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Problem Setup

What are we doing?

Given observation of trajectories, estimate SDE parameters.

We consider SDE

dxt = f (xt) dt + σ(xt) dwt , xt ,wt ∈ Rd , (1)

with some given initial condition x0 ∼ µ0, and where f : Rd → Rd is the drift term,
σ : Rd → Rd×d is the diffusion coefficient, and w represents a vector of independent
standard Brownian Motions.

Σ = Σ(x) : Rd → Rd×d where Σ = σσ⊺.

Given observation data in the form of {xt , dxt}t∈[0,T ] for x0 ∼ µ0.

Question: How to estimate f and Σ given the observation of Xt?
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Problem Setup

Figure: Stock price over past year
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Learning Framework and Performance Measure

The estimation of drift function f will be the minimizer to the following loss function

EH(f̃ ) = E
[
1

2

∫ T

t=0

(
⟨f̃ (xt),Σ†(xt)f̃ (xt)⟩ dt − 2⟨f̃ (xt),Σ†(xt) dxt⟩

)]
, (2)

H as function space of f̃ . Designed to be convex and compact and it is also
data-driven.

Σ† is the pseudo-inverse of Σ (when σ is assumed to be SPD, Σ† = Σ−1).

This loss function is derived from Girsanov theorem and the corresponding
Randon-Nykodim derivative or likelihood ratio for stochastic processes.
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Learning Framework and Performance Measure

The estimation of Σ is the minimizer of the following loss function

E(Σ̃) = E
[
[x, x]T −

∫ T

t=0

Σ̃(xt) dt)
]2
. (3)

where [x, x]T is the quadratic variation of the stochastic process xt over time interval
[0,T ].

[xi , xj ]t = lim
|∆tk |→0

∑
k

(xi (tk+1)− xi (tk))(xj(tk+1)− xj(tk)),

In particular, if Σ is constant, then the estimation can be simplified to Σ̃ = E [x,x]T
T

.

In case where both f and Σ are unknown, Σ can be estimated first, allowing the
estimated covariance matrix to be used to implement
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Learning Framework and Performance Measure
Performance Measure

If we have access to original drift function f , then we will use the following error to
compute the difference between f̂ (our estimator) to f with the following norm

||f − f̂ ||2L2(ρ) =
∫
Rd

||f (x)− f̂ (x)||2ℓ2(Rd ) dρ(x). (4)

The weighted measure ρ, defined on Rd , is given as follows

ρ(x) = E
[ 1
T

∫ T

t=0

δxt (x)
]
, where xt evolves from x0 by equation 1. (5)
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Learning Framework and Performance Measure
Performance Measure

Under normal circumstances, f is most likely non-accessible. Thus we look at a
performance measure that compares the difference between X(f , x0,T ) = {xt}t∈[0,T ]

(the observed trajectory that evolves from x0 ∼ µ0 with the unknown f ) and
X̂(f̂ , x0,T ) = {x̂t}t∈[0,T ].

Difference between the two trajectories is measured as

||X− X̂|| = E
[ 1
T

∫ T

t=0

||xt − x̂t ||2ℓ2(Rd ) dt
]
. (6)
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Learning Framework and Performance Measure
Performance Measure

In most general case, we compare the distribution of the trajectories over different
initial conditions and all possible noise at some chosen time snapshots using the
Wasserstein distance at any given time t ∈ [0,T ].

The Wasserstein distance of order two between µM
t and µ̂M

t is calculated as

W2(µ
M
t , µ̂M

t |µ0) =

(
inf

π∈Π(µM
t ,µ̂M

t |µ0)

∫
Rd×Rd

∥x − y∥2 dπ(x , y)

)1/2

. (7)

where

µM
t =

1

M

M∑
i=1

δx(i)(t), µ̂M
t =

1

M

M∑
i=1

δx̂(i)(t) (8)
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Examples
1D Drift

We initiate our numerical study with a one-dimensional (d = 1) drift function that
incorporates both polynomial and trigonometric components, given by
f = 2 + 0.08x− 0.05 sin(x) + 0.02 cos2(x).

Table: One-dimensional Drift Function Estimation Summary

Number of Basis 8 Wasserstein Distance
Maximum Degree 2 t = 0.25 0.0291

Relative L2(ρ) Error 0.007935 t = 0.50 0.0319
Relative Trajectory Error 0.0020239 ± 0.002046 t = 1.00 0.0403
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Examples
2D Drift

We also tested our estimation method to van der Pol oscillator, which is a classical
example of a self-sustained oscillator with nonlinear damping, which has many
applications in biology and physics and setdxt = yt dt,

dyt =
(
µ
(
1− x2

t

)
yt − xt

)
dt + σ dw y

t

(9)

We set parameters as µ = 1 and σ = 0.1
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Examples
2D Drift

Figure: Comparison of true and estimated surfaces in each dimension
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Examples
2D Drift

Figure: Trajectory controlled by estimated drift keeps the oscillating property
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Examples
2D Drift

Table: Van der Pol oscillator drift estimation summary

Relative L2(ρ) Error 0.0297
Relative Trajectory Error 0.019 ± 0.071

Wasserstein Distance at t = 25 0.0521
Wasserstein Distance at t = 50 0.0548
Wasserstein Distance at t = 100 0.0539
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Examples
2D Variance

We estimate the covariance matrix Σ for the two-dimensional (d = 2) case. We

assume that both f and Σ are unknown. We set σ as:

(
σ11 σ12

σ21 σ22

)
where the

components σ11 = 0.4x1, σ12 = σ21 = 0.025x1x2, σ22 = 0.6x2 are all state
dependent.
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Examples
SPDE Estimation

Consider the stochastic heat equation driven by an additive noise

du(t, x)− θ∆u(t, x) dt = σ dw(t, x) (10)

on a smooth bounded domain x ∈ G ⊂ Rd , with initial condition u(0, x) = 0, zero
boundary condition, and ∆ being the Laplace operator with zero boundary conditions in
a suitable underlying Hilbert space H.

We are interested in the estimation of θ.

Consider orthonormal basis {hk}k∈N ⊂ H.

By spectral approach, we have the projection operator P : H → HN , where
HN = span{h1, . . . , hN}. Then uN = PNu =

∑N
k=1 uk(t)hk(x) is the Fourier

approximation of the solution u by the first N eigenmodes
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Examples
SPDE Estimation

d
N∑

k=1

uk(t)hk(x) + θ

N∑
k=1

uk(t)λkhk(x) dt = σ d
N∑

k=1

qkhk(x)wk(t).

Since {hk(x)}Nk=1 are orthogonal to each other, we get that

duk(t) + θλkuk(t) dt = σqk dwk(t), k = 1, . . . ,N.

Then θ can be estimated by 2 and we obtain the loss function

E(θ̃) = E

[
1

2

N∑
k=1

θ̃2λ2
k

σ2q2
k

∫ T

0

u2
k dt +

N∑
k=1

θ̃λk

σ2q2
k

∫ T

0

uk duk

]
. (11)
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Examples
SPDE Estimation

We focus on one dimensional stochastic heat equation, d = 1, and take the domain
G = [0, π]. In this case hk(x) = sin(kx) and λk = k2. The parameters are set as follows:
T = 1, ∆t = 0.01, σ = 0.1, and qk = 1, that corresponds to space-time white noise. We
set the parameter of interest θ = 2.

N = 1 N = 2 N = 5 N = 10 N = 20
M = 1 0.5230 3.2796 2.3315 1.9893 2.0000
M = 10 1.7456 2.2964 2.0765 2.0036 2.0000
M = 50 2.3217 1.8248 2.0433 2.0009 2.0000
M = 100 1.7596 2.0183 2.0082 2.0004 2.0000

Table: SPDE θ estimation under different number of modes N and trajectory number M
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Examples
SPDE Estimation

Consider the stochastic heat equation driven by an additive noise

du(t, x)− θ(x)∆u(t, x) dt = σ dw(t, x), x ∈ [0, 2π], (12)

with initial condition u(0, x) = 0, zero boundary condition. ∆ being the Laplace operator
with zero boundary conditions in a suitable underlying Hilbert space H.

θ(x) =

{
θ1 if 0 ≤ x < π,

θ2 if π ≤ x ≤ 2π
,

where we assume θ1 and θ2 are unknown.
Then we obtain that

duj(t) +
∞∑
k=1

⟨θ(x)hk(x), hj(x)⟩λkuk(t) dt = σqj dwj(t), j = 1, . . . ,N. (13)
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Examples
SPDE Estimation

We set the parameters as follows: T = 1, δt = 0.01, σ = 0.5, qk = 1, λk = k2

4
and

M = 1.

(θ̂1, θ̂2) N L2 Error
(θ1 = 2, θ2 = 4) (2.053, 3.993) 10 0.0535
(θ1 = 2, θ2 = 4) (1.999, 4.000) 20 0.0010
(θ1 = 1, θ2 = 5) (1.044, 5.086) 10 0.0966
(θ1 = 1, θ2 = 5) (0.999, 5.000) 20 0.0010

Table: SPDE θ estimation
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Examples
Interacting Agent Model

We also consider an interacting agent system with correlated stochastic noise. For a
system of N agents, where each agent is associated with a state vector xi ∈ Rd′ . The
agents’ states are governed by the following SDEs

dxi (t) =
1

N

N∑
j=1,j ̸=i

ϕ(||xj(t)− xi (t)||)(xj(t)− xi (t)) dt + σ(xi (t)) dw(t), i = 1, · · · ,N.

Here ϕ : R+ → R is an interaction kernel that governs how agent j influences the
behavior of agent i , and σ : Rd′ → Rd′ is a symmetric positive definite matrix that
represents the noise.
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Examples
Interacting Agent Model

If we define the vectorized notations,

fϕ(x) =
1

N


∑N

j=2 ϕ(||xj − x1||)(xj − x1)
...∑N−1

j=1 ϕ(||xj − xN ||)(xj − xN)

 and σ̃ =


σ(x1) 0 · · · 0
0 σ(x2) · · · 0
...

...
. . .

...
0 0 · · · σ(xN)

 .

Here f : Rd → Rd and σ̃ : Rd → Rd×d .
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Examples
Interacting Agent Model

We test our learning with the following parameters N = 20, d ′ = 2 (hence
d = Nd ′ = 40), ϕ(r) = r − 1, T = 1

Figure: Comparison of true ϕ vs learned ϕ̂.
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