Probability and Statistics I
Dr Matthew Nicol, PGH 665
Exercise Sheet 1: due 5pm Tuesday 7th September (10 points)

(1) 4 awards are to be presented to students from a class of 10. How many different outcomes are possible if each student can

(a) receive at most 1 reward?
(b) any number of awards?
(c) at most 2 awards?

(2) If 10 people are to be divided into 3 distinct groups - one administrative, one financial and one clerical- of respective sizes 2, 3 and 5 how many divisions are possible?

(3) How many vectors \(v = (x_1, x_2, \ldots, x_k) \) are there such that each \(x_i \) is a positive integer \(1 \leq x_i \leq n \) and \(x_1 < x_2 < \ldots < x_n \)?

(4) The partial derivatives of order \(r \) of an analytic function \(f(x_1, x_2, \ldots, x_n) \) of \(n \) variables do not depend upon the order of differentiation. Give an expression for the number of derivatives of \(r \)-th order that a function of \(n \) variables has and hence determine the number of derivatives of 4th order that a function of 3 variables has.

(5) A fair coin is tossed until the first time that the same side appears twice in succession. Let \(N \) be the number of tosses required. Determine the probability mass function, \(p(N) \), and determine the probability that \(N \) is even.
(6) Determine the mean for the probability mass function

\[p(k) = \frac{2(n - k)}{n(n - 1)} \]

for \(k = 1, 2, 3, \ldots \).

(7) 4 independent random variables, each uniformly distributed over the interval \([0, 1]\), are added and 6 is subtracted from the total. Determine the mean and variance of the resulting random variable.

(8) Give an example of two random variables \(X, Y \) on a probability space \((\Omega, P)\) with \(E[X] \neq 0, E[Y] \neq 0, E[XY] = E[X]E[Y] \) but \(X \) and \(Y \) are not independent.

(9) Suppose \(X \) is a random variable with density function \(f(x) = kx^{k-1} \) for \(0 \leq x \leq 1 \) \((f(x) = 0 \text{ elsewhere})\) where \(k > 0 \) is a fixed parameter. Determine

(a) the distribution function for \(X \)
(b) the mean \(E[X] \)
(c) the variance \(Var[X] \)

(10) Let \(\Omega = [0, 1] \) with \(P = dx \). Give an example of two identically distributed random variables \(X, Y \) on \((\Omega, P)\) with \(P(X \neq Y) = 1 \).