Example 6: Determine where \(f(x) = x \ln x \) is increasing/decreasing, any relative extrema, concavity, and any points of inflection.

\[
\frac{d}{dx} \left[\ln \left(u(x) \right) \right] = \frac{1}{u} \cdot u'
\]

\(D: (0, \infty) \)

\(\text{Exp} \) = \(\frac{\ln x}{x} \)

\(\text{Base} \) = \(x \)

\(\text{Log} \) \(\text{(Value)} \) = \(\ln x \)

\(\text{True} \)

\[
f'(x) = \ln x + x \cdot \frac{1}{x} = \ln x + 1
\]

\[
f'(x) = 0 \quad \text{or} \quad f'(x) = \text{undefined}
\]

\[
\ln x + 1 = 0
\]

\[
\ln x = -1
\]

\[
e -1
\]

\[
x = e^{-1} (N)
\]

\[
f''(x) = \frac{1}{x}
\]

\[
f''(x) = 0 \quad \text{or} \quad f''(x) = \text{undefined}
\]

\[
x = 0 \quad (\text{Not in Domain})
\]

\[
\frac{1}{x}
\]

\[
\text{Concave Up: } (0, \infty)
\]

Question 42: Find \(\frac{d}{dx} \left(\ln \left(5 - x \right)^6 \right) \)

a. \(\frac{1}{(5-x)^6} \)

b. \(\frac{6}{x-5} \)

c. \(-6(5-x)^5 \)

d. \(6(5-x)^5 \)
Different Bases

Change of base formula: \(\log_a b = \frac{\ln b}{\ln a} \)

\[
\frac{d}{dx} (\log_a x) = \frac{1}{x} \cdot \frac{1}{\ln a}
\]

\[
\frac{d}{dx} \left(\frac{1}{\ln a} \cdot \ln x \right) = \frac{1}{\ln a} \cdot \frac{1}{x}
\]

If \(u \) is a function of \(x \), then use the chain rule.

Example 7: Find the derivative of each function.

a. \(y = \log_2 x \) \[y' = \frac{1}{\ln 2} \cdot \frac{1}{x} \]

Rewrite

b. \(y = \log_3(4x^3 + 2x) \) \[y' = \frac{1}{\ln 3} \cdot \frac{1}{4x^3 + 2x} \cdot (12x^2 + 2) \]

Rewrite

\[
\frac{\ln (4x^3 + 2x)}{\ln 3} = \frac{1}{\ln 3} \cdot \ln (4x^3 + 2x)
\]

Quotient rule

\[
f(x) = \frac{\log_9 x}{x^2} = \frac{\ln x}{\ln 9} \cdot \frac{1}{\ln 9} \cdot \frac{\ln x}{x^2}
\]

\[
f'(x) = \frac{1}{\ln 9} \cdot \left[\frac{x^2 \cdot \frac{1}{x} - \ln x \cdot 2x}{(x^2)^2} \right]
\]

\[
f'(x) = \frac{1}{\ln 9} \cdot \frac{X - 2x \ln x}{x^4}
\]
We know how to find the derivative of functions such as:

- x^5 --- use the power rule
- 5^x --- use exponential rule

But how about x^x? We will use a method called Logarithmic Differentiation.

Example 8: Find the derivative of $y = x^{\tan x}$.

Step 1: Take **natural logs of both sides** of the equation.

$$\ln y = \ln x^\tan x$$

Step 2: Use any rules of logs to simplify the equation.

$$\ln y = \tan x \cdot \ln x$$

Step 3: Take the derivative of both sides of the equation.

$$\frac{1}{y} \cdot \frac{dy}{dx} = \sec^2 x \cdot \ln x + \tan x \cdot \frac{1}{x}$$

Step 4: Solve for y'. *Remember what y was equal to originally.*

$$\frac{dy}{dx} = \frac{dy}{dx} \cdot \left[\sec^2 x \cdot \ln x + \tan x \cdot \frac{1}{x} \right]$$

$$= x^{\tan x} \cdot \left[\sec^2 x \cdot \ln x + \frac{\tan x}{x} \right]$$
Math 1431 Section 4.3

Example 9: Find the derivative of \(y = x^{2x+1} \).

Step 1: Take natural logs of both sides of the equation.

\[
\ln y = \ln x^{2x+1}
\]

Step 2: Use any rules of logs to simplify the equation.

\[
\ln y = (2x+1) \cdot \ln x
\]

Step 3: Take the derivative of both sides of the equation.

\[
\frac{1}{y} \cdot y' = (2x+1) \cdot \ln x + (2x+1) \cdot \frac{1}{x}
\]

Step 4: Solve for \(y' \). *Remember what \(y \) was equal to originally.*

\[
y' = y \cdot \left[2 \ln x + \frac{2x+1}{x} \right]
\]

\[
= x^{2x+1} \cdot \left(2 \ln x + 2 + \frac{1}{x} \right)
\]
Try these:

Find the derivative of: \(y = \log(\cos(4x)) \).

Let \(f(x) = x \ln(\cos(2x)) \), find \(f'(\pi) \).

Determine where \(f(x) = 2x^2 \ln\left(\frac{x}{4}\right) \) is increasing/decreasing.

Find the points of inflection for the function \(f(x) = 4x^2 \ln\left(\frac{x}{4}\right) \).

Find the derivative of \(f(x) = e^{2x} \ln(2x) \).

Find the derivative of \(f(x) = \ln\left(5^{-x^2+x}\right) \).

Find the slope of the tangent line to the curve \(y = (2 + \cos x)^{4+\sin x} \) at \(x = 2\pi \).
Question 1: Let \(f(x) = 2x + \ln x \). Find \((f^{-1})'(2) \).

\[
\frac{d}{dx} f(2) = 2 + \frac{1}{x}
\]

a. 1 b. 1/2 c. 1/3 d. 1/(ln2)

\[f'(1) = \frac{3}{2} \]

Question 17. Given the graph of the derivative of \(f \), classify the point at \(x=a \).

A. local maximum
B. local minimum
C. point of inflection
D. none of these

Question 37. Given the graph of the derivative of \(f \), classify the point at \(x=b \).

A. local maximum
B. local minimum
C. point of inflection
D. none of these
Math 1431 Section 4.3

Question . Given the graph of the derivative of f, classify the point at $x=c$.

A. local maximum
B. local minimum
C. point of inflection
D. none of these

Question . Given the graph of the derivative of f, classify the point at $x=d$.

A. local maximum
B. local minimum
C. point of inflection
D. none of these

Question . Find the slope of the tangent line to $y = e^{\cos(2x)}$ at $x=0$.

A. 1
B. e
C. 0
D. e^2
E. none of these

\[
y' = e^{\cos(2x)} \cdot (-\sin(2x) \cdot 2)
\]
\[
e^{\cos(0)} \cdot (-\sin(0) \cdot 2)
\]
\[
e^1 \cdot (-0 \cdot 2) = 0
\]
Section 4.4: The Inverse Trigonometric Functions

In section 4.1, we learned that in order to have an inverse, a function must be one-to-one. Since trigonometric functions are periodic, they are NOT one-to-one. To define the inverse trig functions, we must restrict the usual domains.

The function \(\sin(x) \) is graphed below. Notice that this graph does not pass the horizontal line test; therefore, it is not invertible.

However, if we restrict it from \(x = -\frac{\pi}{2} \) to \(x = \frac{\pi}{2} \), then we have created the “Restricted” sine function and it’s one-to-one. Since the restricted sine function is one-to-one, it has an inverse \(f(x) = \sin^{-1}(x) = \arcsin(x) \).
The function \(\tan(x) \) is graphed below. Notice that this graph does not pass the horizontal line test; therefore, it is not invertible.

However, if we restrict it from \(x = -\frac{\pi}{2} \) to \(x = \frac{\pi}{2} \) then we have created the "Restricted" tangent function and it’s one-to-one. Since the restricted tangent function is one-to-one, it has an inverse \(f(x) = \tan^{-1}(x) = \arctan(x) \).

\[
\tan(x) \\
D: \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \\
R: (-\infty, \infty)
\]

\[
\tan^{-1}(x) \\
D: (-\infty, \infty) \\
R: \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)
\]
The function $\cos(x)$ is graphed below. Notice that this graph does not pass the horizontal line test; therefore, it does not have an inverse.

However, if we restrict it from $x = 0$ to $x = \pi$ then we have created the “Restricted” cosine function and it’s one-to-one. Since the restricted cosine function is one-to-one, it has an inverse $f(x) = \cos^{-1}(x)$.

Domain: $[0, \pi]

Range: $[-1, 1]$
Math 1431 Section 4.4

The restrictions when working with arcsine are: \(\left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \) which are angles from QUADRANTS 1 AND 4.

Example 1: Compute \(\sin^{-1}\left(-\frac{1}{\sqrt{2}} \right) \).

\[\sin^{-1}\left(-\frac{\sqrt{2}}{2} \right) = -\frac{\pi}{4} \]

The restrictions when working with arccosine are:

\[[0, \pi] \] which are angles from QUADRANTS 1 AND 2.

Example 2: Compute \(\cos^{-1}\left(\frac{1}{2} \right) \).

The restrictions for arcsec are: \(\left[0, \frac{\pi}{2} \right] \cup \left(\frac{\pi}{2}, \pi \right] \). The restrictions for arccsc are: \(\left[-\frac{\pi}{2}, 0 \right) \cup \left(0, \frac{\pi}{2} \right] \).
Math 1431 Section 4.4

The restrictions when working with arctangent are: \(\left(\frac{-\pi}{2}, \frac{\pi}{2} \right) \), which are angles from QUADRANTS 1 AND 4.

\[\tan(\theta) = \frac{\sqrt{3}}{3} \]

Example 3: Compute \(\arctan \left(\frac{1}{\sqrt{3}} \right) \).

\[\arctan \left(\frac{\sqrt{3}}{3} \right) = \frac{\pi}{6} \]

Example 4: Find \(\sin^{-1} \left(\cos \left(\frac{2\pi}{3} \right) \right) \).

\[\sin^{-1} \left(-\frac{1}{2} \right) = -\frac{\pi}{6} \]
Example 5: Find $\cot \left(\tan^{-1} \left(-\sqrt{3} \right) \right)$.

\[
= \cot \left(-\frac{\pi}{3} \right)
\]

\[
= -\frac{\sqrt{3}}{3} \quad \text{or} \quad -\frac{1}{\sqrt{3}}
\]

For some problem we’ll need to recall the following identities:

\[
\sin(2\alpha) = 2\sin \alpha \cos \alpha
\]
\[
\cos(2\alpha) = 1 - 2\sin^2 \alpha
\]
\[
\cos(2\alpha) = 2\cos^2 \alpha - 1
\]
\[
\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha
\]

Example 6: Find $\sin \left(2 \arcsin \left(\frac{5}{13} \right) \right)$.

\[
= \sin \left(2 \cdot \alpha \right)
\]

\[
= 2 \sin \alpha \cdot \cos \alpha
\]

\[
= 2 \cdot \frac{5}{13} \cdot \frac{12}{13}
\]

\[
= \frac{120}{169}
\]
Math 1431 Section 4.4

Question 2: \(\sin \left(\sin^{-1} \left(\frac{\pi}{6} \right) \right) \)

a. \(\frac{1}{2} \)
b. \(\frac{\sqrt{3}}{2} \)
c. \(\frac{\pi}{6} \)
d. \(\frac{\pi}{3} \)
e. None of the Above

Question 3: \(\frac{d}{dx} \left(e^{5 \ln x^2} \right) \)

a. \(e^{5 \ln x^2} \)
b. \(10 e^{5 \ln x^2} \)
c. \(\frac{e^{5 \ln x^2}}{x} \)
d. \(10x^9 \)
e. None of the Above
Math 1431 Section 4.4

Derivative Formulas \((u \text{ is a function of } x)\):

\[
\frac{d}{dx}[\arcsin x] = \frac{1}{\sqrt{1-x^2}} \quad \frac{d}{dx}[\arcsin u] = \frac{u'}{\sqrt{1-u^2}}
\]

\[
\frac{d}{dx}[\arctan x] = \frac{1}{1+x^2} \quad \frac{d}{dx}[\arctan u] = \frac{u'}{1+u^2}
\]

\[
\frac{d}{dx}[\text{arcsec } x] = \frac{1}{|x|\sqrt{x^2-1}} \quad \frac{d}{dx}[\text{arcsec } u] = \frac{u'}{|u|\sqrt{u^2-1}}
\]

Example 7: Differentiate: \(y = \cos(\arcsin (2x))\).

\[
y' = -\sin(\arcsin (2x)) \cdot \frac{1}{\sqrt{1-(2x)^2}} \\
\]

\[
= -\frac{2 \sin(\arcsin (2x))}{\sqrt{1-4x^2}} \\
\]

Example 8: Differentiate: \(y = \sec^{-1}(\sqrt{7})\).

\[
y' = -\frac{14x}{|7x^2| \cdot \sqrt{(7x^2)^2-1}} = \frac{u'}{|u|\sqrt{u^2-1}}
\]
Example 9: Differentiate: \(f(x) = e^{\arctan(x)} + \arcsin(\ln x) \)

Question 4: Evaluate \(\tan^{-1} \left(\tan \frac{7\pi}{4} \right) \)

a. 1 b. -1 c. \(\frac{\pi}{4} \) d. \(-\frac{\pi}{4} \) e. \(\frac{7\pi}{4} \)

Example 10: Differentiate: \(f(x) = 6e^{\arcsin x} \)
Math 1431 Section 4.4

Question 5: Evaluate \(\sin \left(\sin^{-1} \left(-\frac{\sqrt{3}}{2} \right) \right) \)

a. \(\frac{\pi}{6} \) b. \(-\frac{\pi}{6} \) c. \(\frac{11\pi}{6} \) d. \(-\frac{\sqrt{3}}{2} \) e. \(-\frac{\sqrt{3}}{2} \)

Example 11: Given \(g(x) = \arcsin \left(\frac{e^x}{2} \right) \), find the equation for the tangent line to the graph of this function at \(x = 0 \).

Example 12: Differentiate: \(f(x) = \sqrt{25 - x^2} + 5 \arcsin \left(\frac{x}{5} \right) \)
Math 1431 Section 4.4

Try these:

Find \(\tan^{-1}\left(\sin\left(\frac{5\pi}{6}\right) \right) \).

Find \(\cos\left(2\arcsin\left(\frac{3}{5}\right)\right) \).

Differentiate:

a. \(y = \arcsin(2x^2 + 5x) \)

b. \(f(x) = \ln(\arctan(3x^2 + 2x)) \)

c. \(g(x) = \frac{x}{\sqrt{36 - x^2}} - \arcsin\left(\frac{x}{6}\right) \)

d. \(h(x) = \arcsin\left(\frac{e^{6x}}{3}\right) \)