<table>
<thead>
<tr>
<th>Score Range</th>
<th>Number of Students</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Median</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 10</td>
<td>2</td>
<td>38.46</td>
<td>17.115</td>
<td>44</td>
<td>56</td>
</tr>
<tr>
<td>10 to 20</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 to 30</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 to 40</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 to 50</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 to 60</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 to 70</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 to 80</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80 to 90</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 to 100</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 to 110</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Number of Students</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Median</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 5</td>
<td>2</td>
<td>19.57</td>
<td>11.133</td>
<td>19</td>
<td>45</td>
</tr>
<tr>
<td>5 to 10</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 to 15</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 to 20</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 to 25</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 to 30</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 to 35</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 to 40</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 to 45</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 to 50</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 to 55</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section 3.6
Curve Sketching

Vertical Asymptotes

If \(f(x) \to \pm \infty \) as \(x \to c^+ \) or \(x \to c^- \), then the line \(x = c \) is a vertical asymptote for \(f(x) \).

The graph of \(f(x) = \frac{1}{x|x-2|} \) is given below.

We can see the vertical asymptotes very easily from its graph. But also recall how to find them algebraically. Recall: Simplify the function. Any variable factor left in the denominator, set equal to 0 and solve for \(x \).

- A function may have no vertical asymptotes, such as: \(f(x) = \frac{x}{\sqrt{x^2 + 4}} \)
 \[x^2 + 4 \geq 0 \]
 \[x^2 \geq -4 \]
 \[D: (-\infty, \infty) \]

- A function may have only one vertical asymptote, such as: \(f(x) = \frac{\sqrt{x}}{4\sqrt{x} - x} \)
 \[4\sqrt{x} - x \neq 0 \]
 \[4\sqrt{x} = x \]
 \[16x = x^2 \]
 \[0 = x^2 - 16x \]
 \[0 = x(x - 16) \]
 \[VA: x = 16 \]

- A function may have many vertical asymptotes, such as: \(f(x) = \frac{x}{1 - 2\sin x} \)
 \[1 - 2\sin x \neq 0 \]
 \[\frac{1}{2} = \sin x \]
 \[x = \frac{\pi}{6} + 2\pi k \]
 \[\frac{5\pi}{6} + 2\pi k \]
Horizontal Asymptotes

As we saw in Section 1.3, the behavior of a function as $x \to \pm \infty$ determines the **horizontal asymptotes**.

- If $\lim_{x \to \infty} f(x) = L$, then the line $y = L$ is a (rightward) horizontal asymptote.
- If $\lim_{x \to -\infty} f(x) = L$, then the line $y = L$ is a (leftward) horizontal asymptote.

Recall the shortcut for rational functions: Compare the degrees.

$$f(x) = \frac{x+1}{x^2-4} \quad \text{H. A.:} \quad y = 0$$

$$f(x) = \frac{1+x^2}{5x^3+1} \quad \text{H. A.:} \quad y = -\frac{1}{5}$$

$$f(x) = \frac{x^5}{x^3-2x} \quad \text{H. A.:} \quad \text{None}$$

These rules work because for $p > 0$ and provided $\frac{1}{x^p}$ is defined, $\lim_{x \to \infty} \frac{1}{x^p} = 0$ and $\lim_{x \to -\infty} \frac{1}{x^p} = 0$.

For example, $f(x) = \frac{x^2}{5x^2+1}$ has H.A. $y = \frac{1}{5}$ because: **Highest Degree**: $x \to x^2$

$$= \lim_{x \to \infty} \frac{x^2}{5x^2+1} \cdot \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \frac{x^2}{5x^2} + \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \frac{1}{5x^2 + 0} = \frac{1}{5}$$
Example 1: Find the horizontal asymptotes for each of the following functions.

a. \(f(x) = \frac{x}{\sqrt{x^2 + 4}} \)

\[
\lim_{x \to \infty} \frac{\sqrt{x^2}}{\sqrt{x^2 + 4}} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{x \cdot \frac{1}{x}}{\sqrt{x^2 + 4} \cdot \frac{1}{x}} = \lim_{x \to \infty} \frac{x}{\sqrt{\frac{x^2}{x^2} + \frac{4}{x^2}}} = \lim_{x \to \infty} \frac{x}{\sqrt{1 + \frac{4}{x^2}}} = \frac{1}{\sqrt{1 + 0}} = 1
\]

HA: \(y = 1 \)

\[
\lim_{x \to -\infty} \frac{\sqrt{x^2}}{\sqrt{x^2 + 4}} \cdot \frac{x}{\sqrt{x^2}} = \lim_{x \to \infty} \frac{\sqrt{x^2}}{\sqrt{x^2 + 4} \cdot \frac{x^2}{x^2}} = \lim_{x \to \infty} -\frac{1}{\sqrt{1 + \frac{4}{x^2}}} = y = -1
\]

Left side HA: \(y = -1 \)

b. \(f(x) = \frac{\sqrt{x}}{4\sqrt{x} - x} \)

Use shortcut

Degree in numerator = \(\frac{1}{2} \)
Degree in denominator = 1

HA: \(y = 0 \)
Vertical Tangents

Suppose that \(f(x) \) is continuous at \(x = c \). If \(f'(x) \to \infty \) or \(f'(x) \to -\infty \) as \(x \to c \), then we say that the function has a **vertical tangent** at the point \((c, f(c)) \).

Vertical tangents will only happen with **some radical functions**. They may be found by observing that:

- \(f(c) \) is defined.
- \(f'(c) \) is undefined.
- The sign chart for \(f' \) across \(x = c \) has no sign change.

Be careful when creating a sign chart for some radicals, don’t forget find any critical points for the function.
Vertical Cusps

Suppose that \(f(x) \) is continuous at \(x = c \). If \(f'(x) \to \infty \) as \(x \to c \) from one side and \(f'(x) \to -\infty \) as \(x \to c \) from the other side, then we say that the function has a **vertical cusp** at the point \((c, f(c)) \).

Cusps will only happen with *some* radical functions. They may be found by observing that:

- \(f(c) \) is defined.
- \(f'(c) \) is undefined.
- The sign chart for \(f' \) across \(x = c \) has a **sign change**.

Be careful when creating a sign chart for some radicals, don’t forget find any critical points for the function.
Example 2: For the following functions, determine whether the function has a vertical tangent, cusp or neither at the given value.

a. \(f(x) = 5(x - 8)^{4/5} \) at \(c = 8 \)

\[f'(x) = \frac{4}{(x-8)^{1/5}} \]

Check list:
- Is \(f(c) \) is defined?
 \[f(8) = 5(4)^{4/5} = 5(2) = 10 \]
 \(\text{No} \)

- Is \(f'(c) \) is undefined?
 \(f'(8) \) is undefined, \(c = 8 \) is a critical number.

- Create a sign chart. Does the sign chart for \(f' \) across \(x = c \) have a sign change or not?
 \[f'(x) \]
 \[- - - + + + + + \]
 \[-10 \quad 9 \quad 243 \]
 \(\text{No other CN} \)
 \(\text{Sign change} \)
 \(\text{Vertical Cusp at} \ x = 9 \)

b. \(f(x) = 9x^{3/5} - 2x^{9/5} \) at \(c = 0 \)

Check list:
- Is \(f(c) \) is defined?
 \[f(0) = 0 \]
 \(\text{Yes} \)

- Is \(f'(c) \) is undefined?
 \[f'(x) = \frac{27}{5}x^{-2/5} - \frac{12}{5}x^{4/5} \]
 \[f'(0) \] is undefined

- Create a sign chart. Does the sign chart for \(f' \) across \(x = c \) have a sign change or not?
 \[f'(x) \]
 \[\frac{27}{5}x^{-2/5} - \frac{12}{5}x^{4/5} = 0 \]
 \[27x^{-1/5} - 12x^{1/5} = 0 \]
 \[\frac{27}{x} = 12x^{1/5} \]
 \(x = \left(\frac{9}{4}\right)^{5/3} \)
 \[\text{Save Sign} \]
 \[\text{Vertical Target} \]
Question ___: The graph of $f'(x)$ is shown below. Give the number of critical numbers for $f(x)$.

a. 2
b. 3
c. 4
d. 5
e. 6

Question ___. The graph of $f'(x)$ is shown below. Give the number of local minimums for $f(x)$.

a. 0
b. 1
c. 2
d. 3
e. 4
Curve Sketching
Using Calculus to Graph a Function.

1. Determine the **domain** of the function \(f \).

 For radicals:

 - The domain of any odd root will be \((-\infty, \infty)\).
 - The domain of any even root, set the radicand (inside) \(\geq 0 \) and solve.

2. Find any **asymptotes**—for functions with fractions.

3. Determine any **intercepts** of the function. To find the \(x \) – intercepts, we need to solve the equation \(f(x) = 0 \) and to find the \(y \) – intercepts, evaluate the function at 0 (if 0 is in the domain of \(f \)).

4. Find the **first derivative**, \(f' \). Determine any critical points, intervals of increase/decrease, local extreme points, vertical tangents and cusps.

5. Find the **second derivative**, \(f'' \). Study the sign of \(f'' \) to understand concavity of the function and determine any points of inflection.

6. Plot the **points of interest** (intercepts, local or absolute extreme points, points of inflection).

7. Sketch the graph of \(f \) using the information gathered in the previous steps. Make sure that the function has the right shape (concaves up/down, rises/falls) on the corresponding intervals.

Example 3: Use the information given to sketch the graph of function \(f \).

\[
f(x) = \frac{4x - 4}{x^2}
\]

Domain: \((-\infty, 0) \cup (0, \infty)\)

Intercept: \(x \)-intercept: 1

Asymptotes: \(x \)-axis and \(y \)-axis

Increasing: \((0, 2)\)

Decreasing: \((-\infty, 0) \) and \((2, \infty)\)

Relative Extrema: Relative Max at \((2, 1)\)

Concave Down: \((-\infty, 0) \) and \((0, 3)\)

Concave Up: \((3, \infty)\)

Points of Inflection: \((3, \frac{8}{9})\)
Example 4: Use the guide to curve sketching to sketch \(f(x) = x^4 - 4x^3 \).

Domain of \(f(x) \): \((-\infty, \infty)\)

Asymptotes: None

x-intercept(s):
\[x^4 - 4x^3 = 0 \]
\[x^3(x - 4) = 0 \]
\[x = 0, 4 \]

y-intercept(s): \(x = 0 \)

\[f(0) = 0 \]

Critical Points:
\[f'(x) = 4x^3 - 12x^2 \]

Find when \(f'(x) = 0 \):
\[4x^3 - 12x^2 = 0 \]
\[4x^2(x - 3) = 0 \]
\[x = 0, 3 \]

Dec.: \((-\infty, 0) \cup (0, 3)\)

Incr.: \((3, \infty)\)

R. Min.: \((3, -27)\)

Find when \(f'(x) \) is undefined:

\[f''(x) = 12x^2 - 24x \]

Find when \(f''(x) = 0 \):
\[12x^2 - 24x = 0 \]
\[12x(x - 2) = 0 \]
\[x = 0, 2 \]

Find when \(f''(x) \) is undefined:

R. Max.: \((0, 10)\)

Points of Inflection:
\((0, 0)\)
\((3, -27)\)

Section 3.6 – Curve Sketching

BYE
Example 5: Sketch the graph of \(f(x) = \frac{2x^2}{x^2 - 1} \).

Domain of \(f(x) \):
\[x \neq -1, 1 \quad (-\infty, -1) \cup (-1, 1) \cup (1, \infty) \]

Asymptotes:
- \(VA: x = -1, 1 \)
- \(HA: y = 2 \)

\(y \)-intercept(s):
\(f(0) = \frac{0}{-1} = 0 \)

\(y \)-intercept:
\((0, 0) \)

Critical Points:
\[f'(x) = \frac{-4x}{(x^2 - 1)^2} \]
Find when \(f'(x) = 0 \):
\[\text{Numerical Derivative} = \frac{2\cdot \text{zero}}{} \]
\[-4x = 0 \]
\[x = 0 \]

\(x = 0 \)

\(f(x) \):

\[f'(x) : \]

Find when \(f'(x) \) is undefined:
\[x^2 - 1 = 0 \]
\[x = -1, 1 \]

\(x = -1, 1 \)

\[f''(x) = \frac{12x^2 + 4}{(x^2 - 1)^3} \]
Find when \(f''(x) = 0 \):
\[12x^2 + 4 = 0 \]
\[12x^2 = -4 \]
\[No \, \text{possible} \]

\(f(x) \):

\[f'(x) : \]

Find when \(f''(x) \) is undefined:
\[x^2 - 1 = 0 \]
\[x = \pm 1 \]

\[f''(x) : \]

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)

\(f'(x) : \)

\(f''(x) : \)

\(f(x) : \)
Try this one: Sketch the graph of \(f(x) = x(x - 1)^{\frac{1}{3}} \).

Domain of \(f(x) \):

Asymptotes:

x-intercept(s):

y-intercept(s):

Critical Points:

\[
f'(x) = \frac{4x - 3}{3(x - 1)^{2/3}}
\]

Find when \(f'(x) = 0 \):

Find when \(f'(x) \) is undefined:

\[
f'(x):
\]

\[
f''(x):
\]

\[
f''(x) = \frac{4x - 6}{9(x - 1)^{5/3}}
\]

Find when \(f''(x) = 0 \):

Find when \(f''(x) \) is undefined:

\[
f'(x):
\]

\[
f''(x):
\]
Question 47. The graph of $f'(x)$ is shown below. Classify the critical number for $f(x)$ between the given points.

$f'(x)$

- a. local minimum
- b. local maximum
- c. neither
- d. there is no critical number between the points

Questions

Match the function with its **first** derivative.

Functions:

<table>
<thead>
<tr>
<th>34.</th>
<th>35.</th>
<th>36.</th>
<th>37.</th>
<th>38.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Derivatives:

<table>
<thead>
<tr>
<th>A.</th>
<th>B.</th>
<th>C.</th>
<th>D.</th>
<th>E.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>