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Abstract. In this paper we present a set of 3D-rigid motion invariant
texture features. We experimentally establish that when they are com-
bined with mean attenuation intensity differences the new augmented
features are capable of discriminating normal from abnormal liver tissue
in arterial phase contrast enhanced X-ray CT—scans with high sensitivity
and specificity. To extract these features CT-scans are processed in their
native dimensionality. We experimentally observe that the 3D-rotational
invariance of the proposed features improves the clustering of the feature
vectors extracted from normal liver tissue samples.
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1 Introduction and Previous work

The early detection of liver cancer lesions can potentially improve the manage-
ment of various forms of liver cancer. Typically, liver lesions are identified using
contrast enhanced CT scans acquired at different phases of perfusion of the hep-
atic parenchyma by the infused contrast agent. The task of identifying the lesions
is performed by a radiologist using a large number of images generated from this
multiphase CT acquisition and requires significant time and effort.

In this work, we present an algorithm and experimental results that demon-
strate the feasibility of the development of a semi-automatic screening tool capa-
ble of detecting liver abnormalities in contrast enhanced x-ray CT-scans. Specif-
ically, utilizing ideas proposed by Jain et. al. [1] we develop 3D-rigid motion
invariant texture features. We experimentally establish that when these features
are combined with mean attenuation intensity differences the new augmented
features are capable of discriminating normal from abnormal liver tissue in ar-
terial phase contrast enhanced X-ray CT-scans with high sensitivity and speci-
ficity.

* This work was partially supported by NSF DMS 0915242 award.
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When scans are acquired during different perfusion phases of the contrast
agent, liver lesions result in hypodense or hyperdense Regions of Interest (ROI)
relative to normal hepatic parenchyma. Quite often, in the arterial phase hypo-
dense ROIs are adjacent to hyperdense ones due to the increased vascularization
of active cancerous lesions. The driving assumption in our approach is that liver
tissue ROIs can be represented in a contrast—enhanced x-ray CT scan by two
components, 3D-texture and local mean intensities. The first of the two compo-
nents captures the structure while the second provides the average intensity of
the ROI, which is a traditional feature for tissue discrimination and is much more
observable by the eye of the trained beholder than the former. We demonstrate
though that local attenuation intensity averages are not by themselves robust
enough to discriminate normal from abnormal tissue. Our results reveal that
features capturing the structural characteristics of the 3D-textures associated
with these tissue types in general perform better than the former, or at least
equally well.

Texture-based lesion segmentation has been successfully used in the past for
the detection of cancerous hepatic lesions [2]. In contrast to the herein proposed
method, which is natively implemented in 3D, proposed texture features in the
existing literature are extracted in a slice by slice manner by combining first
and second order moments [3]. Very similar approaches have also been used to
segment the liver from neighboring organs [4-6]. Apart from the fact that our
methods are natively designed to work in 3D, a fundamental difference between
previous texture-based approaches and our work is that they use significantly
more complex classifiers. Liver segmentation and detection of cancerous lesions
has been mostly performed with non-texture based methods as in [7—12] where
the difference in attenuation intensity between more and less contrast-perfused
ROIs is used for feature extraction or as in [13,14] where deformable models
are utilized to generate the boundaries between normal and abnormal tissues.
However, both of these approaches mostly limit the detection of cancer lesions
to the hypodense ones, because differences in average intensities are typically
the dominant discriminative features.

In spite of the significant successes in the field of hepatic tumor detection
and segmentation, our work opens an unexplored direction. The novelty of our
approach relies first, on the use of 3D isotropic multiscale analysis for the ex-
traction of 3D-rigid motion invariant texture features; second, on augmenting
these texture features with attenuation intensity-based features. The proposed
3D-rigid motion invariant features allow feature vectors from normal tissue sam-
ples to form clusters that are more well-defined than the clusters formed when
the 3D-texture features do not account for 3D-rotations. This enhances the dis-
criminatory power of the proposed features (Fig. 3). Our experimental results
are not directly comparable with the results of others, because we only test the
discriminative power of our features on sets of ROIs and we don’t segment nor-
mal from abnormal liver tissue. However, it appears that the proposed features
can be used for tissue discrimination with high sensitivity and specificity rates
rendering them as a promising tool for developing segmentation algorithms.
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2 Methods

Our tissue classification scheme consists of two levels of classifiers. The design of
both levels is traditional. The first level consists of an ensemble of SVMs classi-
fiers which at the second level decide by majority voting whether a tissue ROI
is normal or abnormal. The SVM classifiers use low-dimensional feature vectors
whose components express the statistical disparity at one or more scales of the
3D-texture corresponding to a given liver tissue ROI for the 3D-texture of a
normal reference ROI and the difference of average intensities between the two
ROIs. To develop these classifiers the human operator selects a small number of
reference normal ROIs from an x-ray CT-scan that is examined. The proposed
feature design takes into account that a liver consists of soft tissues with vary-
ing 3D-orientations thus requiring features to be invariant under 3D-rotations
and translations. In particular, cancer will tend to develop along blood vessels,
which themselves appear with a varying degree of 3D-orientations. Moreover,
malignancies form their vasculature with an even richer orientation variation
in 3D. Attenuation intensity local average-based features would automatically
be invariant to 3D-rigid motions, and therefore insensitive to the variety of 3D-
orientations of the patterns formed by tissues of interest, but 3D-texture features
must be specifically designed to be 3D-rigid motion invariant. We discuss the
details of this design in the next paragraph.

2.1 3D-Texture Based Features

To discriminate 3D-textures corresponding to soft-tissue ROIs we assume that
both ROIs have zero mean. The texture component of the proposed features is
derived by combining 3D-rigid motion invariant monoscale ‘distances’ between
texture signatures derived by fitting order—one Gaussian Markov Random Field
(GMRF) models to the orbits of 3D-texture rotations corresponding to the zero-
mean tissue ROIs, as proposed in [1,15]. In this manner, our features quantify
3D-texture disparities at various scales. A 3D-texture X is modeled as a spatially
homogeneous random field defined on the continuous domain R3. Image acqui-
sition generates the realization of X in the form of a digital 3D-image whose
values at the points of a discrete sampling lattice A are the exact same values
of its ‘continuous parent’ at the grid points of A. Hence, an a-rotation of the
discrete texture X is the restriction of the a-rotation of its continuous parent on
A. So, rotating the discrete texture X amounts to rotating the autocovariance p
of its continuous parent.

Using the approximation of p by the empirical autocovariance function py we
‘fit” a very simple order-one GMRF model to the data po(k),., from which the

autocovariance matrix of the fitted model ¥ and its inverse (£)~! are computed
following a method originally proposed in [16] adopted for 3D in [1,17]. By
taking any a-rotation of py and fitting the same model to the rotated pg (2)(1
is obtained. Since, 3D-shifts induced by the action of A do not affect the discrete
texture X, due to the spatial homogeneity assumption it follows that the orbit

~

I'x(a) = (X))o, @ € SO(3) is the monoscale 8D-rigid motion covariant texture
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signature of the observed texture X at the scale corresponding to the density
of the lattice A. This led Jain et al [1] to propose a 3D-rigid motion invariant
texture ‘distance’ at this scale

Rdist(X,Y):= min / KLdist (Ix (o), I'y(Tav)) dex (1)

T€SO(3) 50(3)

where KLdist(X, X3) = %Trace(Z;lZl + Eflﬂg —2InxnN). We stress that the
8D-texture corresponding to a tissue ROI is almost never an order one GMRF.
Yet, we carry out our computations as if it were such a GMRF. We use this
computationally simple and numerically efficient stochastic model as a probe for
tissue discrimination and not as a texture model for soft tissues. The 3D-texture
features for the promised liver tissue SVM classifiers are constructed via ( 1).

2.2 Feature Extraction

Let {sg}r=1,2,...~ be 3D volumes from normal or abnormal liver tissues and
Ax = sy N A. Now, fix a sample n which is known to be normal to be the
reference normal. For each one of the {sy}r=12,. .~ we derive the feature vector
f(sg;n) relative to n according to the following algorithm.

The first component of the feature vector f(sx;n) is

o mew
Vvar(sg) +var(n)

DM(Sk, Il) :

D) standardizes the statistical disparity due to the difference in the average
attenuation intensity between s and n. To form the remaining components
of the feature vector f(sg;n), we use the 3D-rigid motion invariant statistical
disparity RD;(si,n) at scales j = 0, —1, between the 3D textures corresponding
to s and n where

(2)

[1]. If for a given sample s;, and at some scale j, RD; (s, n) is large, then we can
conclude that the sample sj, has a different 3D texture than the reference normal
n sy thus more the tissue from which sy originated is likely to be abnormal. To
compute RD;(sx,n) we make some non-trivial modifications to the algorithm
proposed in [15] to make it applicable to ROIs that are not 3D cubes. We describe
those modifications below:

Computation of RD;(si,n): (i) Adjust intensity values in both s, and n
to have zero mean.

(#) Upsample each sy, to a twice the denser grid as in [15]. The upsampled
3D-texture sample is convolved with the isotropic low-pass synthesis filter Hy:

RD; (s, m) — maz {0’ Rdist;(sk,n) — diamy () } '

diamy (5)

] < 128

[1cos (5 (16l - 52)) | 52 <lel < 52, @)
otherwise,

Hy(§) =

O Nl =



Semi-Automatic Discrimination of Liver Cancer in CT-Scans with Contrast 5

where 7 = 100/84 and 8 = 1/7. The isotropy of Hy increases the accuracy of
the computation of pg.

(#ii) Let t be a node in sy, then a neighborhood of t is ny := (t+ W) C Ay,
where W is a symmetric neighborhood of the origin. We set W = W+ U W~
where W~ = —W* and W+ = {(27771,0,0), (0,27771,0), (0,0,277F1)}. The
order-one GMRF model limits interactions within W. Also define A}, C Ay to
satisfy (n: + W) C Ay, for every t € Aj. We extract our statistics from sy |a; .

(iv) Compute the empirical auto-covariance matrix py of sy|a; via:

1
AL

Z SknSkyies forall t such that [¢]je < 27712
reA]
where |A}| denotes the number of voxels in A}; po is of size (27773 4 1)3.

(v) Any of the 3D textures need not satisfy po(t) = po(—t). So we artificially
symmetrize p{, by setting pj(t) := 1 [po(t) + po(—t)] for all £ € A}, such that
1t]|oo < 27972, To simplify the notation from now on we use pf, = po.

(vi) Let y, = [sk, + sk_,],L € (r + WT). Define Y = [y,],r € A}. The least
squares estimates o and 0 of the order-one GMRF model that fits the data are

~ — T
given by the statistics: O(sg) = (Y1Y) 1Y sy and 02(s;,) = ﬁ (stk -0 YTSk)

(vii) YT's, and Y'Y are given by (Y7'sg), = |AL|(po(7)+po(—7)) Vre W+

po(t) =

(YY) (0 = [ A4l 190 (r—t)+po (r4+)+p0(—r—)+p0(—r+8)] (E,7) € WHxW*.

(viii) The computation of (Y7Y)~1 is performed as in [15].

By iterating for a finite set of rotations the previous steps the rotationally
covariant signatures I's, and I}, are generated as in [1] and finally RD; (s, n) is
computed for j = 0, —1 using the isotropic low pass filter [1] with 7 = %.
We keep the low—pass output at the original resolution. To extract the order-one
GMREF statistics we use the interactions of pixels 277! apart and we repeat all
of the previous steps with the exception of step (ii). As noted in [1] observing tex-
tures at lower scales compensates for the loss of the tissue textures information
due the use of the order-one GMRF model.

3 Experiments and Results

Arterial phase X-ray CT scans of liver from six patients were obtained. All scans
were obtained with almost cubic voxels which is necessary for our method. From
each of the six CT-scan series, we selected a set of eight normal and twelve
abnormal ROIs, chosen by an expert radiologist. The abnormal ROIs contained
one or more cancer lesions at different stages of maturity and size. For each of
the series we perform three experiments. First, we use each one of the normal
ROIs n, as a reference normal. Then, we compute three sets of feature vectors.
Using the feature vectors we develop a two class SVM-classifier corresponding
to n with each one of these sets of features. The kernel of the SVM-classifier is
approximated by Radial Basis functions and for our implementation we use the
free package LibSVM. Next we define the three said types of features.
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(a) fi(sk) = (Dar(sk,n)), classifies samples s; by exclusively using differ-
ences of ROI mean attenuation intensities.

(b) fa(sk) = (RDy(sk,n), RD_1(si,n)), classifies samples s, using their 3D-
texture disparities at the original scale and at one scale coarser than the original.
3D-displacements and 3D-rotations of ROIs do not influence the statistical dis-
parity of the textures of any two ROIs. Any directional characteristics native
to each texture contribute to this texture disparity feature only with respect to
their relative 3D-orientations.

(¢) f3(sx) = (RDo(sg,n), RD_1(sg,n), Dps(sg, n)) combines multiscale tex-
ture disparity with differences in average attenuation intensity.

To validate the performance of each set of the features above, we test each
of the SVM-classifiers associated with a normal tissue ROI using only this set
of features. We also test a classifier combining input from each one of these
classifiers by majority voting referred to as SVM-voting separately for features
f1, f2 and f3 . We estimate the accuracy of these classifiers in two ways.

Experiment 1: We randomly divide 20 samples in two groups, with 4 normal
and 6 abnormal ROIs in each group. We perform a two fold cross validation by
alternately training the SVM classifier on each group and testing it on the other.
The average accuracy of each pair of classifiers is referred to as the accuracy of
the two—fold classification. We repeat the previous test 100 times. The average
accuracy of the two—fold classification from these 100 random trials is shown in
Tables 1, 2. The average accuracy of the SVM-voting classifier for the same 100
random trials is also shown in Tables 1 and 2.

Experiment 2: This leave-two—out experiment essentially assesses the gen-
eralization capacity of the proposed classifiers. From the sample of twenty tissues
from each patient we use 18 of them for training and two for testing. Leave-two-
out accuracy is calculated for each of the eight SVM classfiers corresponding to
each of the normal ROIs for each of the CT-scan series and for each of the pro-
posed features fi, fo and fs. We also assess the performance of the SVM-voting
classifier. In the same way Tables 1 and 2 provide the average performance of
these classifiers tested on all possible 96 partitions of the ROI set from each
CT-scan series.

Fig. 1. Typical 3D-view of the texture of a normal liver ROI (left) and of an abnormal
(neoplastic) liver ROI (right).
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Two fold cross-validation Leave-two-out-validation

Reference Features used Features used

Normal Dy |(RDo, RD_1)|(RDo, RD_1,Dnm)|| Dam |(RDo, RD_1)|(RDo, RD_1, D)

N1 95.0 94.4 100 92.7 80.7 100
N2 75.8 90.4 97.7 77.6 84.4 100
N3 77.0 91.6 98.1 71.4 90.1 100
N4 95.6 95.1 97.8 100 91.1 100
L1 N5 94.9 95.1 98.1 99.5 93.8 100
N6 94.9 94.4 99.2 99.5 89.6 100
N7 95.5 92.8 99.1 100 90.6 100
N8 95.2 95.0 97.9 100 95.8 100
Average 90.5 93.6 98.5 92.6 89.5 100
SVM-Voting| 94.8 94.0 98.6 100 89.1 100
N1 90.3 91.0 99.2 78.1 79.2 100
N2 92.3 79.5 99.4 95.8 95.8 100
N3 91.1 91.3 99.7 86.5 87.0 100
N4 92.0 88.6 99.4 90.6 86.5 100
L2 N5 92.2 89.0 98.5 75.0 81.8 100
N6 92.3 84.5 96.4 81.3 92.2 99.5
N7 85.4 93.5 99.6 69.3 91.1 100
N8 88.9 91.2 98.4 88.0 87.0 100
Average 90.5 88.6 98.8 83.1 87.6 99.9
SVM-Voting| 91.2 90.2 99.7 80.2 87.0 100

Table 1. The entries of the table denotes the accuracy in percentage for each set of
proposed features. SVM Classifiers are defined for each set of features and relative to
each of the normal ROIs in each CT-scan series of Livers from 2 patients (L1, L2).
Then we observe the average accuracy obtained from N1 to N8. SVM-Voting gives the
classification based on the majority voting of reference normals used for training

4 Discussion

In this paper we present a novel set of features combining information of multi-
scale texture disparity with the difference between average attenuation values for
a given pair of texture patches one of which corresponds to normal tissue. These
features exploit the full power of the 3D information modern scanners provide.
We develop our features and the associated SVM classifiers using normal tissue
reference ROIs only, because this type of tissue is less diverse within the same
organ. Since the proposed disparities between normal tissues are also typically
relatively small, because not absolute but only relative 3D-orientations of di-
rectional characteristics influence the evaluation of textural disparities (Fig. 3)
making disparity assessments obtained from different SVM classifiers to agree.
Tables 1, 2 support this claim by manifesting the robust assessment of textu-
ral similarity between normal tissues and the dissimilarity between normal and
abnormal ones enabling thus a highly accurate SVM voting classification.
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Fig. 2. Examples of our choices of normal (N) and diseased (Abn) regions, whose cross-
sections are shown on 2D slices. We selected many different kind of abnormalities for
our experiments, which includes tumors of different sizes and from different stages
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ROI feature vectors.
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Two fold cross-validation Leave two out validation

Reference Features used Features used

Normal DA{ (RD07RD71) (RDo,RthD]u) D]w (RD(),RD71) (RDO,RD717D]L{)

N1 73.4 83.4 86.2 67.2 58.3 90.6
N2 73.6 74.4 71.1 83.3 78.1 49.5
N3 75.0 82.9 84.7 75.5 78.1 93.2
N4 69.4 78.2 73.4 49.5 65.6 62.5
L3 N5 77.0 79.4 79.7 92.2 66.7 93.8
N6 74.6 81.6 79.7 72.9 67.2 93.8
N7 76.5 84.2 85.6 97.4 77.1 81.3
N8 75.1 85.2 82.9 99.5 95.3 85.4
Average 74.3 81.1 80.4 79.7 73.3 81.3
SVM-Voting| 74.4 83.2 83.0 91.1 70.3 91.1
N1 93.1 71.4 84.9 83.3 56.3 71.4
N2 89.0 70.4 89.1 73.4 63.0 92.7
N3 95.2 68.6 90.6 84.4 52.6 87.5
N4 92.5 70.1 93.0 79.2 76.6 95.8
L4 N5 89.5 78.0 91.3 83.3 85.4 90.1
N6 95.0 68.8 90.5 93.8 72.9 92.7
N7 95.2 74.4 91.2 92.7 69.3 94.8
N8 95.3 80.0 91.6 97.4 87.5 93.8
Average 93.1 72.7 90.3 85.9 70.4 89.8
SVM-Voting| 93.5 69.7 91.5 90.6 67.2 93.8
N1 95.0 71.4 93.5 82.8 50.5 91.1
N2 95.1 70.0 92.0 87.0 66.7 94.8
N3 95.1 70.3 93.2 78.1 68.8 99.0
N4 99.2 75.1 95.0 100 59.9 92.2
L5 N5 95.1 72.1 92.1 79.2 56.8 93.8
N6 97.5 72.3 92.9 100 76.0 95.8
N7 96.7 73.7 91.7 99.5 58.9 88.5
N8 95.0 70.6 93.0 69.3 47.4 99.0
Average 96.1 71.9 92.9 87.0 60.6 94.3
SVM-Voting| 95.0 72.3 93.2 91.1 55.7 95.8
N1 96.2 91.1 99.6 99.5 100 100
N2 95.1 74.2 96.8 96.9 81.3 100
N3 97.9 74.0 98.1 100 80.2 100
N4 98.3 81.3 98.9 100 75.5 100
L6 N5 98.4 66.7 95.0 100 80.7 99.5
N6 95.2 82.2 97.6 96.4 85.9 100
N7 97.9 81.6 99.9 100 81.3 100
N8 95.0 70.7 96.4 93.8 51.6 100
Average 96.7 7.7 97.8 98.3 79.6 99.9
SVM-Voting| 95.5 79.8 98.6 100 82.8 100

Table 2. Continuation of Table 1 to show the classification accuracy obtained from
the two experiments for rest of the four patients (L3-L6).




