GENERALIZED FRAME MULTIRESOLUTION ANALYSIS OF
ABSTRACT HILBERT SPACES

MANOS PAPADAKIS

ABSTRACT. We define a very generic class of multiresolution analysis of abstract
Hilbert spaces. Their core subspaces have a frame produced by the action of an
abelian unitary group on a countable frame multiscaling vector set, which may be
infinite. We characterize all the associated frame multiwavelet vector sets and we
generalize the concept of low and high pass filters. We also prove a generalization
of the Quadratic (Conjugate) Mirror filter condition and we give two algorithms for
the construction of the high pass filters associated to a given low pass filter.

1. INTRODUCTION AND PRELIMINARIES

Let H be a complex Hilbert space. A unitary system U is a set of unitary operators
acting on H which contains the identity operator I on H ([16]). Now, let D be the
(dyadic) Dilation operator

(1) (Df)(t) = V2f(2t) f € L*(R)
and T the Translation operator

(2) (THE)=ft-1) feL(R)

The unitary system Upr := {D"T™ : n,m € Z} called the Affine system has been
extensively used in wavelet analysis.

A Riesz basis of a Hilbert space is a basis similar to an orthonormal basis, i.e. there
exists a bounded and invertible operator defined on the Hilbert space mapping every
element of an orthonormal basis of the Hilbert space to exactly one element of the
Riesz basis and vice-versa ([13, 19]). The set {¢ : K =1,2,...,n} is an orthonormal
(Riesz) multiwavelet set if {D/T™ : k = 1,2,...,n, j,m € Z} is an orthonormal
(Riesz) basis of L?(R). Dai and Larson were the first who used operator-theoretic
tools to formulate and study an abstract wavelet theory for Hilbert spaces ([16]).
Following [16] C' is an orthonormal (Riesz) multiwavelet vector set of H with respect
to the unitary system U if {Uy : U € U, ¢ € C} is an orthonormal (Riesz) basis for
the Hilbert space H.
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The family {x; : i € I} is a frame for the Hilbert space H if there exist constants
A, B > 0 such that for every z € H we have

Allel? < 3 [, < Bllall® -
iel

We refer to the optimal positive constants A, B satisfying the previous inequalities as
the lower and upper frame bounds of {z; : i € I} respectively. We refer to the frame
as tight if A = B and as Parseval frame (PF) if A= B = 1. A term widely used in
the past for Parseval frames was normalised tight. A frame {z; : i € I'} of H is called
ezxact if each one of its proper subsets is not a frame for H. Riesz bases are exact
frames and vice-versa.

For the frame {z; : i € I} of H we define the operator S called the analysis
operator' corresponding to the frame {x; : i € I'} by the following equation:

Sz = {(xaxi>}i61 y X € H.

Using this operator we can construct the canonical dual frame of {z; : ¢ € I'}. In what
follows, for a given frame we will only be concerned for its canonical dual, so from
now on we use the term “dual frame” to indicate the canonical dual of a frame. The
significance of the dual frame is that its elements define the coefficient functionals
which give the expansion of every element of H in terms of the original frame. This
expansion is known as the reconstruction formula. Therefore, frames can be as useful
as Riesz and orthonormal bases. Among frames the most desirable ones are perhaps
the PF's, because they are identical with their duals. For more details on the general
theory of frames we encourage the interested reader to refer to [8, 13, 19].

Signals, which are modelled as vectors, can be expanded with respect to a Riesz
basis. Such expansions correspond to the exact sampling of signals. Sampling is
necessary because it allows us to convert a signal from analog into digital and also
because the available computational hardware and software requires that all input
signals are digital. Sampling is performed by a variety of devices such as scanners and
digital cameras. Nevertheless exact sampling is not always the most favorable type of
sampling. In fact, in practice we oversample. This allows us to deal more effectively
with certain deficiencies of communication channels, such as noise (see [10]). On the
other hand, oversampling intuitively corresponds to an expansion of a signal with
respect to a frame, because frames may not be exact. After this brief engineering
intermezzo, which illustrates the potential of frame theory for applications, let us
continue our discussion on the preliminaries of the Generalized Frame Multiresolution
Analysis.

In the abstract Hilbert space setting we can define wavelet frames with respect to
a unitary system U ([19]). Let C be a subset of H and U a unitary system acting on
H.If{Uy :U €U, ¢ € C} is a frame (resp. tight, Parseval) for the Hilbert space
H we call the set C a frame multiwavelet vector set (resp. tight, Parseval) and the

'Han and Larson in [19] call the same operator frame transform.
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family {Uvy : U € U, v € C} a multiwavelet vector frame (resp. tight, Parseval).
If C' is a singleton, we refer to the single element of C' as a frame wavelet vector. If
H = L*(R") we refer to frame multiwavelet vector sets as frame multiwavelets.

In the rest of the present paper, D will denote an arbitrary unitary operator defined
on H and not the Dyadic dilation operator, unless it is otherwise stated. We are
interested in unitary systems U acting on H of the form U = UyG, where Uy = {D" :
n € Z} and G is an abelian unitary group. We will often refer to G as a translation
group. Obviously unitary systems of this form generalize the Affine system.

Definition 1. A sequence {V;}jez of closed subspaces of an abstract Hilbert space H
is a Generalized Frame Multiresolution Analysis of H (GFMRA) if it is increasing,
i.e. V; C Vi for every j € Z and satisfies the following properties:

(a) V; = Di(Vp), j €L

(b)N;V; =10}, U;V;=H

(c) There exists a subset B of Vy such that the set G(B) = {g¢: 9 € G,¢ € B} is
a frame of V.
Every such set B is called a frame multiscaling vector set for {V;};. Every subset C
of Vi such that G(C) = {gv : g € G, € C} is a frame of Wy := Vi N V- is called a
semiorthogonal frame multiwavelet vector set associated with {V;};.

If B is a singleton we refer to its unique element as a frame scaling vector or,
if H = L*(R"), as a frame scaling function. Note, that if C is a semiorthogonal
frame multiwavelet vector set associated with the GFMRA {V;}; then C is a frame
multiwavelet vector set for H, because {D’g1) : j € Z,g € G,v € C} is a frame for
H with the same frame bounds as G(C). We also refer to the subspace V; as a core
subspace. In this paper we study only semiorthogonal frame multiwavelet vector sets.
Thus, for convenience, we will not make any further use of the term “semiorthogonal”
when we refer to frame multiwavelet vector sets.

The goal of the present paper is to generalize the theory of multiresolution anal-
ysis (MRA) by introducing a very generic MRA structure called Generalized Frame
MRA. Moreover, we characterize all frame multiwavelet vector sets associated with a
Generalized Frame Multiresolution analysis of an abstract Hilbert space and we give
two algorihtms for the construction of these sets (section 2), proving so that such sets
always exist. We also give some examples of Generalized Frame MRAs (section 3),
which by no means should be considered exhaustive. The construction of each frame
multiwavelet vector set associated with a given GFMRA requires only a frame mul-
tiscaling vector set of this GFMRA. The examples in section 3 establish that frame
multiscaling vector sets for the same GFMRA may have various cardinalities. This
particular fact reveals some of the capabilities of the GFMRA theory.

In order to accomplish the construction of the frame multiwavelet sets associated
with a GFMRA {V;}, we need the following additional hypotheses, which we assume
that are satisfied throughout the rest of this paper.
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e There exists a mapping o : G — G satisfying
gD = Do(g), forevery g € G.

This particular assumption implies that ¢ is an injective homomorphism and
0(G) is a subgroup of G. (See [20] for proofs)
e |G:0(G)| = n < 400 and that {V;};, where |G : 0(G)| is the index of the
subgroup o(G).
e The GFMRA {V;}, has a countable frame multiscaling vector set.
We will refer to a GFMRA satisfying the last property as countably generated.

Before proceeding we wish to add a few comments regarding these extra hypotheses.
Let D and T be the operators defined by egs. (1) and (2). It is not hard to check
that TD = DT?. In fact this non-commutation relation is the key for the production
of wavelets associated with Multiresolution Analyses of L?(R). In this particular case
we have G = {T™ : n € Z} and o(T™) = T, for every n € Z, thus the index of
0(@G) equals 2. This shows that the first two hypotheses are neither restrictive nor
technical. The third hypothesis is very general. In subsection 3.2 we give an example
(Example 2) of a countably infinitely generated GFMRA, which can also be generated
by a single scaling function.

If the core subspace of a GFMRA admits an orthonormal or a Riesz basis of the
form G(B), where B is a subset of the core subspace, then we refer to this GFMRA
as a Multiresolution analysis (MRA) of H and to B as a multiscaling vector set.

If we do not specify the unitary system then either it is clearly defined from the
context, or we assume that it is the Affine system acting on L?(R).

GFMRAs of L*(R) were introduced in [26], where it was proved that every or-
thonormal wavelet of L?(R) is associated with a GFMRA. However, the primary
contribution of [26] was the method developed in the proof of the aforementioned
result for the construction a PF multiscaling set of functions defining the GFMRA
with whom the given orthonormal wavelet is associated with. The existence of such
a PF multiscaling set was also proved later in [7].

MRAs of abstract Hilbert spaces were studied in [5, 6, 20, 37]. Among the classes
of MR As that were studied in these papers, the most general ones are the Generalized
MRAs of Baggett and co-workers ([5, 6, 7]). These Generalized MRAs satisfy prop-
erties (a) and (b) of definition 1, the first two of the additional hypotheses following
definition 1 and the following: G is countable and for every g € G we have g(V5) = ;.
Obviously GFMRAs are Generalized MRAs. On the other hand, Generalized MRAs
of L?(R™) ([7, 15]) defined with respect to a translation group G, which is discrete
and isomorphic to Z™ are GFMRASs, because, in this case, there exists a countable
subset B of V; such that all the translations of the elements of B with respect to
G form a PF of Vj (see Theorem 3.1. [40], see also [12]). Therefore, we can con-
clude that the GFMRA is indeed the most general class of multiresolution analysis in
L?(R™) at least. Baggett and co-workers study only orthonormal multiwavelet vector
sets of abstract Hilbert spaces and they focus mostly on establishing the existence
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of such sets associated with a certain class of their Generalized MRAs. They also
prove that every orthonormal multiwavelet vector set is associated with a Generalized
MRA from the same class (Theorem 1.3, [6]), thus generalizing the aforementioned
result of Papadakis in [26]. Their main tool is an abstract integer-valued function
called multiplicity function and not the frame multiscaling vector sets. Construction
of multiwavelets in L2(R") based on their techniques are primarily due to Courter
([15]). Further examples can be found in [5, 6, 7]. The techniques developed by the
Baggett group do not seem to lead directly to constructions of multiwavelet vector
sets from frame multiscaling vector sets even in the case of L*(R").

Our paper is supplemented by another paper ([27]), where, in a four-page survey,
we give further details concerning the connection of our work with the work of others.

It becomes apparent from definition 1 that most of the MRAs studied in the liter-
ature, such as MRAs of L?(R") whose dilations are defined by arbitrary expanding
matrices and their translations are induced by lattices similar to Z", are special cases
of GFMRAs. On the other hand, every MRA admits a frame multiscaling vector set.
A very trivial, yet generic, example illustrating this fact is the following: Let ¢ be
a scaling function of an MRA of L?(R). Then {¢,T¢,...T"¢} (n € Z™T) is a tight
frame multiscaling set of functions for the same MRA. However, not every GFMRA
is an MRA (see example 1 in subsection 3.2).

Singly generated GFMRAs of L?(R) have been introduced and studied by Benedetto
and Li ([9]) and later, but independently, by Kim and Lim ([23]). We refer to such
GFMRAs as FMRAs. A recent paper by Benedetto and Trieber ([10]) generalizes
some of the results of ([9]), contains some further examples and facilitates an inter-
esting connection between FMRAs, subband encoding and denoising of signals. In
all these papers frame wavelets are constructed from frame scaling functions and the
same frame wavelets can be derived in a different way from our more general results
(subsection 3.1). Comparing our techniques with those in [9, 10, 23|, one can see
that the use of Von Neumann algebra theory yields more geometrically transparent
proofs even in the abstract Hilbert space setting. It also allows us to avoid a lot of
technicalities, which would otherwise clutter our arguments.

Now, consider the Hilbert space £*(G). If g € G let £, be the unitary operator
acting on ¢*(G) defined by the equation £,(0y) = &4, where &), is the Kronecker’s
delta function defined on G. The set {d, : h € G} is an orthonormal basis of #(G)
and the set G* := {{, : g € G} is a unitary group acting on ¢*(G). In fact the mapping

g—4Ly, g€G

known as the left regular representation of GG is a group isomorphism between G and
G*. Thus G* is abelian. Moreover, it is not hard for someone to verify that if h, g € G,
and a € (?(Q), then {4a(h) = a(g~'h). Furthermore, G* is discrete with respect to
the SOT (Strong operator topology). From now on we will work on G* instead of G.

By G* we denote the dual group of G* and by u the normalized Haar measure on G*.
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Let g € G. We define f; : G* — G by the formula

fo(v) =), Y€ G

It is not hard to see that {f, : ¢ € G} is an orthonormal basis of L? (@)
The homomorphism ¢ induces the mapping ¢* defined on G*, by the following
equation:
0*(£g) = Eg(g), g eq.
Obviously o* is an injective homomorphism and |G* : 6*(G*)| = |G : ¢(G)|. Following
[20] we define p on G- by the equation

p(V)(lg) =vo00"(ly), g€ G, veG
Next we give a brief account of the properties of mapping p, which plays an instru-
mental role in section 2.

Proposition 2. (20, 37]) The following are true:

(a) The mapping p is a continuous and open homomorphism. In addition, p is
measure preserving, i.e. u(p~'(A)) = u(A), for every measurable subset A of

G*

(b) The kernel of p has exactly n elements and is group isomorphic to G/o(Q).

(c) There exists a measurable mappmg p: G* — G* associated with p such that
p(p(7)) =, for every v € G*.

(d) p~(A) = Uy 7ip(A), for every subset A of G*. Moreover, Yip(A) and v;p(A)
are disjoint, if i # j.

For the definition of p and proofs of the properties of p and p the reader should
refer to [20] and follow the convention that the mapping o in [20] is the mapping o*
defined in the previous paragraph. Both mappings were introduced in [37].

In section 2 we will use the Hilbert space LQ(EJ\*,KZ). This space consists of all
weakly measurable functions w : G* — ¢2 such that [= || w(v) |7 dv is finite®. The

() 1% d7)"2. It g € G, M, is the multi-

norm of w is defined by || w ||:= ([=
plicative operator defined by

M,f = f,f, f€L*G* ).

Obviously M, is unitary for every g € G, and M; = M,-1. Let us close the present
section with a few clarifying remarks on our notation.

If A is a set of bounded operators defined on H, then A’ denotes the commutant of
A. Let f be a measurable function. We refer to the set {¢ : f(¢) # 0} as the support
of function and we denote this set by suppf. In several cases we find convenient and
more accurate to denote the function f by f(-), where the - replaces the variable,

2All integrals on G* are defined with respect to p.
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rather than using the inaccurate notation f(z) for f. Finally, we use |A|, A~ and
A° to denote the cardinality of a set A, its closure in the appropriate topology and
its set-theoretic complement, respectively. If, in particular, A is a subset of a vector
space [A] stands for the linear span of A. Last but not least, we reserve the term
subspace for closed linear manifolds.

2. THE CONSTRUCTION AND THE CHARACTERIZATION OF THE FRAME
MULTIWAVELET VECTOR SETS ASSOCIATED WITH A GFMRA

2.1. The characterization of the frame multiwavelet vector sets associated
with {V;},. Assume that {¢;, k € N} is a set of frame multiscaling vectors for {V};.

Define S : Vo — L2(G*, £?) by the following equation

(3) Szi=) ) (900 fule, @ €Va.

g€g keN
Those who are familiar with frame theory will immediately recognise that S is the
frame or analysis operator corresponding to the frame {g¢y : g € G,k € Z} of V.
Thus S is well-defined, bounded and

Aly, < §*S < Bly,
where A, B are frame bounds for {g¢ : g € G, k € N}.

Remark 1. The first who observed that a projection applied on a Riesz basis gives
a frame was Aldroubi ([1]). Han and Larson, completely independently, prove in
Chapter 1 of [19], that every frame can be dilated to a Riesz basis, establishing, thus,
the converse of Aldroubi’s observation. Remarkably enough the Han and Larson
“dilation” idea is in the heart of our construction, as the following argument will
facilitate.

Assume that we have a GFMRA generated by a (single) PF scaling function, say
¢. Consider the analysis operator corresponding to the PF {g¢ : ¢ € G} mapping V}
into 2(@). The “dilation” of {g¢ : ¢ € G} is the orthonormal basis {£,; : g € G}
of /2(@), where I is the identity operator on H. This naturally induces the group
G*, which now acts on £2(G). It now becomes clear that we do not only “dilate”
the frame {g¢ : ¢ € G} of V; to a Riesz basis, but we also “dilate” the group
G |y, by creating G*. Even more is true; if P is the range projection of the analysis
operator corresponding to {g¢ : g € G}, then the group PG* | p(s2(cy) is isomorphically
homeomorphic to G |y.

On the other hand, we actually have /*(G) = ¢*(G*). Since we need a natural

substitute of the Fourier transform we work on L?(G*) instead of ¢2(G). If we work

with an infinite frame multiscaling vector set, we use L2(G*, ¢?) instead of L2(G*). If
we work with a frame multiscaling vector set with r elements, where r is finite, we use
Lz(é\* ,C"). Without any loss of generality throughout section 2 we will exclusively
use L2(G*, ().
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Taking the polar decomposition of S we obtain S = Y |S|, where |S| = (5*S)'/2.
The previous inequality implies that both S*S and |S| are invertible, i.e. their inverses
are well-defined and bounded as well. Since S is injective, Y is an isometry. It is also
not hard to verify that S*S belongs to the commutant of G and that the same is true
for | S| as well. If we define

or =S| ¢, kEN
then {g&k :k € N, g € G} is a PF of Vj,, because if x belongs to Vj, then we obtain

Yo = SIS w=) > {ISI7 = 96x) fod
g k
(4) = D (@, 9%k fo5
g k

~ 2
o [lz” = IVzl* = 5,5, (2. 98]

Since D*¢,, € V_1 which is contained in V; we can consider SD*¢;. We define
my ‘= SD*¢k and ﬁlk = YD*¢k

Definition 3. If my are the functions defined by the previous pair of equations we
call the set {my : k € N} low pass filter set associated with the multiscaling set

{¢k . kEN}

Let P be the orthogonal projection onto the range of S. Notice that due to the
lower frame inequality the range of S is closed. Polar decomposition also implies

Y(Vo) = 5(Vo)-

Lemma 2.1. The following are true:
(a) Ygor = P(fg0x) g€ G, keN
(b) YgY* = M,P, g¢ G.

(c) Pe{M,:geGY.

Proof. (a) Let h € G. Since Y is an isometry we have (Y(gdk), Y(hoe)) = (gop, hoy) =
(Y(g0r), frnie), k, £ € N due to equation (4). On the other hand we obtain

(Y (968, fude) = (Y (gor), P(fnde))-
Thus for every k,¢ € N and g, h € G we have
(P(f1be), Y (gr)) = (Y (hde), Y (9k))

which implies that P(f,0;) = Y (hoy), because {Y (g¢y) : g € G, k € N} spans Y (Vp).
(b) Equation (4) implies that for every g € G and k € N

Y*(fgdk) = g&k .
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Therefore, if h is in G and k is in N, we obtain
YgY*(fab) = Y(ghe)
= Y (ghtw, o) fube =Y {ghdr, g9 "1 e} fude
n e K
= MY (hdy) = MyP(fnd%)-
This establishes (b). Now for g,h € G,k € N we have

MyP(fabs) = YgY*(fadk) =Y (ghoy)
= P(fgfnox) = PMy(fndr)-
This establishes (c). O

Lemma 2.1(a) shows that {gé : ¢ € G, k € N} is unitarily equivalent to the PF
{Pf,0r : g € G, k € N}. This fact is crucial for our study, because it helps us to prove
the remaining statements in lemma 2.1, which play a key role in the characterization
of the frame multiwavelet vector sets associated with GFMRAs and in the proof of
the Generalized Quadratic Mirror filter condition® (see theorem 7). The proof of
statement (a) of lemma 2.1 was adopted from [19], but was included here for the sake
of completeness. .

The space LQ(@, %) is isometrically isomorphic to the space L?(G*)®/2. Under the
same isomorphism M, can be identified with ;g ® Ij2, where p, is the multiplicative
operator defined by p,w = fow, w € LQ(C/}'\*) and Ij2 is the identity operator on £2.
Therefore {M, : g € G}’ can be identified with LOO(@) ® B(£?). The latter Von
Neumann algebra is spatially isomorphic to the Von Neumann Lw(é\*, B(¢?)). This
particular Von Neumann algebra consists of all essentially bounded WOT-measurable
functions F : G* — B(¢%). Therefore, {M, : g € G} is the algebra of all bounded
operators F, defined in the following way: For every F there exists F' € Loo(é\*, B(£?))
such that /\

Fu(y) = F(V)w(y), w e L*G",¢)
and vice versa. For more details the reader may refer to [18] and in particular to
examples 4.3.5 and 4.3.10. .
Thus for P € {M, : g € G}’ there exists a function P € L®(G*, B(¢?)) such that

(Pf)(y) = P()f(7),v € G~.

Notice that we used the same notation for the projection P and the operator-valued
function P in L*®(G*, B(£?)). Throughout the present paper we adopt this convention
in order to simplify our notation and we hope that this will not confuse the reader.

3The Quadratic Mirror filter condition is also known as the Smith-Barnwell condition and as
Conjugate Mirror filter condition.
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In addition, we set K = L2 (@, I?). Since P is an orthogonal projection it turns out
that P(y) is an orthogonal projection for a.e. v in G*.

Since we want to characterize the sets of frame multiwavelet vectors associated
with {V}}; it is reasonable to work with Y instead of S, because Y preserves inner
products. This motivates us to define

my = YD*¢k, keN.

Our next goal is to find the relationship between my and my. For every £ € N we
obtain

(5) my = SD*¢p =Y |S|Y* (YD ) = Y [S| Y"1y,

because Y*Y = Iy,.

Lemma 2.2. Both S*S and |S| belong to G' and Y |S|Y™* belongs to {M, : g € G}'.
Proof. The fact that g belongs to G' gives us

95" Sz = Y (x, hew)ghen

heG keN

= ZZ<9$a9h¢k>gh¢k = S*Sgz, = €Vj.
hok

This implies that S*S € G’ and so |S| € G'. On the other hand, for every g € G we
have

MY |S|Y* = M,PY|S|Y*=YgY*Y|S|Y*=Yg|S|Y"
= YI[S|gY* =Y |S|Y*(YgY*) =Y |§|Y*M,P.

So far we used Lemma 2.1 (b) and the previous conclusion. Since P belongs to
{M, : g € G} and Y*P =Y* we obtain

Y*My=Y*"PM, =Y"M,P.
This completes the proof of the lemma. 0

The final conclusion of Lemma 2.2 implies the existence of a function A : G —
B(I?), which is WOT-measurable such that essup{||A(7)]| : v € G*} = |||S]||, and

YISV w)(7) = A(Y)w(7), we K
Since Y |S| Y™ belongs to {M, : g € G}, is positive and
(6) SS* =Y IS|IS|Y" = (Y |S]Y")?
we obtain SS* € {M, : g € G} and that Y |S|Y™* is the square root of SS*. Therefore,
S8*w(v) = A()*w(v), weK.
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At this point, the reader should recall that |S| is a positive operator, so A(y) is a
positive operator a.e. Now, let £ € N. Then

(7) SS* 6k =Sk =D _ > (dr, 91) f461-
g !

Equation (7) implies that A(-)? is the autocorrelation function corresponding to the
frame multiscaling vector set {¢y, : k € N}. Since A() is positive, it follows that A(7)
is the square root of this autocorrelation matrix, for a.e. 7 in G-

The range space of SS* is the same with the range space of S (see proposition 2.5.13
of [22]) and the range of S is closed, because S is the analysis operator corresponding
to the frame {g¢y : g € G, k € N}. Let us denote the range of S by R(S). Then

SS* ‘R(S): R(S) — 'R,(S)

is an invertible bounded operator, because SS* |z(s) is injective, since ker(SS*) =
ker(S*) = R(S)*. Note that P is the range projection of SS* as well. Summarizing
the arguments in the preceding two paragraphs we obtain the following proposition.

Proposition 4. The following are true:
(i) For every k € N

A0k =D ) (ks 981) fodt, 7 € G*.

geG =1

(ii) There exist By, By > 0 such that, first, ||A(7)|| < Bz a.e.; second, for a.e. 7
such that P(y) # 0 and z € P(v)(I?) we have

By |Jz]| < |A(y)z]| < Bz [l

(iii) (SS*f)(7v) = A(7)*f(7) and (Y'[S|Y*f)(7) = A(7)f(y) for every f € K.
(iv) P(Y)A()*P(7) = A(7)?P(v) = A(y)* and P(y)A(7)P(7) = A(7)P(v) =
A(7) for a.e. v € G*.

Proposition 4 and equation (5) imply

8) ik (y) = A7) 'm(y), 7 € G*.

where A(y)™! is defined only for these v in the suppP. In this case the domain
of A(y)™! is P(y)(¢?). We adopt the convention that A(y)™' = 0 if v does not
belong to suppP. Our next goals for this section are to derive the Generalized QMF
condition; characterize the frame multiwavelets vector sets associated with a given
frame multiscaling vector set and finally show that such sets do exist by giving two
algorithms for their construction. This will complete a first project on the study of
the general theory of GFMRASs of abstract Hilbert spaces. Yet several and interesting
problems have to be studied in order to have a complete and in depth study of the
topic. Other results and further examples can be found in [27] and [28].
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The equation gD = Do(g) implies D*g = o(g)D*, g € G. Since D is a unitary
operator, D*(Vy) = V_; and {g¢ : g € G, k € N} is a frame of V; with frame bounds,
say A, B > 0, then {D*g¢y, : g € G,k € N} = {o(9)D"¢y : g € G,k € N} is a frame
of V_; with frame bounds A, B > 0. Using the fact that Y is an isometry and the
second conclusion of Lemma 2.1 we get that { M,k : g € G,k € N} is a frame of
Y (V_,) with frame bounds A, B > 0. Indeed,

Yo(g)D b =Yo(g)Y" (YD ¢p) = My(g) Piitg, = Mo (g) ity
because my, € Y(V_1) CY(Vy) = R(S) = P(K).

Now let {t; : i € I} be a multiwavelet frame vector set associated with {V;},.
Therefore, {g; : i € I} is a frame of W, with frame bounds A’, B'. We use the
index set I instead of N although I is countable, because in the construction of
frame multiwavelet vector sets, which we will present in subsection 2.2, we use the
index set Nx {0,1,...,n—1}. Arguing as in the preceding paragraph we obtain that
{Myghi - i € I,g € G} where h; :== Y D*y, is a frame of Y(W_;). Since Y is an
isometry and Vo =W _1 & V_; we have that

{Mypyhi:i€I,g€GU{Mygmy: k€N, g€ G}
is a frame of Y (Vy) = P(K) with frame bounds A” = min{A, A’} and B" =
max{B, B'} and {Mg(g)ﬁi 14 € 1,9 € G} is orthogonal to { M,y : k € N, g € G}.
Definition 5. Every subfamily {h; : i € I} of K such that {Msgh; : i € I,g €
GYU{M, gy : k € N,g € G} is a frame of P(K) and {Mygh; i € I,g € G} is
orthogonal to { M,y : k € N,g € G} is a high pass filter set associated with the
low pass filter set {my, : k € N}.

The previous definition and the arguments in the paragraph preceding it imply that
{h; : i € I'} is a high pass filter set associated with the low pass filter set {my, : k € N}.
We will adopt the tensor product notation to denote the orthogonal direct sum of
a countable number of copies of a certain Hilbert space or of a bounded operator.
Let X : K — K ® n be the linear operator defined by the equation

©  (XH) = %(f(ﬁ(v)), FORAO))s- s Fmsp(), € Koy € &

where {1 = v9,71,--.,Vn_1} = ker p. Recall from proposition 2 that {’yjﬁ(@),j =
0,1,...,n — 1} is a measurable partition of G*.

Lemma 2.3. The operator X defined by equation (9) is a well defined isometric
isomorphism and X My X* = My ® n, for every g € G.

Proof. Obviously X is linear. We will show that X is an isometry. First notice that
the equation p(p(y)) = v, for a.e. v in G* and the fact that v, 71,...,7, 1 € kerp
imply

(10) plp(7) =7,
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for every v € ’yjﬁ(@) and 7 =0,1,...,n— 1.
Now we have

(11) /Ilf%p )2 dy = /Ilf%p WIZdy |

because p is a continuous surjection and G*isa compact group. Equations (10) and
(11) we imply

/@Hf(vjoﬁ(v))llzdv = Z/ I (vio PO dy
= Jo iy 2d =n - Jo 2d
Z/WA s Dl ar=n [ WrseniPen

— n / Iy
’Y'Oﬁ(G*)

J

for every jo € {0,1,...,n — 1}. On the other hand,

XAl = [ rePar =23 [ Gt a
=0

= [ Il ar =11
-

Therefore, X f belongs to K ®n and X is an isometry. Now let fy, f1,..., fn1 € K
and f be defined by the formula

(12) f(v) = \/ﬁz File)x, 565)(0), 1 €G”

Then, it is not hard for someone to verify that f € K and X f = (fo,..., fn_1)-
Ifge G, ve G* and f € K, then

X Mo f(7) = %(fa(g) (BONLBM); -+ -5 Fotg) m-1P(N)) f (Yn-15(7)) -
Ifj=0,1,2,...,n—1, then
fo(1ip(7)) = 7i(le(g)) (1) (Llotg)) = 7i(07 (£)) A(7) (0" (L))
= p(1)(L)p(p(7) () =7(Ly), 7€ G*
because 7; € ker p and p(p(7y)) =y for every v € G*. Hence,

fff(g (’Yg (7)) = ( ) a.e. in G*

therefore, X My f(7) = fo(7) X f(7), v € G*. This finaly establishes that X M o(g) X =
M, ®@n, for every g € G. O



14 MANOS PAPADAKIS

Define P(7) := Z;L;& @ P(7;7). Obviously the projection valued function P defines
a bounded operator on K ® n. In fact it not difficult for someone to verify that

(13) XPX*(wo,wi,-.,wn1)(y) = P(ﬁ(’y))(wo(*y),wl(v), ooy Wno1(7y)) a.e. in @,

where wg, w1, ...,w, 1 belong to K. We also have we get that
XY (Vy) =XP(K)=XPX"X(K)=XPX"(K ®n).

The intuitive meaning of the latter equalities is that V4 is mapped isometrically into
K ®n and its image under XY is the “bundle” of the closed subspaces P(5(7))(I>?®n)
as <y runs through G*. We refer to those subspaces of I> ® n as the fibers of XY (V}).
Note that all the fibers of K ® n are identical with [? ® n for a.e. v € G*.

The terms “fiber” and “fiberization” were introduced by Ron and Shen. They used
fiberaization to study affine frames in L?(R") ([32]). A subsequent paper by Bownik
utilizes the same technique to study the structure of shift-invariant subspaces of
L?*(R™) ([12]). In both papers, however, the main results rely on the fact that certain
subspaces are generated by the action of an abelian unitary group of translations
defined on L?(R"™) on a certain set of generators. Thus the projections onto these
subspaces as well as certain of their properties can be derived from the fact that
these projections are in the commutant of the aforementioned group of translations,
which is a completely characterized Von Neumann algebra, e.g L°°([0, 1)", B(£?))). In
fact, in most proofs in this section we use such characterizations, which were known
since the early years of the development of the Von Neumann algebra theory.

The following lemma summarizes some of the main arguments, which will lead us

to the characterization of all frame multiwavelet vector sets associated with a given
countably generated GFMRA.

Lemma 2.4. Let {my : k € N} be the low pass filter set corresponding to the frame
multiscaling vector set {¢y : k € N} and 1y, be given by eq. (8). Then {h;:i € I} is
a high pass filter set associated with {my : k € N} if and only if

{My;®@n)Xmy :keNgeGUu{(M,®n)Xh;:g€G,iel},
is a frame of XY (Vp) and {(M, ® n)Xmy, : k € N,g € G} is orthogonal to {(M, ®
n)Xh;: g€ G,i€I}.

Proof. The conclusion of the lemma follows immediately from lemma 2.3 and defini-
tion 5. ]

The next lemma characterizes frames of abstract Hilbert spaces in terms of the
preframe operator introduced by Casazza ([13]), which is also known as the synthesis
operator.

Definition 6. Let H be a Hilbert space and {x, : r € I} be a Bessel family of H.
Assume that KC is another Hilbert space, such that dimKC = |I| and {e, : r € I} is an
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orthonormal basis of K. The linear operator defined by
Te,=x,, rel
is called the preframe operator corresponding to {x, :r € I'} and {e, : r € I}.

It can easily be seen that 7T is well-defined and bounded because it is the adjoint
of the analysis operator S corresponding to the Bessel family {z, : » € I}, which is
defined by the following equation:

(14) Sz = Z(m, zp)e,, € H.

rel

It can be proved, by means of the concept of the dual frame, that 7" is always surjec-
tive, if {x, : r € I} is a frame of H.

Lemma 2.5. Let H, K be Hilbert spaces, {z, : v € J} be a complete family of vectors
in M, i.e. [z, :r € J” =H. Assume that dim K = |J| and that {e, : r € J} is an
orthonormal basis of K. Then the following are true:

(a) If there exists T € B(K,H) such that Te, = z,, r € J, then {z, :r € J} is a
Bessel family of H. Conversely, let T : [e, : v € J| — H be the linear operator
such that for every r € J we have that Te, = x,. If {z, : r € J} is a Bessel
family of H, then T can be extended to a bounded operator defined on IC.

(b) Let T € B(K,H) and Te, = x, for every r € J. If V is the range space of
T* and T*T |yv: V — V is bounded and invertible (resp. T*T is an orthogonal
projection), then {x, : v € J} is a frame (resp. a PF) of H.

Conversely, if {z, : r € J} is a frame (resp. a PF) of H, then there exists
a unique T € B(K,H) satisfying Te, = x, for every r € J. Furthermore,
V = R(T*) is closed and T*T |yv: V — V is bounded and invertible (resp.
T*T is an orthogonal projection).
(c) If {xy : 7 € J} is a frame of H, then the set

{T(T*T) |y)"Y?Pye, : re J},

where Py is the orthogonal projection onto V, is a PF of H.
(d) If {z, : r € J} is a Riesz basis of H, then V = K and vice-versa.

Proof. (a) If T is bounded it is easy to check that
Tz = Z(x,xr)er, x € H.
rel

Set S = T*. Then for every € H we have that < Sz, Sz >< [|S||*||lz||* and by
using the previous equations we get

< S*Sz,x >=< TSz, z >=< Z<x,xr > z,, x>=Z\ <z, x> |7,

T T
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which finaly implies >, | <z, 2, > |* < IT|]? ||z||?, for every z € H. Therefore
{z, : 7 € J} is a Bessel family of H.

Conversely, if {z, : r € J} is a Bessel family of #, it is well-known from the
abstract frame theory that the analysis operator defined by equation (14) is bounded
and the restriction of the adjoint of the analysis operator on [e, : r € J] is equal to
T. Therefore T can be extended to a bounded oparator defined on K. For further
details the reader may refer to [8, 13, 19].

(b) Let T € B(K,H) such that Te, = xz,,for every r. We will prove that T is
surjective. Since {z, : r € J} is complete in H and is contained in the range of T, we
have that 7™ is injective. Now, let y € H. Then T*y is in V. If we set

(15) z:=((T"T) lv) 'T"y,

then ((T*T) |y)x = T*y, which, in turn, implies that Tx = y, because T* is injective.
Therefore T is surjective.

On the other hand, the restriction of 7" on V is injective, hence, by the Open
mapping theorem, we obtain that 7" |, is bounded and invertible. On the other hand
for every r € J we have that T'Pye, = x,, where Py is the orthogonal projection onto
V (recall that kerT = (I — Py)(K)). Since {z, : r € J} is similar (through T |/) to
a PF, it is a frame of H.

If T*T is a projection, then T*T = Py,. Let y be in H. We define z := T*y. Then
x = T*Tx, because x belongs to V. Since T™* is injective we obtain that y = Tx,
hence, T is surjective. Thus

(TT*)(TT*) = TP,T* = TT".

This implies that T7T* is a selfadjoint idempotent operator, thus it is also an orthog-
onal projection onto the closure of the range of 7', which is equal to . This, in turn
implies that 7* is an isometry, therefore {z, : r € J} is a PF of H.

In order to prove the converse, first note that {z, : r € J} is a Bessel family because
it is a frame. Let T : [e, : r € J| — H be the linear operator such that for every
r € J we have that Te, = z,. Then (a) implies that 7" can be extended to a bounded
operator defined on KC, which, for convenience, we denote by T as well. Obviously
every T' € B(K,H) satisfying T'e, = z,, for every r € J is equal to 7. Using the
lower frame inequality and following arguments that can be found in the first chapter
of [19] we prove that R(T™*) is closed. Since R(T*) = R(T*T) (see Proposition 2.5.13
of [22]) and (T*T) |y is injective (because both T* and T |y are injective) we conclude
that (T*T) |y: V — V is bounded and bijective and, thus, invertible.

If {x,:r € J}is a PF of H, then T* is an isometry, hence, T*T is a projection.




GENERALIZED FRAME MRA 17
(c) Let = be in H. Then
YoI<a, T(T*T) |v) VPve, > 2 = Y [ < ((T'T) |v) Y*T*z, Pre, > |* =

I (T°T) [v) T P = < ((T°T) |v) °T*z, (T°T) |v) °T "z >=
= <T(T*T) |y) 'T*z,z > .

Using again eq. (15) and the argument following this equation we obtain that z =
T((T*T) |y) 'T*z, which completes that proof of (c).

(d) Assume that {z, : » € J} is a Riesz basis of H. Then (b) implies that T |y
is bounded and invertible. If V is a proper subspace of IC, then the Riesz basis
{z, : r € J} would be isomoprhic to a PF, which is not a Riesz basis. Thus V = K.
The converse is trivial. O

Remark 2. Note that in the proof of (a) of the previous proposition we did not use
the hypothesis [z, : 7 € J|” = H.

Let us, now, utilize the previous lemma. Recall our hypothesis that {v; : i € I'}
is a frame multiwavelet set associated with the GFMRA {V;},. Also recall that we
have defined h; = Y D*; (i € I) and so {h; : i € I'} is a high pass filter set associated
with the low pass filter set {my, : £ € N}. Now lemma 2.4 implies that

(M, ®n)Xrmy:g€ G keNyU{(M,®n)Xh;:ge G iel}

is a frame of XY (V) = XPX*(K ® n). Let {i1,i2,...} be an enumeration of the
countable set I. We define the preframe operator 7' : K K — K ®n by the following
formulas:

(16) T(fg(ék o) 0)) = ngfnk, g c G, ke N

(17) T(f,(0®6)) = f,Xhi,, g€G, keN.

The previous lemma implies that there exists an orthogonal projection Py defined on

K@K, such that (1*T) |pykek) is bounded and invertible. From the same lemma we

have that Py(K @ K) is the range of the analysis operator corresponding to the frame

{My®@n)Xmy g€ G, ke NJU{(M,®n)Xh;: g€ G,i€l}of XPX*(K ®n).
On the other hand equations (16) and (17) imply that, if (Tld,,)?:_()l,p:l,2 is the matrix

representation of 7" with respect to the decompositions K & K and K ® n, then every

T, is bounded and belongs to the commutant of {M, : ¢ € G}. Therefore there exist

operator valued functions 71;, : G — B(¢?), satisfying the following
(a) If wi,ws € K then

T(wi,w2)(7) = (Toa(V)wi () + Toa(V)wa(7)s -+ s T 1 (Vwi (1) + Tno1,2w2(7)),

for a.e. v in G-,
(b) essup{|[Tip()l|: v € G1=0,....n—1,p=1,2} <||T].
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Let us now introduce a convenient notation, which we will use for the rest of the
present paper. If A is a matrix then by [A], we will denote the r-th column of A.
Once again using equations (16) and (17) we obtain

[T (V) = 7 mi(7;6(7)), 7 € G*,k € N,
and

Tia(Mlk = —=hi, (15(1)), 7€ G, k€N

7, N

Next define My(v) and H(v) by the formulas
(18) [Mo()]i = i), 7 € G", k€N,
(19) [H)k = hi,(7) ¥ €G*, kEN,
From the preceding discussion for j =0,1,...,n — 1 and for a.e. v € G* we have

Tjx(7) = %Mo(%ﬁ(v))
and
Tja(y) = %H (v8(7)) -

These two equations combined with (b) above, imply that H and M, belong to

L*> ((/}’\*, B(I?)). Now (a) combined with the latter pair of equations yields the following
matrix representation of 7'(7y)

Mo(5(7)) H(p(7))
T(y) = = Mo(715(7)) Hyp() |
vn : :
M, (Yn—1P(7)) f{(%—lﬁ(ﬂ)
Next, note that
(ngmk,Xh}) =0 forevery g e G,k,feN.

This implies that for a.e. v in G* each one of the columns of the matrix

(Mo(p(7)", Mo(11p(7))" - .- Mo(yn—15(7))")"

is orthogonal to every column of the matrix

(HEO) Hnp)T, - Hym1p(1)) )T
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Indeed, the orthogonality between {f, X7y}, x and {Xh;,}een implies that for every
g € G we have

n—1

0 = (fu X, Xhi)) = — Sy (5()), by (1))

Jj=0

. é\*fg(Y) E(Mo(%ﬁ(ﬂ)%ﬁ(%ﬁ(’Y))fS@)] dy

| j=0

3

. _f() i(ﬁ(wﬁ(v))*l\%(wﬁ(’y))ék,5z>] dy

n
G _]:0

Thus we get that for a.e. v in G
Zfl %i6(1))* Mo(v;5(7))8k, 60) =0, k, L €N,
§=0

because {f, : ¢ € G} is an orthonormal basis for L? (@) This establishes the previous
claim and, in particular, implies

—

n—

H(335(1) Mo(1;5(7) = 0 ae. in G*

<.
Il
)

which, in turn, gives us

n—1

Zﬁ(%fy)*]\;fo(q/jy) =0 ae. in G".

J=0

Now we can conclude that 7*T, which belongs to the commutant of {M,® M, : g €
G}, is multiplicative and that is induced by the following operator-valued function:

S0 Mo(v;p(7))* Mo(7;5(7)) 0
0 S0 H(vip(7)) H(v;p(7))

Moreover, T*T" | pykak): Po(K & K) = Py(K @ K) is bounded invertible. Note that
P, is also the range projection of 7T, thus Py € {M,@® M, : g € G}'. Therefore, there
exist projection-valued functions P, (-) and P»(-), which belong to Loo(@, B(¢£?)), such
that for a.e. v € G* the range projections of

Mo(v;5(7))* Mo(v;5(7))

n

<.
Il
)
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and

Z (v:8(7) H(7;5(7))

are Pi(y) and Ps(7y) respectlvely. Now, if we consider the restriction of T*T on
Py(K & K) we obtain that for a.e. y in G*

{Z Mo (v55(1)" Mo (3350} [ Rimyiery: Pr(7) (%) — Pr(v)(€2)

and
{ZH WipN) Hp()} [y Po(v) (%) = Pa(y)(¢)

are both bounded and invertible. Moreover the functions

(Z Mo(v;p())* Mo (v;5(7)) \meﬂ))_lH

_1‘

are essentially bounded and are defined on suppP; and suppP, respectively. Using
the properties of p and p one can easily verify that all the properties the previous two
operator-valued functions are inherited by the following operator-valued functions

and

—1
ZH %)) H(:6(7)) |patyey)
7=0

__ Mo (v57)" Mo(57) [icemye): Pr(p(1))(€%) = Pu(p(v))(€2)
and 3
> HO) Hg) [eserpey: Poo()(E) = Po(p(0)(£)

which are defined a.e. on the supports of P; o p and P, o p respectively and vanish
elsewhere.

The range of T is X PX*(K ® n). Again by applying Proposition 2.5.13 of [22] we
obtain that the range projection of 7" is equal to the range projection of 77, which
is equal to XPX*. Since TT* is multiplicative induced by the function 7°(:)7'(-)*,
it follows that the range projection of T'(v) is equal to P(5(7)) a.e., because, due to
eq. (13), P(p(v)) is the range projection of T'(y)T(7)* a.e. Thus for a.e. v € G* the
columns of the matrix representation of the operator 7'(7y) form a complete set in the
range of P(5(7)), namely

{IMo(p()T -+ Mo(yam1p(1)) ) Ik = & € NFU{I(H (BO))", - - H (31 A(7)T) iy + k € N}
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Once again applying lemma 2.5 we obtain that for a.e. vy in G* the latter set is also
a frame of P(p(7))(#*> @ n).

Now, let us find a pair of frame bounds for this particular frame. Recall that A”, B”
are the frame bounds for the frame { M,y : g € G,k € N} U{M,phi:i€ 1,9 €
G}. Therefore, A", B" are frame bounds for {feXmy :9€ G, keN}U {ngiLi 19 €
G,i € I}, because X is unitary. Thus

1
”(T ‘PO(K®K))_1H < VA" and HT |P0(K€BK)H < VB

Since T is induced by multiplication with 7'(y) we obtain that the function v — 7T'(7)
satisfies the following properties:

essup{|T(v)| : v € G*} < VB"

and
—~ 1
essup{H ‘Pl 'y) 52)@132(7)(@2)) H oy - G*} S \/ﬁ
Now, define
(20) Z MO (v7)* ’Vﬂ’)
and
(21) Qa(7) == D H(vv)"H(v;7)-

<.
I
=)

Since Mo, H belong to L®(G*, B(£2)) we have that Q; and Q5 belong to L®(G*, B(¢?))
as well. We are now ready to state our first main result which summarizes the
preceding discussion.

Theorem 7. Let {¢y : k € N} be a set of frame multiscaling vectors for the GFMRA
{V;};. Then, My and My belong to L*(G*, B(¢?)).

Let Q1 is the operator-valued function defined by eq. (21). Let Pi(v) be the range
projection of Q1(7), v € G*. Then Q1(7) |pyyye): Pr(7)(¢?) = Pi(7)(€?) is invertible

for a.e. v € suppP,. Moreover both functions v — ‘Ql(v) |p1(7)(g2)H and v —

H(Q1(’)/) |P1(7)(g2))_1H are essentially bounded.

Furthermore, if {¢; 11 € I }~, where I is countable, is a set of frame multiwavelet
vectors associated with {V;};, H is defined by equation (19), Q2 by eq. (21) and Ps(7)
is the range projection of Q2(7y) (v € G*), then the following are true:
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(a) H belongs to L“(é\*,B(ﬁz)) and for a.e. v € suppPy the operator Qa(7) | Pa(m)(22)
Py(7)(#?) — Py(7) (%) is invertible and the functions v — HQQ(V) |p2(7)(gz)H, v =
H(Qg(’y) |p2(7)(g2))_1H are essentially bounded.

(b) For a.e. vy € G* the closed linear span of the set

{[(M(M)T, Mo, -+, Mo(yu—1)) e = k € NYU{[(H ()T Hnn) - Hyuor)) i i € 1)
is equal to P(v)(£2 ®n) and

[y

n—

Mo(yy) H(7;7) =0 ace.

S,
Il
=)

Apparently Q;(v) = 0 outside of suppP; (I = 1,2). Conditions (a) and (b) of the
previous theorem are necessary for all frame multiwavelet vector sets associated with
{V;};. Later we will prove that these conditions are sufficient as well.

It is worthy to note that the first statement of the theorem generalizes the Qua-
dratic Mirror Filter (QMF) conditions, so we will refer to them as Generalized QMF
conditions.

Our next goal is to construct the set of the multiwavelet frame vectors in terms of
the set {¢y : k € N} which should be considered as the only available information for

{Vil;.
We have already proved that S*S € G’ (see lemma 2.2). Thus if we define
(22) S = (S"S)"'r, kEN

then ¢}, € V;. But (5*S) ! commutes with G, so

9%, = 9(5*S)'dp = (5*S) ' (gd), g€ Gk €N,

which implies that {g¢} : g € G,k € N} is the dual frame of {g¢; : g € G,k € N} in
Vo. Thus, for every 1; which belongs to a frame multiwavelet set of vectors associated
with {V;},, we have

D= > (D", 980 g¢k, i€ 1.
g k

Therefore, we must compute the coefficient families {(D*v;, g¢}.,) } 41 for every i € I.
Note that

(23)  (D*¢y, go}) = (D, (S*S) ' go) = (S(S*S) ' D*oi, fy0x) g € G,k €N.

But S(S*S)! = Y [S|(|S]")! = Y |S|™". Recall that P(K) is the range of the
isometry Y. Therefore,

(24)  S(S*S)" D' =Y S| YYD = (Y [S|T Y ) = (Y [S| Y™ | prey)
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Proposition 4 and equations (24) and (23) imply
(D*i, g1) = (AC) T hal-), fyd) -

If {as’)k }igk is the square summable family of scalars satisfying

(25) AC) M hi() =D 6l fobn
g,k
then
(26) Y= a Dyey, i€l
g9,k

The preceding argument proves the following proposition.

Proposition 8. Let {¢r : k € N} be a frame multiscaling vector set and {¢), : k €
N} be defined by equation (22). Then the family {¢) : k € N} is the dual frame
multiscaling vector set corresponding to the set {¢y : k € N}, in the sense that
{99} : g € G,k € N} is the dual frame of {g¢r : g € G,k € N} in Vo. Moreover, if
{4; : i € I} is a frame multiwavelet vector set associated with {V;}; and {h; : i € I}
is the high pass filter set corresponding to {1; : i € I}, then every v; is given by the
equations (25) and (26).

So far we derived the necessary conditions for the the high-pass filters corresponding
to a given set of frame multiwavelet vectors associated with {V;},. We have also
obtained concrete equations giving {¢; : ¢ € I} in terms of the frame {g¢y : g €
G,k € N}. All these results are summarized in theorem 7 and proposition 8.

We previously defined the concept of a low pass filter set corresponding to a set
of frame multiscaling vectors. It will be very convenient though to introduce the
following generalization of the concept of a low pass filter corresponding to a Riesz
scaling function.

Definition 9. If {¢ : k € N} is a frame multiscaling vector set we call the operator
valued function My € L®(G*, B(£?)) defined by the equation

[Mo(7)]k = my(y) a.e.

the low pass filter corresponding to {¢y : k € N}. We will also refer to My as the
normalized low pass filter corresponding to {¢y : k € N}.

Recall My(7y) = A(y) My(7) a-e.

Our next goal in this section is to state and prove the converse of theorem 7,
which will establish that the necessary conditions for the high pass filter sets are also
sufficient. The reader will notice that the proof of the next theorem is easier than the
proof of theorem 7.
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Theorem 10. Let {¢y : k € N} be a frame multiscaling vector set for the GFMRA
{V;};. Assume that My is the low pass filter corresponding to the set {¢y : k € N}.

Assume that there exist essentially bounded measurable functions Q-, H : G* — B(£?),

and a projection-valued measurable function P, : G* — B(0?), such that Py(7) is the
range projection of Q(y) a.e. satisfying also conditions (a), (b) of theorem 7. If we

define
Za Do,

where {agik ci € I,g € Gk € N} are defined by the equation A(-)'[H(-)]; =

>k gkfgdk,, then the set {1; : i € I} is a set of frame multiwavelet vectors associ-
ated with the GFMRA {V;};.

Before proceeding to the proof of theorem 10 we must stress the fact that theo-
rems 7 and 10 give a complete characterization of all frame multiwavelet vector sets
associated with a given GFMRA. Moreover the techniques used in the proofs of these
theorems and conditions (a) and (b) of theorem 7 show how to construct these sets.
We will construct frame multiwavelet vector sets in the next subsection.

Proof of Theorem 10. By theorem 7 implies that there exist a measurable function
Q1 : G* — B(f?) and a projection-valued function P, : G* — B({?) satisfying the
following hypotheses:
(A): Q1(7) | Puiyye2): Pr(v)(#2) — Pi(7)(£%) is bounded and invertible for a.e. v €
suppP; and vanlshes outside of suppP;.
(B): For a.e. v € G* we have that Q1(v) = > i » My (;7)* Mo (), where My is
defined by equation (18).
(C): The functions v — HQ1(7) Py ()(2)
bounded.

N s H(Ql (7) |P1(7)(32))_1H are essentially

Now, for every v in G* define T(7) : £> & 2 — £? to be the linear operator whose
matrix representation with respect to the standard orthonormal basis {0y : & € N} of
22 is the following:

My (p(7)) H(p(7))
T(y) = — | Mo(np() H(mp(y))

My (uasp(1))  H(mrp(7))

Vn
Condition (a) of theorem 7 and the fact that My € L=(G*, B(£2)) imply that for a.e.
v € G*, T(v) is a bounded well-defined linear operator on ¢2 & £2. Next, condition
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(b) of theorem 7 gives us

Q1(p(M)) | pynyer) 0

0 Q2(5(7)) | gy
where P/ = Pyopand Py = Pyop. Hypothesis (A) and condition (a) imply that for a.e.

T()T() =

v in G* the operator T(y)*T(7) |pi()(e2)oPy(y)(e2y is bounded and invertible. Moreover
the function v — T'(7y) defines the bounded operator 7', which commutes with {A, ®

n : g € G}. Note that T is bounded, because the functions v — HMO(v)H, v =

Hﬁ (’)/)H are essentially bounded. Let {i1,49,...} be an enumeration of I. Since T’ €
{M, ®n : g € G} we have that
1

T(fy(0x®0)) = %fg(v)([Mo( PONIE, [(Mo(rap(V)JE - - [Mo(yu-1(1)]i)
T(f,(0®0) = %fg(v)([ﬁ(ﬁ(v))]?;, [HnpDTs - [H (v 15O))

Moreover, due to hypotheses (A),(C) and condition (a) of theorem 7 the restriction
of T*T on the range of the projection P; @ Pj is invertible.

Before proceeding recall the following property of p: If u(A) = 0, then p(p1(4)) =
0. Note that 5~1(A) = p(5(G*) N A) and that u(p(B)) = 0 whenever u(B) = 0. The
latter property of p can easily be proved using on (a) and (d) of proposition 2.

By condition (b) of theorem 7 we have that for a.e. v in G* the closed linear span
of the set

{2 (B> Mo (v B OTEs - - - [Mo(y15(1))]i) + &k € N}
(P

U{(H BT, H (i) - - [H (yam1B())]E) + k € N}

is equal to P(5(7))(#? ® n). Now, T(f,(6: ®0)),T(f,(0® &;)) € XPX*(K @ n). On
the other hand, if we assume that (wgp,w;...,w,—1) belongs to X PX*(K ® n) and
is orthogonal to the family {7'(f,(6x ©0)),T(f,(0® d)) : g € G,k € N}, then it is
not hard to check that for a.e. 7 the vector (wo(y),w1(7)-- -, wn_1(7)) is orthogonal to
(Vo GONIE VoA )IEs s Vo1 5IE) and (GO (AL -
[H(Yn-15(7))];,) for every k € N. This implies that w; = 0 for every j = 0,1,...,n—1.
Therefore, the family {T'(f,(0r ®0)), T(f,(0® dx)) : g € G, k € N} is complete in
the range of X PX*. Furthermore, lemma 2.5 implies that this particular family is
also a frame for the range of X PX*.
Now notice that equation

n—1

> Mo(y;p()) H(v;p(7)) =0 ace.

§=0
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implies that the closed linear span of {T'(f,(6x ®0)) : g € G, k € N} is the orthogonal
complement of the closed linear span of {T'(f,(0 @ d;)) : ¢ € G,k € N}. Since
the former set spans XY (V_;), we have that the latter spans XY (W_;). Therefore
{T(fg(0®6x)) : g € G,k € N} is a frame for XY (W_y). Since X is a surjective
isometry between K and K ® n we obtain that {X*T(f,(0® dx)) : g € G,k € N} is
a frame for Y (W _;) with the same frame bounds. But

X*T(f,(08 ;) = X*(M, @n)T(0® &) = X* (M, ® n) X X*T(0 & &)

= Mo [H(")]
Recall that Y is an isometry mapping V4 onto Y (Vy). Therefore, if we define v, :=
DY*[H(-)];,,k € N, then {¢; : i € I} is a frame multiwavelet vector set associated

with {V;};. Indeed, this follows from the fact that Y is an isometry and from (b) of
lemma 2.1. The final arguments of the proof of proposition 8 give us

Y=Y allgn, i€l
9;k

ig "

where {ag)k}g,k are the coefficients of the expansion of A(-)"![H(-)]; with respect to
the orthonormal basis {f,0x : g € G,k € N} of K. O

Definition 11. Let {h; : i € I} be a high pass filter set associated with the low pass

filter set {my, : k € N}. We call the operator valued function H € Loo(é\*,B(Ez))
defined by the equation [H(7v)]; := hi(7y) a.e. a high pass filter corresponding to the
low pass filter M.

We will complete this subsection with a corollary of theorems 7 and 10 regarding
the case where {¢, : k£ € J}, is a finite Riesz multiscaling set of vectors for {V;},. Note
that in view of Proposition 10 of [20], a set of Riesz multiwavelet vectors associated
with {V;}; may not even exist, if J is infinite. However, in the next subsection we
will prove that a set of frame multiwavelet vectors associated with {V;}; can always
be constructed.

Theorem 12. Let {¢y : k € J}, where J is a finite subset of N/\be a set of Riesz
multiscaling vectors for the GFMRA {V;};. Then M, M, € LOO(Gf,B(W)). Let @y,
be the operator-valued function defined on K by the eq. (21). Then Q1 (7) is invertible
a.e. and both functions v — HQl(fy)H and vy — H(Ql(v))_l)

Furthermore, {1; : i € I}, where |I| = |J|(n — 1), is a set of Riesz multiwavelet

vectors associated with {V;}; then H and @)y defined by equations (19) and (21),
respectively, satisfy the following properties:

(a)H € Loo((/}'\*,B(KQ)), Q2(7) are invertible a.e. and the functions v — HQg(v)
7= (@)

are essentially bounded.

7

are essentially bounded.
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(b)

[y

n—

Mo(y)* H(77) =0 ae.

S,
Il
)

Conversely, if H and Qo satisfy conditions (a) and (b), then {1; : i € I}, where
[I| = |J| (n—1) and ; are defined by eq. (19), is a set of Riesz multiwavelet vectors
associated with {V;};.

We omit the proof of this theorem because it follows easily from (d) of lemma 2.5
and the arguments in the proofs of theorems 7 and 10. However, it is worthy to stress
the difference between condition (b) of the previous corollary and condition (b) of
theorems 7 and 10. This difference can be better understood if we use the concepts of
wandering vectors and subspaces (see [20]) and of wandering frame collections ([39]).

2.2. Existence and construction of frame multiwavelet sets of vectors asso-
ciated with GFMRASs. Let us now proceed to the proof of the existence of frame
multiwavelet sets associated with a GFMRA. This result and its is short, elegant proof
were shown to us by Eric Weber (see also [39] for a generalization of the following
theorem).

Theorem 13. For every GFMRA there exists a set of frame multiwavelet vectors
associated with it.

Proof. Let {¢y, : k € N} be a frame multiscaling set of vectors associated with the
GFMRA {V;};. Fix g9, 01, - - ., gn—1 such that G/o(G) = {gi0(G) : i =0,1,...,n—1}.
As we have already noted {go(g)¢r : k € Ng € G,i =0,1,...,n—1}is a N.T.
frame for V). Now, we claim that the orthogonal projection @) : V5 — V_; belongs to
(0(G) |w)"- Indeed, since for every g € G we have o(g)(V_1) = V_1 and o(g)(Vp) = Vb,
it follows that Q(o(g) |v,)Q = (c(9) |v,)@; since o(G) is a group we obtain that @
belongs to (o(G) |v,)', thus I |y, —Q belongs to (o(G) |v,)" as well.

But the image of a PF under an orthogonal projection is a PF for the range of the
projection. Therefore,

{(I o, —Q)o(9)9ids : 9 € G,i=0,1,...,n— 1,k € N} =
{o()(I |vy —Q)gibx =g € G,i=0,1,...,n— 1,k € N}
is a PF for W_;. This finally implies that
is a frame multiwavelet set vectors associated with {V}};. O

Remark 3. The preceding proof is simple but does not guarantee the existence of
orthonormal MRA wavelets in the special case of a singly generated orthonormal
MRAs. Indeed, assume that ¢ is the orthonormal scaling function of an MRA of
L*(R). Then {T™¢ : n € Z} is an orthonormal basis for V;, where 7T is the translation
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operator defined by eq. (4) and the dilation operator is given by eq. (3). Following the
arguments of the proof of the previous proposition {D(I |y, —Q), D(I |y, —Q)T¢} is
a set of frame multiwavelet vectors associated with this MRA. If both (I |y, —Q)¢ and
(I |y, —Q)T'¢ are non-zero, then the arguments of the proof of the previous theorem
cannot guarantee the existence of orthonormal wavelets associated with MRAs. Let
us give an example to illustrate this case. Assume that ¢ is the Haar scaling function.
If (I |y, —Q)¢ = 0, then ¢ belongs to V;, which as we know is not true for the Haar
MRA. Similarly we prove that (I |y, —Q)T¢ # 0 as well.

Remark 3 suggests that we have to invent another construction of frame multi-
wavelet sets of vectors to reduce the redundancy of these sets and consequently the
redundancy of the frames these sets produce. Next we will present another algorithm
for the construction of frame multiwavelet sets of vectors associated with a given
GFMRA. If we apply this second algorithm to the case of singly generated orthonor-
mal MRAs we will get a formula for an orthonormal wavelet associated with the given
MRA, in the sense that the integral translations of this wavelet is an orthonormal
basis for W of the given MRA ([29]).

A very natural question that arises is whether the argument of the proof of theorem
13 can lead to an algorithm for the construction of frame multiwavelet sets of vectors
associated with a GFMRA. A careful look at the proof reveals that this can be
achieved only if we can write ) with an explicit formula. In fact this is true. We will
show next how to produce this formula.

First Algorithm for the construction of high pass filter sets. The key re-
sult in the proof of theorem 13 is that @ is in the commutant of o(G) |y,. From
this fact we can conclude that the projection onto XY (V_;), which we denote by
Qo,0, commutes with {M, ® n : g € G}, because Qoo = XYQY*X*. There-

fore, there exists a projection valued function in L""(@,B(f2 ® n)) implementing
Qo,0- To avoid introducing extra notation we will denote this projection valued func-
tion by Qoo as well. Therefore QQo(7y) are a.e. projections whose range we denote
by Mgo(y). Heuristicaly speaking we can say that each Mgg(7y) is the fiber of
XY (V_y) at . From the proof theorem 7 we can obtain that for a.e. v € G* the set
{(Mo(PNE [Mo(rip(Y)]Es -+ -+ [Mo(Yn18())]F) : k € N} is a frame for Mo (7).

Therefore, if we find a formula for Qg o(7), then, as it was previously mentioned,
we can construct a high pass filter set which will, in turn, define a frame multiwavelet
vector set.

Now recall the following fact, which is easy to prove. If H is a Hilbert space and
{z, : 7 € J} is a PF of a subspace N of H, then the orthogonal projection Py onto
N is given by Py = ) 2, ® z,, where  ® y is the rank one operator defined by
r®y(w) =<w,z >y, w€ H. Define

Mo(y) := Mo(y)@Q1(7)"?Pi(v) v € G*.
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and

vk(7) = ([Mo(ﬁ(’Y))]fa [Mo(%ﬁ(’Y))]fa X [Mo(%flﬁ(ﬂ)]z) keN
Using (c) of lemma 2.5 and eq. (20) is a PF of Mgy(7), for a.e. 7 such that
Maoo(7y) # 0. Therefore,

Qoo(7) = ka(’Y) ® vg(7) -

The preceding argument is significant, because it gives us an explicit formula for Qg o,
in terms of the low pass filter My, and thus ultimately in terms of the given frame
multiscaling set of vectors {¢y : k € N}.

Let {€g,€1,...,€,1} be the standard orthonormal basis of C*. Recall that by
6 : k € N} we denoted the standard orthonormal basis of /2. Thus {6, ® ¢, : k €
N, r =0,1,...,n — 1} is an orthonormal basis of 2 ® n. According to the proof of
theorem 13, the set {(XPX* — Qoo)fe0r ® e :9g€ G, k€N, r=0,1,...,n—1} is
a PF of XY (W_,), because {XPX*(f0r ®¢€,):9€ G, k€N, r=0,1,...,n—1}is
a PF for XY (V,) and Qo is the projection onto XY (V_;). But (M, ® n)(XPX* —
Qo) = (XPX* — Qo,)(My @ n) for every g € G, thus

(XPX* - Q0,0)fgék Q€ = fg{(XPX* - Q0,0)dk 02y 67-} 5

where ¢ € G, k € Nand r = 0,1,...,n — 1. Lemma 2.4 implies that {h;, : k£ €
N, r=0,1,...,n— 1} is a high pass filter set associated with the low pass filter M,
where

hk,r = X*(P([)("}/)) — Q0,0(’)’))dk e, keN r=0,1,...,n—1.

This completes the proof of the first algorithm for the construction of high pass filter
sets.

Let us now present another algorithm for the construction of the associated high
pass filter set {h; : i € I}, which reduces the redundancy of the resulting frame
multiwavelet vector set.

Second Algorithm for the construction of high pass filter sets. We will
follow the notation we used in the proof the first algorithm. Set

s10(7) = P(p(7))01 ® o — Qoo(7)01 @€ v € G+

and
0 lf 81,0(’)/) = 0

tio(y) =

51’0(7) lf 81,0(’)/) ?é 0 .

lls1,0(M)l
Now, let M o(7y) :== Moo(7)®[t1,0(7)] and Q1,0(7y) be the orthogonal projection onto
M o(7). Therefore,

Q1,0(7) = Qop() +t1,0(7) ®t10(7) -
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Notice that s; o and thus ¢, are measurable functions; thus ()1 is measurable as

well and M, () is contained in P(5(7))(£*> ®n), for every +y in G*. Next we continue
in the same manner until we exhaust all vectors ¢; ® €,. Then we use all d, ® ¢, and
so forth. Let us present rigorously the inductive step of our algorithm.

Assume that N x n is well-ordered by the lexicographical order. Assume that we
have defined t;, for every (k,r) < (ko,79). Now, we want to define £, )+, where
(ko, o)™ is the immediate successor of (ko, o). Let Qg, ., be the orthogonal projection
onto Mg o := XY (V_1) @ [foter : (k,7) < (ko,70), g € G]” and (ko, 7o)t = (K', 7).
Define

(27) Sk/,r’ (’7) = p(ﬁ(fy))ékl ® 67" - QkO,TO (7)(516’ ® 67-'
and
0 if Sk',’l" (’}/) — 0
tyr o () :=
’ Sk’,'r’(')’) .
oo i sk (1) # 0.
Now, define My (7) = Migry (7) @ [twr00 ()], 50 Qe (1) = Qroyro (7) + tarr(7) @

tklzr’ (f)/)

Observe that {Qg, : (k,7) € N x n} is a nest of projections which belong to the
Von Neumann algebra {M, ® n : ¢ € G}’ and their range is contained in XY (1}).
Recall that the projection onto XY (V) is X PX*, which is a multiplicative operator

induced by P o 5. We claim that

(28) xrx*= \/ Q.
(k,r)ENxnN
Note that eq. (27) implies that for every (k,7) € Nxn we have that P(5(7))0 ® e,
belongs to the range of Q (7). On the other hand, {P(5(7))dr®¢, : (k,7) € Nxn}
is a PF for P(p(7))(£2®n) a.e., which (heuristically speaking) is the fiber of XY (V})
at . Therefore,

(29) P(p(M)) =\ Qu(r) ae
(k,r)ENXN
which implies eq. (28). )
Define hy, := X~ 't;,, where (k,r) € N x n, and H by the equation

[ﬁ(’)/)]k,r = }le,r(’y) a.e.

The previous equation establishes the measurability of H : G* — B(#? ® n, ¢?). Also
H belongs to L=(G*, B(£? ® n, £?)), because for a.e. v the non zero () form an
orthonormal set. Moreover, we have

TR e = (tr0). ) =010 m =L
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The latter equation combined with eq. (29) establishes that H and J\:40 and, thus, H
and M, satisfy the completeness part of Condition (b) of theorem 7.
The orthogonality of ¢ () to Mgo(7y) a.e. implies

[y

n—

My(vjy)*H(vj7) =0 ae.

Ho(v;y) H (v57)

is a.e. an orthogonal projection of £2 ® n. The definition of the vectors ¢ () shows
that these ¢4 () which are non zero form an orthonormal set a.e. Therefore the non
zero columns of

H(p(v))
1 | H(np())

NG

H(norp())

form an orthonormal set a.e. in G*. This gives us that the above matrix defines a
partial isometry on ¢ ® n a.e. Therefore, P;(p(7y)) is an orthogonal projection.

This completes the proof that the operator-valued function H satisfies condition
(a) of theorem 7 as well. Therefore, H is a high pass filter associated with the low
pass filter My and by theorem 10 defines a frame (in fact a TF) multiwavelet set of
vectors associated with the GFMRA {V}},.

3. ExAMPLES OF GFMRAS

Throughout this section we exclusively study examples in one dimension defined
with respect to the Affine unitary system. These examples are representative but by
no means can be considered exhaustive. In fact, after the completion of the present
manuscript some very interesting new classes of multidimensional GFMRAs, induced
by radial frame scaling functions were discovered ([30]).

In addition, most set equalities and inclusions are valid modulo null sets.

3.1. Singly Generated GFMRAs of L?(R). As we mentioned in the introduction
singly generated GFMRAs are defined by frame multiscaling sets containing just one
element, so we refer to them as FMRAs. We devote this subsection to show how to

apply the techniques we developed so far in order to construct frame multiwavelets
associated with FMRAs studied in [9, 10, 23].
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Let {V;}; be an FMRA and ¢ be a frame scaling function for {V;};, i.e. {T"¢ :

n € Z} is a frame for Vj. In this case G is isomorphic to Z, thus G* = T. The Fourier
transform on L!(T) is given by the following equation:

1
f(n) = / f()e 2mincde

Moreover, we identified T with the interval [—21, 1), where addition is defined by

272
t1 + 1o if —1/2§t1+t2<1/2 11
ti+ta=4q ti+tta+1 if b1 +te > 1/2 ti,ty € [—§,§>
ti +t,—1 if t1+t2<—1/2

Since {V;}, is a singly generated GFMRA, K will be equal to the space L?([—3, 3)).
Moreover,

2 if —1/2<28<1/2
p() =< 26—-1 if 26 >1/2 ¢ e [—— —) .
26+1 if 26 < —-1/2
Therefore, ker p = {0,1/2}.
Proposition 4 implies

AP =Y Ide+ ), €€ |-53)

and P(§) = xg(§), where E = {£ : A(§) # 0} and xg is the characteristic function
of E. Moreover, A(£), which can be considered as a linear operator defined on C, is
invertible a.e. on E. In fact, (ii) of proposition 4 gives that, there exist By, B, > 0
such that

(30) By < A(¢) < By, ae. onk.

These inequalities imply that if we wish to find a frame scaling function ¢, which
is not a Riesz scaling function (non-exact frame scaling function), then (ﬁ cannot
be continuous and ¢ simultaneously have even a mild decay, since this would force
its autocorrelation function to be continuous ([3]). This explains why we cannot find
examples of non-exact frame scaling functions other than MSF (Minimally Supported
in the Frequency), i.e. functions ¢ such that || is the characteristic of a measurable
subset of R ([9, 10, 23]). However, as we will show in the next subsection, a way to
solve this particular problem is to use non-singly generated GFMRAs.

Another way to circumvent the same problem is to consider multiresolution struc-
tures, which satisfy all the properties of the definition of an FMRA, but one; instead
of a frame scaling function, there exists a refinable or pseudo-scaling function, say
w, generating Vp, i.e. w satisfies a 2-scale relation (such as eq. (32) below) and
Vo = [T"w : n € Z]~. In this case V; is shift-invariant (7'(Vy) = V4) and therefore
is the core subspace of a GFMRA (see example 2 in the next subsection). Several
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authors have contributed to the study of these multiresolution structures using var-
ious techniques and different hypotheses (e.g. [11, 17, 25, 31, 33, 34, 14]). They all
construct tight affine frame wavelets from pseudo-scaling functions. Some of these au-
thors refer to these wavelets as framelets. Motivated by the same problem Li ([24]),
unlikely with others, constructs ¢ and * so that they form a pair of Affine dual
pseudo-frame wavelets of L2(R), which only in certain cases becomes a pair of dual
(not necessarily canonical) frame wavelets.

Since D*¢ belongs to V_1, we obtain
(31) D¢ =) (D¢, T"¢)T"¢

where {T"¢' : n € Z} is the dual frame corresponding to {T"¢ : n € Z}. In order
to be consistent with the notation and terminology used in the classical multires-
olution theory, let us denote by mg the 1-periodic function defined by mg(§) =
> on (D*0, Trg'Ye 2™ and refer to it as the low pass filter associated with ¢. Note
that suppmy is contained in F, because (D*¢, T"¢') = ((S*S)~'D*¢, T"$), where S
is the Analysis operator corresponding to the frame {T"¢ : n € Z}. Eq. (31) implies

~

(32) $(26) = %mo@)aé(o ac inR

If {T"¢ : n € Z} is a Riesz basis for Vj then, mg is uniquely defined by the 2-scale
relation (32). So let us assume that {T"¢ : n € Z} is not a Riesz basis for Vj and
that g is another 1-periodic measurable function satisfying the 2-scale relation (32).
Let v € ENS®, where S is the set of all £ in E such that eq. (32) is not valid. From
the definition of E we obtain that there exists k € Z such that ¢(y + k) # 0. Then

~ ~ ~

o2(y+ k) = ﬁmo(v)cb(v +k) = ﬁuo(v)cb(’y +k) ,

which implies that mg(y) = uo(7y). Therefore, we have the following result.

Remark 4. If mg is an 1-periodic measurable function supported on E satisfying eq.
(32), then my is the low pass filter associated with ¢. These issues naturally arise,
because if {T"¢ : n € Z} is not an exact frame (Riesz basis), then {(D*¢, T"¢")},
is not the only sequence in ¢?(Z) satisfying eq. (31). In this case E is a proper
subset of T. On the other hand, for almost every £ € R such that ¢(¢ + k) = 0 for
every integer k and eq. (32) is valid (such a £ does not belong to E) we also have
d(2(6+k)) = 0, for every k € Z. Therefore, it makes no sense to try to define outside
E an 1l-periodic function satisfying eq. (32). We will revisit this particular issue in
the next subsection.

Following the notation introduced in Section 2, we have
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Note that suppmy = suppmy. Now, consider the multiplicative operator acting on
K defined by the following equation

Qif (&) = [Imo(&))> + [mo(€+1/2)*) F(&), feK

Let P, = suppQ;. From theorem 7 we obtain that there exist constants A;, Ay > 0
such that

(34) Ay < [mo(&)F + |mo(€ +1/2)P < Ay ae. on Py,

Combing egs. (30), (33) and (34) we obtain that there exist constants Cy,Cy > 0
such that

(35) Oy < [mo(&)]> + |mo(€ +1/2)° < Cy ace. on Py.

It is not hard to see that P, C EUT/5(E), where 7y, is the translation by 1/2 defined
1 1

on T 5)

Let us now find the high pass filter set associated with my. We will apply theorem
10.

Case 1: Py = EUT5(E). Set hi(€) = 2™ mg(€ +1/2)xu(€). We will show that
H := h, satisfies condition (b) of theorem 10. It is trivial to check that condition (a)
of the same theorem is satisfied by H as well. More specifically, we must have that

1(M0(&), Mo(6+1/2)), (h1(€), h1(6+1/2))} spans P(€)(C) = P(§)(C)@P(£+1/2)(C),

a.e. in [—1, 1). Recall that P is induced by multiplication by xz. Let £ belong to E

but not to 71/2(E). Since P, = E U T/5(E), we have
mo(§) #0, P()(C)=C,  P(E+1/2)(C) =0,

() = (€+5) =0,

a.e. in EN(1y/2(E))¢. Therefore, for all such £ condition (b) of theorem 10 is satisfied.
Similarly we prove that the same is true for a.e. £ € E°N (11/2(F)).

Finally, for a.e. & € E N (112(E)) the subspace P(€)(C?) is two dimensional,
so it is spanned by the pair of the orthogonal, non zero vectors {(mmo(§),mo(§ +
1/2)), (h1(§), h1(€ +1/2))}. According to proposition 8

hi(€) = A(€) " ha(€)

is the high pass filter associated to the low pass filter mg; so, by egs. (25) and (26)
the frame wavelet v associated with {V}}; is given by the following equation:

and

- 1 ~ 1 , S
(36) ¥(26) = EM(«SW(E) = 562“514(6)_114(6 +1/2)mo(§ +1/2)6(€) ae. inR.
Recall, that due to its definition A(-)~! vanishes outside F.
As mentioned before if {T™¢ : n € Z} is a Riesz basis for Vp, then E = [—1, 1); so

only the last part of the preceding argument is meaningful, yielding a high pass filter
corresponding to a semiorthogonal Riesz wavelet associated with the MRA {V;},.
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Now, let v be the 1-periodic measurable function such that v(§) := A(£/2)A(£/2+
1/2) a.e. It is not hard to see that

~

B(E) = v(E)i(E) = %emﬁA(w +1/2)°mo(€/2+ 1/2)xs(£/2) ae. inR.

is another frame wavelet associated with {V;};.

Case 2: P, # EUT5(E). Set F := ENmnp(E)NP, Fy == ENPf, F =
FN[-1/4,1/4), F, .= Fn([-1/2,-1/4)U[1/4,1/2)) and

hi(€) := ™ mg(€ + 1/2)xE(€) + xmy (£) -

Next, define
hy == Xr, — XF
and

Therefore,

Qa(€) = H(&) H(§) + H(E+1/2)"H(§+1/2) =
@] + e+ 172 Tn(©ha(6) + Fa (€ + 1/2)halE +1/2)

— —_ _ 2 |- 2
Ba()ha(6) + ha(€ + 1/2)hn (€ +1/2) ha(6)] + ol +1/2)]

First, note that 71,2 (Pf) = Pf, because 11/2(P;) = P;, and 715 is injective. The latter
property implies 71/ (F1) = Fy and 7y5(F2) = F1, as well. Now, it will be easy for
the reader to verify that the following are true:

~ 2miE s (¢ L 1/9)
(37 i) = { T I L ROBAnA(E)
(38) hy (f + %) = { 1_6%67%0('5) ii 2 2 ? NENTE)

On the other hand,

B 0 if fEPlﬂEﬂTl/g(E)
(39) ho(§)=q -1 if (€ F
1 if £eF
In addition for a.e. £ in Pf N7y n(E)°NE
(40) hi(€) =1, h(é+1/2)=0

while, for a.e. £ in PfN1y/2(E) N E°
hi(§) =0, h(£+1/2)=1.
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In both cases
(41) ha(€) = ha(€+1/2) = 0.
The preceding argument combined with egs. (37), (38) and (39) gives us

( ~ 2 ~ 2
( o€)" + (e + 1/ 0 ) if £ P NENTE)
~ B 10 if e Pfnmp(E)NE
Q2(&) = 1 00 orif £e€ PfNTp(E)NnE°
g (2) if £eF

\

If P,(€) is the range projection of Q(€), it becomes apparent that Qs(€) | Py(e) () 18
invertible for a.e. & such that P(£) # 0. Thus H satisfies condition (a) of theorem 7.

Let us now verify that H satisfies condition (b) of theorem 7. First, it is not hard
for someone to verify that

1o (€) (h1(£), ha(€)) + 1o (€ + 1/2)(hu(€ + 1/2), ha(€ + 1/2)) = (0,0) a.e.
Finally, we claim that
{(70(€), M0(€ +1/2)), (h1(€), ha (€ + 1/2)), (ha(€), ha(€ + 1/2))}
spans P(€)(C?) = P(£)(C) @ P(¢ +1/2)(C), ae. in [—1,1). First, note that
CeC if&eEnmp(FE)
Ca0 ifée ENnnp(E)

P)(C) = 06C  if&€ENT(E)
000  if&e B NTy(E)

We will prove our claim in the first and second cases. The proof of the claim in the
third case is similar to this in the second and, obviously, there is nothing to prove
in the last case. Eqgs. (37), (38) and (39) imply that for a.e. £in P, N E N7y (F)
(0 (€), o€ + 1/2)) and (hi(€), k(€ + 1/2)) are two orthogonal non-zero vectors
spanning P(£)(C?), while for a.e. & in Pf N E N 7a(E) (ha(€),h(€ + 1/2)) and
(ho(€), ho(€ +1/2)) are two orthogonal non-zero vectors spanning P(€)(C2).

For a.e. {in Py N ENT2(E)% mo(§) # 0 and me(§ + 1/2) = 0, because 7/, (&)
does not belong to E. In this case (mo(), mo(€ + 1/2)) spans the one-dimensional
P(£)(C?). On the other hand, eqs. (40) and (41) imply that (hy(€), b1 (£+1/2)) spans
P(&)() for a.e. & in PfN ENTyy(E). This argument completes the proof of the
claim.

For every MRA of L*(R) condition P, = E U 7y,5(E) is always satisfied. If we

take q3 = X|-1/4,1/4), then ¢ is a frame scaling function. It is not hard to verify
E =[-1/4,1/4). Thus 75(F) = [-1/2,—-1/4) U [1/4,1/2). Note that mo = Mo =
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V2X([_1/8,1/8)- Therefore, P, = [—1/2,—3/8) U [-1/8,1/8) U [3/8,1/2), so P, # E U
T1/2(E). This example has been taken from [10].

Another class of singly generated GFMRAs has been studied by Seleznik and
Sendur ([36, 35]). Their result introduces a rich and interesting class of GFMRAs
with a significant potential for Signal Processing applications. GFMRAs in this class
are generated by a single scaling function, but a frame multiwavelet set with two
elements is associated with them. The conditions that lead to the construction of
this frame multiwavelet set can be obtained directly from theorem 10. The reader
can also find some interesting Image processing applications of these GFMRAs in
[36, 35].

3.2. Non-singly generated GFMRAs of L?(R) with respect to the Affine
system. Our first example is related with the Journe wavelet (see [21, 26]). This
was the first example of an orthonormal wavelet not associated with an MRA that
was discovered. Before proceeding we need the following lemma.

Lemma 3.1. ([28]) Let I C N and {¢y, : k € I} be a subset of L*(R). Define

. T 11
ak(€) = Zequsk(g +m)g(E+m) klel, £ {—5, 5)
and a’k(&) = (a'l,k(g)a a’2,k(£)a .- '); g S [_%a %) .
(a) Assume that for every k € I the function & — ||ak()|l,2 s in L*([—3, 3)) and that
the linear operators ®(&) defined for a.e. £ € [—%, %) on [0 : k € I] by the equation
D)0k, = ax (&) satisfy the following properties:
(1) @ belongs to L*([—3,3), B(*(1))).
(2) Let P(&) be the range projection of ®(€) a.e. There exists B > 0 such that for
every x € P(&)(F?(I)) we have that B ||z|| < ||®(€)z]|.

Then {T"¢r : k € I,n € Z} is a frame of its closed linear span with frame bounds B
and ||]|..

Conversely, if {T"¢r : k € I,n € Z} is a frame of its closed linear span with frame
constants B, C, then there ezists ® € L*([—1,3), B(€3(I))) such that ||®|, < C
satisfying

‘D(f)l,k=2¢3k(€+m)<$l(§+m) kilel, €€ [—1 1)

272
MEZ
and property (2). Moreover, if P is the orthogonal projection onto [T"¢y : k € I,n €
Z)~, then
Pu() = PEw(e), we I ([—— ) ,z2<n).

Finally, {T"¢y : k € I,n € Z} is a PF of its closed linear span if and only if ®(&) is
an orthogonal projection a.e.
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If {¢y, : k € I} is a frame multiscaling set, then ® = A2

Example 1. Define ¢1, ¢ and ¢3 such that ¢ := yz, where E := [ 4/7,-1/2)U

[_2/7a —1/7) U [1/7, 2/7) U [1/2a4/7)a &2 = X[-8/7,—1)U[1,8/7) and ¢3 [-1/7,1/7)- The
integral translates of ¢, ¢9 and ¢3 form a PF for their closed linear span which we
denote by V4. Indeed, it is not hard to verify that

(51@51 if ge 2’ %)U[_%’_%)
(I)(f) — A(f)Q — U[%’ %) U [%’ %)
0 if 56 [_%:_%)U[%ag)
01 ®01 D6y ® Gy if 56[—7,%)

Note that, for every £ € [—3,3), ®(£) is an orthogonal projection, thus, according
to the previous lemma {T"¢y : k = 1,2,3;n € Z} is a PF of its closed linear span,
which we will denote by V. Moreover,

@mw=%ML_
ﬁ%@aﬁ
©)ds(6)] ac.

[

$2(26) = \/—[\/_X

LL
14>14)

&3(25) = \/—[\/_X,

The previous equations imply that for £ = 1,2,3 each D*¢, belongs to Vj, therefore
V; := D(V;), where j € Z, is an increasing chain of closed subspaces of L*(R). Since
the supquﬁg contains a neighborhood of the origin, we have that Uj V; is dense in
L*(R). On the other hand it is not hard to check that the intersection of all V; is
trivial. Therefore {V}}; is a GFMRA. In this case My = M,. For notational conve-

nience set e,(§) := e~2"". The following argument generalizes remark 4. Assume

11

that £ is a measurable function defined on [—3,5) whose values are 3 x 3 matrices

such that £, , belongs to L?([—3, 3)) for every p,q = 1,2, 3, satisfying

(42) Ww=%2aw%m

Let J : L*([—3,3),C?) be the preframe operator defined by
J(en0r) = T ¢y, net, k=1,2,3,

where {6y : k = 1,2,3} is the standard orthonormal basis of C3>. Note that J*
is the analysis operator corresponding to the PF {T"¢, : p = 1,2,3;n € Z}. Set
tp = (L1p, Lop, L3,), where p = 1,2,3. Using eq. (42) and the definition of J it
easy to see J(my) = J(up), for every p = 1,2,3. Therefore, m, — u, belongs to
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KerJ = R(J*)*, for every p. Since the projection onto R(J*) is induced by the

projection-valued function P € L*([—1, 1), C**%), we obtain
(13) €)= PEm(E)  ac
Now, egs. (42) and (43) imply
X2 (&) X-g-20,1)() 0 11
Mo(€) = V2 0 0 o). gel-5p)
2°2
X4, ot () 0 X2 (©)

Next, we have to compute the projection-valued function P and apply the second
algorithm for the construction of a high pass filter corresponding to M. This con-
struction gives the following high pass filter

) (0,1,0) if €l <7
pE):=v2Q (1,0,0) if I <E <]
(0,0,0) elsewhere in [—1, 2).
If hy, where k = 1,2,3 are the coordinate functions of &, then we obtain

26 = %(ﬁl (€)61(6) + ha(€)da(€) + ha(€)ds(6)) ace.

which implies

Y = X[ 18,9 U- 4 - 2012 U228
This particular function ¢ is known as the Journe wavelet. The preceding argument

implies that 1 is a semiorthogonal frame wavelet of L?(R). We can prove that 1)

~ 2
is an orthonormal wavelet by verifying that »_,., ‘1/)(5 +€)‘ = 1 a.e. For more

details on certain of the arguments used in this example the reader may refer to [29].
The multiscaling set {¢; : i = 1,2,3} appears first in [26], where it was constructed
from the Journe wavelet using the techniques of the proof of Theorem 4 in [26]. A
completely different MRA-construction of the Journe wavelet can be found in Section
6 of [15].

Example 2. Let ¢, € L*(R) be a function with the following properties: @
is continuous, (ﬁo(f) = 0 for every & such that |£| > b, where 0 < b < 1/4 and
0 < ¢o(§) < 1 for every & € (=b,b). Moreover let ¢ € (b/2,b). We assume that
gzgo(f) = 1 for every & € [—c, c|]. Set Vj to be the closed linear span of {T"¢, : n € Z}
and V; := D?(V;), j € Z. Then, it is not hard for someone to verify that F(V) =
L*([—b,b)), where F is the Fourier transform on L?(R). Therefore, for every j € Z,
V; C Vjy1, N;V; is trivial and U;V; is dense in L*(R). Corollary 3.1 implies that
{T"¢y : n € Z} is not a frame of V. In the example following Theorem 7 of [28] we
construct another function, say w, such that {T"¢¢, T"w : n € Z} is a PF of V5. Thus
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{V;}; is a GFMRA of L*(R). However, @ is discontinuous at +b. In fact even more
is true.

Claim: There is no finite frame multiscaling set {w; : ¢ = 1,2,...,k} for {V;},,
such that each @; 18 continuous.

Proof of the claim: Let {w; : i = 1,2,...,k} be a finite subset of V5. Since F(Vp) =
L?([-b,b)), we obtain that for every 1 = 1,2,...,k suppw; is contained in [—b, ).
Therefore, every entry

(g =Y W, (E+m)ay, (E+m) 1<h,lb<k

meZ

of the autocorrelation function ® corresponding to {w; : i = 1,2, ..., k} is a continuous
function, thus & — [|®(£)|| is a continuous function supported on [—b,b]. This, in
turn, implies that & fails to satisfy condition (2) of (a) of lemma 3.1, equivalently
{T"w; :i=1,2,...,k;n € Z} cannot be a frame for V. This completes the proof of
the claim.

Assume that {ax}ren is a sequence such that ¢ < a; < b and a; < agy1 for every
k € N. Moreover assume that lima; = b. Set

d 3d
dy = Qg1 — ag, b= ag+ Zk and ¢y == ay + Tk

Clearly ay < by < ¢ < agyq for every k € N.
Assume that we have a set of functions {¢p : k£ € N} satisfying the following
properties:
I. ¢ is continuous, for every k > 1. Moreover, ¢; vanishes outside [—bg, —a1) U
[a1,b3). Also every by, vanishes outside [—bgt1, —Cr1) U[ck_1,bgs1) for k£ > 2.
II. If a < |§| S bl or as < |§| S b2, then

0<¢i(§) <1
ITI. For every k > 2

0< (6 <1
if ¢1 < [€] < ag or agi1 < [E] < by X

IV. ¢ (&) =1 if a, < €| < agy1, for every k > 2. Also, ¢1(&) = 1if by < €] < as.

Obviously, [T"¢r : k =0,1,2,...; n € N~ is to equal to V. Therefore, if we want
to prove that {¢, : £k = 0,1,2,...} is a frame multiscaling set of functions for the
GFMRA {V;};, we only need to establish that {T"¢; : k =0,1,2,...; n € N} is a
frame of Vj.

According to corollary 3.1 the autocorrelation function ® corresponding to the set
{¢r : k=0,1,2,...} is given by following equation:

(44) (&)1 = e (E)ni(E) , k1> 0.
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Therefore,
(45) ®(¢) =v(§) ®v(§), ae.

where, v(&) 1= (4o(€), #1(£), P2(€),...) ae. in [—1/2,1/2). Apparently, if b < |£| <
1/2, then ®(£) = 0. Note, that for every & € [—1/2,1/2) at most three of the
coordinates of v(£) are non zero.

In order to prove that {T"¢; : k = 0,1,2,...; n € N} is a frame of V;, first, we
must show that a.e. in [—1/2,1/2) ®(£) is a well-defined, bounded operator and that
{/|2(¢)]| : € € [-1/2,1/2)} is essentially bounded. From eq. (45) and the fact that all
o5, are all bounded by 1 we can very easily see that ®(¢) is a well-defined, bounded
operator, for every £ € [—1/2,1/2) and that ||®(£)|| < 3. Second, we will establish
that there exists B > 0 such that for a.e. & € [—b,b) and for every z in P(§)(¢?),
where P(§) is the range projection of ®(£), we have that B ||z|| < ||®(§)z||. For every
¢ such that |£| < b, P(€) is the projection onto the one-dimensional subspace [v(£)].
Thus for every z in [v(€)] we have that |®(&)z|| = ||v(€)]|* |||, for every & € (—b,b).

But for all such £ we have that ||[v(€)|| > &, where x := min{ (]Aﬁ(f)‘ te < €] < by}

Since k > 0, we obtain that {¢ : £ = 0,1,2,...} is indeed a multiscaling set of
functions for {V;},.

Using the arguments proving eq. (31) we obtain

Dgp =Y (D¢, T¢)T"¢ k=0,1,2,...

n

where {T"¢;:n € Z, k=0,1,2,...}is the dual frame corresponding to {T"¢, : n €
Z,k=0,1,2,...}. Let my; be the 1-periodic function defined by

mik(€) =Y (D%, T"¢))e > 1k >0

n

and my, := (Mg g, M1, ...). Once again, in order to be consistent with the notation
and terminology of classical MRA theory, we refer to the set {my : k& > 0} as the
low pass filter associated with the multiscaling set {¢y : £ > 0}. Apparently, each
my is square-integrable, so we can define my := Am; and subsequently derive the
normalized low pass filter M corresponding to {¢ : k > 0}. Let 1, be the 1-periodic
functions satisfying

me(€) = V3((26),0,0,...) ae. in [—%%) k>0

and g (I > 0) be the coordinate functions of each p. Then

P (26) = % Z 16 (E)Pi(€) ae. inR.
=0
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Apparently suppur N [—1/2,1/2) is contained in (—b/2,b/2) for every k > 0. Argu-
ments similar to those proving eq. (43) give us

mi(§) = P(&)u(§)  a-e.

On the other hand, for every € € (—b/2,b/2) we have A(£) = 0y ® Jp, because b/2 < c.
Combining, the last two equations we obtain 7y = py, for every k > 0.
Let us now define the oo x 1 matrix-valued function H:
) 0 if [¢l>b or [¢]<b/2
v if c<[E[<b
where T denotes the transpose operation. It is not very hard for the reader to prove
that H is in L*®([-1/2,1/2), B(¢?)) and the following are true:
(1) For £ € [-1/2,1/2)

do ® do_ if £€{3<lEl<ctunp({s<IE <)
0o (€) = > ko Pk (€)” if £e{c<|f <0}

Y oreo [Ok(T12(E) if € € mpa({e < €] < b})

0 otherwise

where Qa(€) = A(€)"H(€) + A(¢ +1/2)H(E +1/2).
(2) H(E)*Mo(&) + H(E+1/2)*My(£+1/2) =0 a.e.
(3) The columns of the matrix
( My(§)  H( )
Mo(€+3)  H(E+3)
span P(&)(€%) ® P(11/2(€))(¢?) a.e. in [-1/2,1/2).

Now, according to theorem 10, we obtain the frame wavelet 1 associated with the
GFMRA {V}}; defined by the equation

$(26) =Y m(€)hi(€) ae inR,

where h; are the coordinate functions of h and k(&) = A(€)"1H(€)T. Note that since
A(€)? = v(€) ® v(€) we have that A(£) = m”(@ ® v(&) for every & such that
v(€) # 0 and A(€) = 0 elsewhere. This gives

1

A(f)*l(x) = ||v(§)||x for every z € [U(g)]
S
0 0 if b<|§|<%, or |€] < b/2
h(f)—{ do if b2 < €] <
mere(©) i c<|El<h
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Therefore,
. 2. (€& )
w(f) = X[~2¢,—b)U[b,2c) (5) + X[-2b,—2¢)U[2¢,2b) (f) Z O, (5 a.e. in R.
k=0
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