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Introduction

Time Series Data
Prediction

Given data in the form

{zt1 , zt2 , · · · , ztL}, ztl ∈ RD (D ≫ 1),

with 0 = t1 < t2 < · · · < tL = T , can we predict

ztL+1
, ztL+2

, · · · , tL+1 = T + δt

Traditional Methods

Autoregressive (AR), moving average (MA), ARMA and ARIMA
models

Machine Learning methods

Recurrent Neural Networks (RNNs), Long Short-Term Memory
(LSTM), Transformers
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Introduction

Time Series Data
Dynamical Data

Basic assumption (Markov Chain)

Pr(zL+1 = zL+1

∣∣∣z1 = z1, z2 = z2, · · · , zL = zL)

= Pr(zL+1 = zL+1

∣∣∣zL = zL)

Even further (dynamic structure)

zL+1 = zL + h(zL)∆t + σ(zL)∆wL,

where

h : RD → RD ; σ : RD → RD×D .

∆wL ∈ RD is a Brownian motion.
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Introduction

Time Series Data
Dynamics Assumption

Continuously
dzt = h(zt) dt + σ(zt) dwt ,

Learning and Prediction

Given data {zt1 , zt2 , · · · , ztL}, can we predict zL+1, assuming

dzt = h(zt) dt + σ(zt) dwt ,

with h and σ being unknown.

Established approaches

SINDy, Neural ODE, PINN/PIGP.
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Introduction

Time Series Data
Dynamics Assumption

These methods use the normal regression setup

E(h̃) = E
[ 1
T

∫ T

0

∣∣dzt
dt

− h̃(zt)
∣∣2
RD dt.

]
.

Remark:
dzt
dt

is understood loossely.

ĥ = argminh̃∈H E(h̃) for some space H.

Since D ≫ 1,

SINDy assumes h(z) ≈
∑n

η=1 ψn(z) with sparse coefficients, and
pre-defined dictionary ψn.

Neural ODE/PINN use deep neural network with
over-parametrization and stochastic gradient descent.
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Introduction

Time Series Data
Dynamics Assumption

However

For SIDNy: the dicionary is chosen to be large enough to
contain enough assumptions (non-linearity, derivatives).

Sparsity is enforced to reduce the search time.
Derivatives can be weaken using weak-SINDy.
But “large” is very subjective.

Deep learning

Estimators might have good prediction capability.
Estimators do not have clear physical structures (i.e. Gravity is
1/r2).
Training can be an issue; Setup of the hyperparameters are bit
engineering-like.
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Our Approaches

Dynmical Times Series Data
Our Approach

Recall dzt = h(zt) dt + σ(zt) dwt , we consider

σ = 0 ∗ ID×D , determinstic system, h is a high-dim function.

σ = 0 ∗ ID×D , determinstic system, h is a differential operator.

σ = σ(z) is a SPD matrix, h is a high-dim function or a
differential operator.

σ = σ(z) is a singular matrix, h is a high-dim function.

Learning and Prediction

We build different estimating algorithms when both h and σ are
unknown based on the scenarios, especially on how to handle the
curse of dimensionality.
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Our Approaches

Dynmical Times Series Data
Case 1

Interacting agent systems for xi ∈ Rd ,

dxi
dt

=
1

N

N∑
j=1,j ̸=i

ϕ(
∣∣xj − xi

∣∣)(xj − xi), i = 1, · · · ,N ,

With the setup

z =

x1
...
xN

 , hϕ(z) =


...

1
N

∑N
j=1,j ̸=i ϕ(

∣∣xj − xi
∣∣)(xj − xi)

...

 .
Then ż = hϕ(z) with z ∈ RD with D = Nd .
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Our Approaches

Dynmical Times Series Data
Case 1

Instead of learning hϕ, we learn ϕ instead from

E(φ) = E
[ 1
T

∫ T

0

∣∣ż(t)− hϕ(z(t))
∣∣2
N
dt
]
.

ϕ̂ = argminφ∈H E(φ) ≈ ϕ.

1D leanring rate.

hϕ has a structure and phisycal meaning (interaction).

When H is finite dimensional, the learning problem becomes
solving a linear system.

Review: Learning Collective Behaviors from Observation,
Explorations in the Mathematics of Data Science, 2024.
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Our Approaches

Dynmical Times Series Data
Case 2

Next we consider

ż = h(z) = P(z), P is a differential operator.

For example, compressible Euler system

∂

∂t

ρu
e

+

u · ∇ρ
u · ∇u
u · ∇e

+

 ρ∇ · u
∇p/ρ

p/ρ∇ · u

 =

0
G
0

 .
ρ(t, x) (density), u(t, x) (fluid velocity), e(t, x) (specific internal
energy), p(t, x) (presure), G(t, x) (gravitational acceleration).
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Our Approaches

Dynmical Times Series Data
Case 2

Consider for (t, x) ∈ Ω

ż = h(z) = P(z)

subject to z(0, x) = z0(x) and B(z) = g(t, x) on ∂Ω.

Learn z(t, x) for (t, x) ∈ Ω through

Loss = Data Loss + λ ∗ Physics Loss.

where

Physics Loss = PDE/ODE/Integral Loss + IC Loss + BC Loss.

Regularized Leanring (Supervised (Data) + Unsupervised (Physics)).
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Our Approaches

Dynmical Times Series Data
Case 2

Continue on

PDE Loss =
1

|Ω|

∫
Ω

∣∣∂zNN
∂t

− P(zNN)
∣∣2
L2(Ω)

dΩ.

and

IC Loss =
1

|Ωx |

∫
Ωx

∣∣zNN − z0
∣∣2
L2(Ωx )

dΩx .

lastly

BC Loss =
1

|∂Ω|

∫
∂Ω

∣∣B(zNN)− g
∣∣2
L2(∂Ω)

d∂Ω.

The addiitional information from Physics improves prediction
capability.
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Our Approaches

Dynmical Times Series Data
Case 2
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Our Approaches

Dynmical Times Series Data
Case 2

Remarks:

With additional data in Ω, one can also infer P (or some
parametric structure of P).

IC loss can also considered as a type of data loss (initial data).

BC loss can be considered as data loss if BC type is Dirichlet.
Many types of losses lead to multi-objective optimization.

PDE loss has larger (in magnitude) gradient, forcing the
minimizer to minimize PDE first, ignoring IC and BC, difficult
at solving stiff PDEs.
In the case of Hyperbolic PDEs (capturing shocks), how to
capture the physically meaningful weak solution?
Classic formulation and L2-norm are used, leadning to other
problems.
Meshless loss leads to loss of time flow.
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Our Approaches

Dynmical Times Series Data
Case 2

Some remedies

Adding data-driven artificial viscosity map to Hyperbolic PDEs:
Physics-informed neural networks with adaptive localized
artificial viscosity, JCP, 2023.

Adding hard constrain or building BC into the architecture:
Structure Preserving PINN for Solving Time Dependent PDEs
with Periodic Boundary, arXiv, 2024.

Mixture of Experts (MOE), label propagation: Label
Propagation Training Schemes for Physics-Informed Neural
Networks and Gaussian Processes, arXiv, 2024.

Physics Informed Transformer with Michael Holland on 4/28.
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Our Approaches

Dynmical Times Series Data
Case 3

Back to the stochastic case

dzt = h(zt) dt + σ(zt) dwt , h and σ are unknown.

But we assume σ : RD → RD×D is Symmetric Positive Definite for
all z.

It is possible to learn h in the regression setting, since
dzt ≈ h(zt) dt, we can

E
[
| dzt − h(zt) dt|ℓ2

]
.

However it does not use any of the information from the noise
matrix, and misses the interaction of the noise and the drift.
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Our Approaches

Dynmical Times Series Data
Case 3

Hence, we design the loss function as

E(h̃) = E
[1
2
(

∫ T

0

< h̃(zt),Σ
†h̃(zt) > dt

− 2 < h̃(zt),Σ
† dzt >)

]
.

where

Σ = σσ⊤ and Σ† is the pseudo-inverse of Σ (in this case, just
the normal inverse).

ĥ = argminh̃∈H E(h̃) ≈ h.

One can think of this is almost

| dzt − h(zt) dt|σ†

Taking into consideration of the effect of the noise.
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Our Approaches

Dynmical Times Series Data
Case 3

When Σ = σ ∗ ID×D , the loss simplfies to

E(h̃) = E
[ 1

2σ2
(

∫ T

0

< h̃(zt), h̃(zt) > dt

− 2 < h̃(zt), dzt >)
]
.

Then it is very similar to regression.

When Σ =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σD

, the components of h

de-couples, so regression on each component of h is comparable.

Our method is more effective when σ is not-diagonal.
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Our Approaches

Dynmical Times Series Data
Case 3

We have two papers

Learning Stochastic Dynamics from Data, Guo, Cialenco, Zhong,
ICLR, 2024.

Noise Guided Structural Learning from Observing Stochastic
Dynamics, Guo, Cialenco, Zhong, revision, 2025.

Noise is learned through a modified Qudratic Variation method.

Henry Guo will discuss more about this method on 4/28 on noise
interaction and Stochastic Heat Equation.
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Our Approaches

Dynmical Times Series Data
Case 4

Lately, we have

dzt = h(zt) dt + σ(zt) dwt , σ is singular.

WLOG, we assume

σ =

[
0 0
0 σy

]
,

Remark: if not, we juse do SVD, and rotate zt accordingly. Hence

dxt = f(xt , yt) dt,

dyt = g(xt , yt) dt + σy (yt) dw
y
t .

Here σy is SPD.
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Our Approaches

Dynmical Times Series Data
Case 4

When we set

z =

[
x
y

]
, h(z) =

[
f(x, y)
g(x, y)

]
and

σ =

[
0 0
0 σy

]
,

It goes back to the original high-dim SDE but σ is singular if the
normal loss

E(h̃) = E
[ 1

2σ2
(

∫ T

0

< h̃(zt), h̃(zt) > dt

− 2 < h̃(zt), dzt >)
]
.

is used, the learning will collapse down to only learning g.
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Our Approaches

Dynmical Times Series Data
Case 4

Hence, we treat them separately

Ef (f̃) = E
[ 1
T

∫ T

0

∣∣dxt
dt

− f̃(xt , yt)
∣∣2
ℓ2

]
.

and

Eg (g̃) = E
[1
2
(

∫ t

0

< g̃(xt , yt),Σ
†
y g̃(xt , yt) > dt

− 2 < g̃(xt , yt),Σ
†
y dyt >)

]
.

We will learn σy from yt .
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Our Approaches

Dynmical Times Series Data
Case 4

A unified algorithm

Given {zt}t∈[0,T ], we use quadratic variation on zt to figure out
σ.

If σ = 0, we learn it deterministically.

If σ is non-singular, we learn it stochasticaly

If σ is singular, we perform SVD and find out the x and y
direction, then we learn it mixed.

Henry will also discuss that on 4/28.
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