Section 13 The Fundamental Theorem of Group Homomorphisms

Def. Let \(\phi : (G, \cdot) \rightarrow (G', \#) \) be a homomorphism of \(G \) into \(G' \). Let \(\epsilon \) be the identity of \((G, \#) \).

Let \(K = \{ x \in G \mid (x) \phi = \epsilon \} \).

\(K \) is called the kernel of \(\phi \).

\(\text{Theorem 1} \) \(K \) is a normal subgroup of \(G \).

Note: \(aK \) is a left coset of \(K \) where \(a \in G \).

Recall \(aK = \{ ak \mid aK \in K \} \). Then \((aK) \phi = (a) \phi \# (b) \phi \)

\(= (a) \phi \# (b) \phi = (a) \phi \# \epsilon = (a) \phi \# \epsilon = (a) \phi \) is a left coset.

\(\text{Theorem 2} \) Let \(\phi : G \rightarrow G' \) be a homomorphism, where \(G \) and \(G' \) are groups. Suppose \(K = \text{Kernel of } \phi \). Then \(G/K \cong G' \).

In particular the mapping \(\tilde{\phi} : (G/K, \#) \rightarrow (G', \#) \) defined by

\((aK) \tilde{\phi} = (a) \phi \) \(\forall aK \in G/K \).

Moreover \(\tilde{\phi} \) is a well-defined 1-1 mapping of \(G/K \) onto \(G' \) and the kernel of \(\tilde{\phi} \) is \(K \). More importantly, \(\tilde{\phi} \) is a homomorphism, i.e., \([(aK) \# (bK)] \tilde{\phi} = (aK) \tilde{\phi} \cdot (bK) \tilde{\phi} \) \(\forall aK, bK \in G/K \).

\(\text{Note: This means } |G/K| = |G'| \). In particular if \(G \) is finite, then \(|G| \) divides \(|G'| \).

Theorem 3 Let \(H \) be a normal subgroup of \((G, \cdot) \). Define \(\gamma : G \rightarrow G/H \) by \((x) \gamma = xH \) \(\forall x \in G \). Then \(\gamma \) is a homomorphism of \(G \) onto \(G/H \) and the kernel of \(\gamma \) is \(H \).

Putting Theorem 2 and Theorem 3 together, we have that
Up to isomorphism, the set of homomorphic images of G (i.e., the set of groups \overline{G} for which \exists a homomorphism ψ from G onto \overline{G}) is $\mathcal{G} / \mathcal{H}$, where \mathcal{H} is a normal subgroup of G.

Note: ψ is called the canonical or natural mapping of G onto G / \mathcal{H}.

Theorem 2 and Theorem 3 together form the Fundamental Theorem of Group Homomorphisms along with the following diagram:

\[
\begin{array}{ccc}
G & \xrightarrow{\phi} & \overline{G} \\
\downarrow{\gamma} & & \downarrow{\gamma} \\
G / \mathcal{H} & \xrightarrow{\psi} & \end{array}
\]

where
- ϕ is a given homomorphism of G onto \overline{G} with kernel \mathcal{H}.
- γ is the canonical mapping given by $\gamma(x) = x + \mathcal{H}$, $\forall x \in G$.
- ψ is the mapping given by $\psi(a + \mathcal{H}) = \phi(a)$, $\forall a \in G$.

Then $\gamma \circ \psi = \phi$

and we say the above diagram is commutative.

One other observation:

We have the groups $\big(\mathbb{Z} / \langle n \rangle, \ast \big)$ and $\big(\mathbb{Z}_n, +_n \big)$.

The elements of $\mathbb{Z} / \langle n \rangle$ are of the form $a + \langle n \rangle = a + kn$, $\forall k \in \mathbb{Z}$.

This means $\mathbb{Z} / \langle n \rangle = \mathbb{Z}_n$ as sets.

This also means $a + \langle n \rangle \ast (b + \langle n \rangle) = (a + b) + \langle n \rangle$ by definition of \ast.

This means \ast and $+_n$ are the exact same operation.

Thus, the groups $\big(\mathbb{Z} / \langle n \rangle, \ast \big)$ and $\big(\mathbb{Z}_n, +_n \big)$ are exactly the same.