_a a^x = x$ for all $x \in (-\infty, \infty)$

and

• $a^{\log_a x} = x$, for all $x \in (0,\infty)$

Examples:

 $\log_2 2^3 =$

 $\ln e =$

 $e^{\ln 5} =$

 $3^{\log_3 x} =$

Converting Expressions

Fact: $y = \log_a x$ is equivalent to $a^y = x$

For example:

 $2^5 = 32$ is equivalent to $\log_2(32) = 5$

$$\log_4(16) = 2$$
 is equivalent to $16 = 4^2$

Laws of Logarithms

Product Rule for Logs:

Quotient Rule for Logs:

 $\log_a (x \cdot y) = \log_a x + \log_a y$ $\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$ $\log_a \left(x^p\right) = p \cdot \log_a x$

Power Rule for Logs:

Example 2: Expand using the Laws of Logarithms:

$$\ln\!\left(\frac{x^3y}{z\sqrt{x+1}}\right)$$

Example 3: Simplify using the Laws of Logarithms: $\frac{1}{3}\log x - \log(x^2 + 1) - 4\log z$

Differentiating Natural Logarithmic Function:

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

If u is a function of x, then use the chain rule.

Example 4: Differentiate the following functions.

a.
$$y = \ln\left(4x^3 - 5x\right)$$

b.
$$y = \ln(\sin x)$$

c.
$$f(x) = \ln(\ln(2x))$$

Sometimes it's easier to use the rules of logarithms to differentiate a log function.

Example 5: Differentiate $g(x) = \ln\left(\frac{x^4}{3x^2 - 1}\right)$. Then find the equation of the tangent line at the point (-1)

$$\left(1,\ln\left(\frac{1}{2}\right)\right)$$

Example 6: Determine where $f(x) = x \ln x$ is increasing/decreasing, any relative extrema, concavity, and any points of inflection.

Different Bases

Change of base formula: $\log_a x = \frac{\ln x}{\ln a}$

$$\frac{d}{dx} \left(\log_a x \right) = \frac{1}{x} \cdot \frac{1}{\ln a}$$

If u is a function of x, then use the chain rule.

Example 7: Find the derivative of each function.

a. $y = \log_2 x$

b.
$$y = \log_3\left(4x^3 + 2x\right)$$

$$c. f(x) = \frac{\log_9 x}{x^2}$$

We know how to find the derivative of functions such as:

- x^5 ----use the power rule
- 5^x ---use exponential rule

But how about x^{x} ? We will use a method called Logarithmic Differentiation.

Example 8: Find the derivative of $y = x^{\tan x}$.

Step 1: Take natural logs of both sides of the equation.

Step 2: Use any rules of logs to simplify the equation.

Step 3: Take the derivative of both sides of the equation.

Step 4: Solve for y'. *Remember what y was equal to originally.*

Example 9: Find the derivative of $y = x^{2x+1}$. Step 1: Take natural logs of both sides of the equation.

Step 2: Use any rules of logs to simplify the equation.

Step 3: Take the derivative of both sides of the equation.

Step 4: Solve for y'. *Remember what y was equal to originally.*

Try these:

Find the derivative of: $y = \log(\cos(4x))$.

Let
$$f(x) = x \ln(\cos(2x))$$
, find $f'(\pi)$.

Determine where $f(x) = 2x^2 \ln\left(\frac{x}{4}\right)$ is increasing/decreasing.

Find the points of inflection for the function $f(x) = 4x^2 \ln\left(\frac{x}{4}\right)$.

Find the derivative of $f(x) = e^{2x} \ln(2x)$.

Find the derivative of $f(x) = \ln\left(5^{-x^2+x}\right)$.

Find the slope of the tangent line to the curve $y = (2 + \cos x)^{4 + \sin x}$ at $x = 2\pi$.