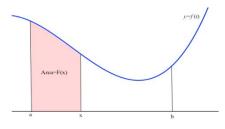
Section 6.2: The Fundamental Theorem of Calculus

Recall from the previous section that:

For a function f which is continuous on [a,b], there is one and only one number that satisfies the inequality $L_f(P) \le I \le U_f(P)$, for all partitions P of [a,b]. This unique number I is called the **definite integral** (or just the integral) of f from a to b and is denoted by $\int_a^b f(x)dx$. This number can be positive, negative or zero.

Let f be a continuous function over the interval [a,b]. Define a new function by $F(x) = \int_{a}^{x} f(t) dt$. Here, the upper limit x varies between a and b.

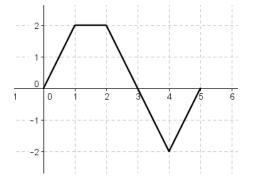
If f happens to be a nonnegative function, then F(x) can be seen as the "area under the graph of f from a to x". We can think of F(x) as the "accumulated area" function.



So for example,

- if $F(1) = \int_{0}^{1} f(t) dt$ then this is "area under the function f from x = 0 to x = 1".
- if $F(5) = \int_{0}^{5} f(t) dt$ then this is "area under the function f from x = 0 to x = 5".

Example 1: If f is the function whose graph is given below, and $F(x) = \int_{0}^{x} f(t) dt$, find F(5).



Fundamental Theorem of Calculus Part 1

If f is a continuous function over the interval [a,b], then the function $F(x) = \int_{a}^{b} f(t) dt$

is continuous on [a,b] and differentiable on (a,b). Moreover, $F'(x) = \frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$, for all x in

$$(a,b)$$
. Note: If $a = 0$ then $F(0) = \int_{0}^{0} f(t) dt = 0$.

Example 2: Let f be a continuous function satisfying $x^3 + x^2 - x = \int_{1}^{x} f(t) dt$.

- a. State F(x).
- b. Find F'(x) = f(x).
- c. Find F''(x) = f'(x).

Hence,

- where f is positive, F is increasing
- where f is negative, F is decreasing
- where f is zero, F has possible max, min or inflection point
- where f is increasing, F is concave up
- where f is decreasing, F is concave down

Example 3: Find F'(x) given $F(x) = \int_{0}^{x} (t^{2} + 2t) dt$.

Example 4: Find
$$\frac{d}{dx} \int_{2}^{x} 5\cos(2s) \, ds$$
. Then find $F'(4\pi)$.

Example 5: Find
$$\frac{d}{dx} \int_{x}^{0} \sqrt{3t+1} dt$$
.

Recall the following definite integral property from Section 6.1:

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

Other times if the upper limit is not just x, we'll need to use the chain rule. That is,

$$\frac{d}{dx}\left(\int_{a}^{v(x)} f(t)dt\right) = f(v(x)) \cdot v'(x)$$

Example 6: Find F'(x) given $F(x) = \int_{\pi}^{5x^2} \frac{1}{1+t^2} dt$.

And yet, other times, if both limits of integration are a functions of *x* we'll apply the following rule:

$$\frac{d}{dx} \left(\int_{u(x)}^{v(x)} f(t) dt \right) = f(v(x)) \cdot v'(x) - f(u(x)) \cdot u'(x)$$

Example 7: Given $F(x) = \int_{x^2}^{2x^3} t^2 dt$, find $F'(x)$.

Let f be a continuous function over the interval [a,b]. A function F is called an **antiderivative** for f over the interval [a,b] if F is continuous on [a,b] and F'(x) = f(x) for all x in (a,b).

Example 8: Give a few antiderivatives for f(x) = 2x.

Theorem: Fundamental Theorem of Calculus Part 2

Let f be a continuous function over the interval [a,b]. If G is any antiderivavite for f over the interval [a,b],

then $\int_{a}^{b} f(x) dx = G(b) - G(a)$.

Example 9: Calculate the definite integral $\int_{1}^{5} 2x \, dx$ using FTOC.

Try this one: Let the function F be defined by $F(x) = \int_{a}^{x} (t^2 - 4t^3) dt$.

a. Find any critical numbers for F.

Recall:
$$F'(x) = \frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$$

b. Discuss the concavity of F.