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Abstract. We obtain large and moderate deviations estimates for both sequential and
random compositions of intermittent maps. We also address the question of whether or not
centering is necessary for the quenched central limit theorems (CLT) obtained by Nicol,
Török and Vaienti for random dynamical systems comprised of intermittent maps. Using
recent work of Abdelkader and Aimino, Hella and Stenlund we extend the results of Nicol,
Török and Vaienti on quenched central limit theorems (CLT) for centered observables over
random compositions of intermittent maps: first by enlarging the parameter range over
which the quenched CLT holds; and second by showing that the variance in the quenched
CLT is almost surely constant (and the same as the variance of the annealed CLT) and that
centering is needed to obtain this quenched CLT.

1. Introduction

The theory of limit laws and rates of decay of correlations for uniformly hyperbolic and
some non-uniformly hyperbolic sequential and random dynamical systems has recently seen
major progress. Results in this area include: in [CR07] strong laws of large numbers and
centered central limit theorems for sequential expanding maps; in [AHN+15], polynomial de-
cay of correlations for sequential intermittent systems; in [NTV18], sequential and quenched
(self-centering) central limit theorems for intermittent systems; in [ANV15], annealed ver-
sions of a central limit theorem, large deviations principle, local limit theorem and almost
sure invariance principle are proven for random expanding dynamical systems, as well as
quenched versions of a central limit theorem, dynamical Borel-Cantelli lemmas, Erdős-Rényi
laws and concentration inequalities; in [AA16], necessary and sufficient conditions are given
for a central limit theorem without random centering for uniformly expanding maps; and
in [BB16b] mixing rates and central limit theorems are given for random intermittent maps
using a Tower construction. Recently the preprint [BBR17] considered quenched decay of
correlation for slowly mixing systems and the preprint [AM18] used martingale techniques
to obtain large deviations for systems with stretched exponential decay rates.

In this article we obtain large deviations estimates for both sequential and random com-
positions of intermittent maps. We also address the question of whether or not centering is
necessary for the quenched central limit theorems (CLT) obtained in [NTV18] for random
dynamical systems comprised of intermittent maps. More precisely, we consider in the first
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instance a fixed deterministically chosen sequence of maps . . . Tαn , . . . , Tα1 in the sequential
case, or a randomly drawn sequence . . . Tωn , . . . , Tω1 with respect to a Bernoulli measure
ν on Σ := {T1, . . . , Tk}N, where each of the maps Tj is a Liverani-Saussol-Vaienti [LSV99]
intermittent map of form

Tαj(x) =

{
x+ 2αjx1+αj , 0 ≤ x ≤ 1/2,

2x− 1, 1/2 ≤ x ≤ 1
,

for numbers 0 < αj ≤ α < 1. We consider the asymptotic behavior of the centered (that is,
after substracting their expectation) sums

Sn :=
n∑
k=1

ϕ ◦ (Tαk ◦ . . . ◦ Tα1)

for sufficiently regular observables ϕ.
Denote by m Lebesgue measure on X := [0, 1], and by m(ϕ) the integral of ϕ with respect

to m. We will also consider the measure m̃ given by dm̃(x) = x−αdm, where 0 < αj ≤ α < 1.
The motivation for introduction of this measure is that in the case of a stationary system,
if αk = α for each k, then a natural and convenient measure to use is the invariant measure
µα for Tα, which behaves near 0 as x−α. In the stationary case large deviation estimates are
given with respect to µα and m in [MN08] for α < 1

2
and for all 0 ≤ α < 1 in [Mel09].

In the sequential case of a fixed realization we are interested in the large deviations of the
self-centered sums:

m

{
x :

1

n

∣∣∣∣∣
n∑
k=1

ϕ ◦ (Tαk ◦ . . . ◦ Tα1)−
n∑
k=1

m(ϕ ◦ Tαk ◦ . . . ◦ Tα1)

∣∣∣∣∣ > ε

}
for ε > 0. We also obtain large deviations with respect to m̃, which are in a sense sharper.
In the sequential case centering is clearly necessary.

In the annealed case we consider the random dynamical system (RDS) F : Σ × [0, 1] →
Σ × [0, 1] given by F (ω, x) = (τω, Tα1x) for ω = (α1, α2, . . . ) ∈ Σ, where τ is the left-shift
operator on Σ. For ν a Bernoulli measure on Σ, we suppose µ is a stationary measure for
the stochastic process on [0, 1], that is, a measure such that ν ⊗ µ is F invariant. This
assumption is valid in the setting we consider. If ϕ is an observable such that µ(ϕ) = 0, we
estimate

ν ⊗ µ

{
(ω, x) :

1

n

∣∣∣∣∣
n∑
k=1

ϕ ◦ (Tαk ◦ . . . ◦ Tα1)

∣∣∣∣∣ > ε

}
.

In the quenched case, once again assuming µ(ϕ) = 0, we give bounds for

m

{
x :

1

n

∣∣∣∣∣
n∑
k=1

ϕ ◦ (Tαk ◦ . . . ◦ Tα1)

∣∣∣∣∣ > ε

}
for ν-almost every realization ω ∈ Σ.

Since the maps we are considering are not uniformly hyperbolic, spectral methods used to
obtain limits laws are not immediately available. Our techniques to establish large and mod-
erate deviations estimates are based on those developed for stationary systems, in particular
the martingale methods of [MN08, Mel09].
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Using recent work of [AA16] and [HS20] we extend the results of [NTV18] on quenched
central limit theorems (CLT) for centered observables over random compositions of inter-
mittent maps in two ways, first by enlarging the parameter range over which the quenched
CLT holds and second by showing as a consequence of results in [HS20] that the variance in
the quenched CLT is almost surely constant and equal to the variance of the annealed CLT.

We also study the necessity of centering to achieve a quenched CLT using ideas of [AA16]
and [ANV15]. The work of [ANV15] together with our observations show that centering is
necessary ‘generically’ (in a sense made precise later) to obtain the quenched CLT in fairly
general hyperbolic situations.

Improvements of earlier results. With this paper we improve some results of [NTV18]:

• we show that the sequential CLT in [NTV18, Theorem 3.1], [HL19], holds for the
sharp α < 1/2 (from α < 1/9) if the variance grows at the rate specified.
• we show that the CLT holds not only with respect to Lebesgue measure m but also

for dm̃ = x−αdm, which scales at the origin as the invariant measure of Tα.
• in the case of quenched CLT’s of [NTV18, Theorem 3.1], using results of Hella and

Stenlund [HS20] we show that the variance σ2
ω is almost-surely the same for any

sequence of maps and equal to the annealed variance σ2.

Remark 1.1. After this work was finished we learned about a preprint by Korepanov and
Leppänen [KL20], in which interesting related results are obtained.

2. Notation and assumptions

Throughout this article, m denotes the Lebesgue measure on X := [0, 1] and B the Borel
σ-algebra on [0, 1]. We consider the family of intermittent maps given by

Tα(x) =

{
x+ 2αx1+α, 0 ≤ x ≤ 1/2,

2x− 1, 1/2 ≤ x ≤ 1
,(2.1)

for α ∈ (0, 1).
For βk ∈ (0, 1) denote by Pβk = Pk : L1(m) → L1(m) the transfer operator (or Ruelle-

Perron-Frobenius operator) with respect to m associated to the map Tβk = Tk, defined as
the “pre-dual” of the Koopman operator f 7→ f ◦Tk, acting on L∞(m). The duality relation
is given by ∫

X

Pkf g dm =

∫
X

f g ◦ Tk dm

for all f ∈ L1(m) and g ∈ L∞(m) [BG97, Proposition 4.2.6]. For a fixed sequence {βk} such
that 0 < βk ≤ α for all k, define

T ∞ := . . . , Tβn , . . . , Tβ1
T nm :=Tβn ◦ . . . ◦ Tβm , T n := T n1
Pnm :=Pβn ◦ . . . ◦ Pβm , Pn := Pn1

We will often write, for ease of exposition when there is no ambiguity, Tβn ◦ . . . ◦ Tβm as
Tn ◦ . . . ◦ Tm and Pβn ◦ . . . ◦ Pβm as Pn ◦ . . . ◦ Pm.
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Since L1(m) is invariant under the action of the transfer operators, the duality relation
extends to compositions ∫

X

Pnk f g dm =

∫
X

f g ◦ T nk dm.

We will write Em[ϕ|F ] for the conditional expectation of ϕ on a sub-σ-algebra F with respect
to the measure m. To simplify notation we might write E for Em.

Remark 2.1. In [CR07, NTV18] it is shown that

(2.2) Em[ϕ ◦ T `|T −kB] =
Pk ◦ . . . ◦ P`+1(ϕ · P`(1))

Pk(1)
◦ T k

for 0 ≤ ` ≤ k.

One of the main tools to study sequential and random systems of intermittent maps is the
use of cones (see [LSV99], [AHN+15], [NTV18] ). Define the cone C2 by

C2 := {f ∈ C0((0, 1]) ∩ L1(m) | f ≥ 0, f non-increasing , Xα+1f increasing , f(x) ≤ ax−αm(f)},

where X(x) = x is the identity function and m(f) is the integral of f with respect to m.
In [AHN+15] it is proven that for a fixed value of α ∈ (0, 1), provided that the constant
a is big enough, the cone C2 is invariant under the action of all transfer operators Pβ with
0 < β ≤ α.

Notation 2.2. In general we will denote the transfer operator with respect to a non-singular1

measure µ (not necessarily Lebesgue measure) by Pµ. Similarly, the (conditional) expectation
will be denoted by Eµ.

Denote the centering with respect to µ of a function ϕ ∈ L1(X,µ) by

(2.3) [ϕ]µ := ϕ− 1

µ(X)

∫
X

ϕ dµ

In particular, for g(x) := x−α, denote the measure gm by m̃, the corresponding transfer

operator by P̃ := Pgm, and the (conditional) expectation by Em̃ := Egm.

Random dynamical systems. Now we introduce a randomized choice of maps: consider
a finite family of intermittent maps of the form (2.1), indexed by a set Ω = {β1, . . . , βm} ⊂
(0, α). Given a probability distribution P = (p1, . . . , pm) on Ω, define a Bernoulli measure

P⊗N on Σ := ΩN by P⊗N{ω : ωj1 = βj1 , . . . , ωjk = βjk} =
∏k

i=1 pji for every finite cylinder
and extend to the sigma-algebra generated by the cylinders of Σ by Kolmogorov’s extension
theorem. This measure is invariant and ergodic with respect to the shift operator τ on Σ,
τ : Σ→ Σ acting on sequences by (τ(ω))k = ωk+1. We will denote P⊗N by ν from now on.

For ω = (ω1, ω2, . . . ) ∈ Σ define T nω := T(τnω)1 ◦ . . . ◦ Tω1 = Tωn ◦ . . . ◦ Tω1 . The random
dynamical system is defined as

F : Σ×X → Σ×X
(ω, x) 7→ (τω, Tω1x) .

The iterates of F are given by F n(ω, x) = (τn(ω), T nω (x)).

1The measure µ is non-singular for the transformation T if µ(A) > 0 =⇒ µ(T (A)) > 0.
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We will also use Ω-indexed subscripts for random transfer operators associated to the
maps Tωi , so that Pωi := PTωi . We will also abuse notation and write Pω for Pω1 if ω =
(ω1, ω2, . . . , ωn, . . .).

A probability measure µ on X is said to be stationary with respect to the RDS F if

µ(A) =

∫
Σ

µ
(
T−1
ω1

(A)
)
dν(ω) =

∑
β∈Ω

pβµ
(
T−1
β (A)

)
for every measurable set A, where pβ is the P-probability of the symbol β. This is equivalent
to the measure ν ⊗ µ being invariant under the transformation F : Σ×X → Σ×X.

See Remark 4.5 about the existence and ergodicity of such a stationary measure in our
setting.

The annealed transfer operator P : L1(m) → L1(m) is defined by averaging over all the
transformations:

P =
∑
β∈Ω

pβPβ =

∫
Σ

Pω dν(ω).

This operator is “pre-dual” to the annealed Koopman operator U : L∞(m)→ L∞(m) defined
by

(Uϕ)(x) :=
∑
β∈Ω

pβϕ(Tβx) =

∫
Σ

ϕ(Tωx)dν(ω) =

∫
Σ

F (ϕ̃)(ω, x)dν(ω)

where ϕ̃(ω, x) := ϕ(x). The annealed operators satisfy the duality relationship∫
X

(Uϕ) · ψ dm =

∫
X

ϕ · Pψ dm

for all observables ϕ ∈ L∞(m) and ψ ∈ L1(m).

3. Background results and the Martingale approximation

In this section we describe the main technique used to prove some of the limit law results:
the martingale approximation, introduced by Gordin [Gor69]. Since there is no common
invariant measure for the set of maps {Tk}, for a given C1 observable ϕ we center along the
orbit by

[ϕ]k (ω, x) := ϕ(x)−
∫
X

ϕ ◦ T kω dm,

with T kω = Id for k = 0.
This implies that Em([ϕ]k ◦ T k) = 0 and consequently the centered Birkhoff sums

Ŝn :=
n∑
k=1

[ϕ]k ◦ T
k,

have zero mean with respect to m. Following [NTV18], define

(3.1) H1 := 0 and Hn ◦ T n := Em(Ŝn−1|Bn) for n ≥ 2

and the (reverse) martingale sequence {Mn} by

M0 := 0 and Ŝn = Mn +Hn+1 ◦ T n+1,
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where the filtration here is Bn = T −nB. Define ψn ∈ L1(m) by setting

ψn = [ϕ]n +Hn −Hn+1 ◦ Tn+1,

then Mn −Mn−1 = ψn ◦ T n and we have that E(Mn|Bn+1) = 0. Thus {ψn ◦ T n} is a reverse
martingale difference scheme. An explicit expression for Hn is given by

Hn =
1

Pn1
[
Pn([ϕ]n−1Pn−11) + PnPn−1([ϕ]n−2Pn−21) + . . .+ PnPn−1 . . . P1([ϕ]0P01)

]
.

(3.2)

Remark 3.1. The formulas derived so far with m being the Lebesgue measure actually hold
for any measure µ that is non-singular for the transformations Tβ considered. The conditional
expectations Eµ will be with respect to µ and the transfer operator Pµ will be with respect to
the measure space (X,µ). In particular the centering will have the form

[ϕ]k (ω, x) := ϕ(x)− 1

µ(X)

∫
X

ϕ ◦ T kω dµ,

but all other equations are the same, with the notational changes just described.

We collect and extend some results from [NTV18] concerning the properties of Hn, as well
as the non-stationary decay of correlations for the sequential system.

We state first a few formulas for changing from a measure m to the measure g(x) dm(x)
with g ∈ L1(m); for simplicity, we denote this new measure as gm when there is no possibility
of confusion.

Lemma 3.2 (Change of measure). We state this result only for the situation we need, but
it holds also for any measure µ non-singular with respect to T in place of m the Lebesgue
measure, and instead of g(x) = x−α for any g ∈ L1(µ), g > 0.

Note that L1(gm) = g−1L1(m), so all formulas below make sense for ϕ in the appropriate
L1-space.

We have:

m(ϕ) = m(Pmϕ)

Pgm(ϕ) = g−1Pm(gϕ)(3.3)

g [ϕ]gm = [gϕ]m − m(gϕ)

m(g)
[g]m

Egm(ϕ|B) = Em(gϕ|B)/Em(g|B)

Therefore

(3.4) (Pgm)k` ([ϕ]gm) = g−1(Pm)k`

(
[gϕ]m − m(gϕ)

m(g)
[g]m

)
Proof. The first two properties are standard and follow from the definition of the transfer
operator. The third is a direct computation using the notation (2.3).

For the fourth, Egm(ϕ|B) is the function Φ that is B-measurable and
∫

Φψ d(gm) =∫
ϕψ d(gm) for each ψ ∈ L∞(B). Expanding the LHS,∫

Φψ d(gm) =

∫
Φψg dm =

∫
ΦψEm(g|B) dm
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whereas the RHS becomes∫
ϕψ d(gm) =

∫
ϕψg dm =

∫
Em(gϕ|B)ψ dm

Thus ΦEm(g|B) = Em(gϕ|B), as claimed. �

Proposition 3.3 ([NTV18]). If ϕ, ψ are both in the cone C2 and have the same mean,∫
X
ϕdm =

∫
X
ψdm, then by [NTV18, Theorem 1.2]

‖Pn(ϕ)− Pn(ψ)‖L1(m) ≤ Cα(‖ϕ‖L1(m) + ‖ψ‖L1(m))n
− 1
α

+1(log n)
1
α

Moreover [NTV18, Remark 2.5 and Corollary 2.6], for ϕ ∈ C1, h ∈ C2 and any sequence
of maps T ∞:

‖Pn([hϕ]m)‖L1(m) ≤ CαF (‖ϕ‖C1 +m(h))n−
1
α

+1(log n)
1
α

where Cα depends only on the map Tα, and F : R→ R is an affine function.

The decay result of Proposition 3.3 for products of elements in the cone with C1 observables
(see also [LSV99, Theorem 4.1]), follows from Lemma 3.4, which was stated in [LSV99,
proof of Theorem 4.1]. The proof of Lemma 3.4 is given in the Appendix; a different – less
transparent – proof is given in [NTV18, Lemma 2.4].

Lemma 3.4. Suppose ϕ ∈ C1 and h ∈ C2. Then there exist constants λ,A,B ∈ R such
that (ϕ + A + λx)h + B and (A + λx)h + B are both in C2 and hence if

∫
ϕhdm = 0 then

‖Pj(ϕh)‖L1(m) ≤ Cρ(j)‖ϕh‖L1(m) where ρ(j) is the L1(m)-decay for centered functions from
the cone C2.

Note that in our setting ρ(j) = j−
1
α

+1(log j)
1
α .

A consequence of Proposition 3.3 is the non-stationary decay of correlations ([NTV18,
Page 1130]) ∣∣∣∣∫

X

ϕ · ψ ◦ Tωn ◦ . . . ◦ Tω1dm−m(ϕ) ·m(ψ ◦ Tωn ◦ . . . ◦ Tω1)

∣∣∣∣
≤ ‖ψ‖∞‖Pnω(ϕ)− Pnω(1

∫
X

ϕdm)‖L1(m)

We derive next decay estimates with respect to the measure m̃, which are better in Lp,
p > 1, than those for m.

Proposition 3.5. For ϕ : [0, 1]→ R bounded, h ∈ C2 and 1 ≤ p ≤ ∞:

‖P̃n (ϕ) ‖L∞(m̃) ≤ m(g)‖ϕ‖L∞(m̃)(3.5)

For ϕ ∈ C1([0, 1]), h ∈ C2

‖P̃n
([

(g−1h)ϕ
]m̃) ‖L1(m̃) ≤ CαF (‖ϕ‖C1 +m(h))n−

1
α

+1(log n)
1
α(3.6)

and therefore, if 1 ≤ p ≤ ∞,

‖P̃n
([

(g−1h)ϕ
]m̃) ‖Lp(m̃) ≤ C

1
p
α

(
m(g)‖ϕ‖L∞(m̃)

)1− 1
p F

1
p (‖ϕ‖C1 +m(h))n

1
p(−

1
α

+1)(log n)
1
pα

(3.7)

where Cα depends only on Tα and F is an affine function.
Note that the L1 and Lp bounds are relevant only for ϕ ∈ C1.
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Proof. The L1 and L∞ bounds give (3.7), since

(3.8) ‖f‖Lp ≤ ‖f‖
1− 1

p

L∞ ‖f‖
1
p

L1

because ∫
|f |p ≤

∫
‖f‖p−1

L∞ |f | = ‖f‖
p−1
L∞ ‖f‖L1 .

To prove the L∞ estimate (3.5) note that by the invariance of the cone C2, Pn (g) ∈ C2,
so Pn (g) ≤ x−αm(Pn (g)) = x−αm(g). That is, using (3.3),

P̃n (1) = g−1Pn (g) ≤ m(g)

Since −‖ϕ‖L∞1 ≤ ϕ ≤ ‖ϕ‖L∞1 and P̃n are positive operators, we obtain (3.5).
For (3.6) assume that ϕ ∈ C1 (otherwise it is clearly satisfied). In view of (3.4):

(3.9)

‖P̃n
([

(g−1h)ϕ
]m̃) ‖L1(m̃) = ‖g−1Pn([hϕ]m)− m(gϕ)

m(g)
g−1Pn([g]m)‖L1(m̃)

= ‖Pn([hϕ]m)− m(gϕ)

m(g)
Pn([g]m)‖L1(m)

≤ ‖Pn([hϕ]m)‖L1(m) +

∣∣∣∣m(gϕ)

m(g)

∣∣∣∣ ‖Pn([g]m)‖L1(m)

By [NTV18, Lemma 2.3], there is an affine function F : R→ R such that for ϕ ∈ C1([0, 1])
and h ∈ C2 can write [ϕh]m = Ψ1−Ψ2 with Ψ1,Ψ2 ∈ C2 and ‖Ψ1,2‖L1(m) ≤ F(‖ϕ‖C1 +m(h)).
By [NTV18, Theorem 1.2], for an observable ψ in the cone C2 and for any sequence of maps
T ∞, we have ∫

X

|Pn([ψ]m)|dm ≤ Cα‖ψ‖L1(m)n
− 1
α

+1(log n)
1
α

where Cα depends only on Tα. Applying these to (3.9), we obtain (3.6). �

Lemma 3.6. Let ϕ ∈ C1 and 0 < α < 1. Then

‖Hn ◦ T n‖Lp(m) ≤

Cα,‖ϕ‖C1+m(g)(log n)1+ 1
1−α if 1 ≤ p = 1

α
− 1

1

1− 1
p(

1
α
−1)

Cα,‖ϕ‖C1+m(g)n
1+ 1

p
(1− 1

α
)(log n)

1
pα if p > max{1, 1

α
− 1}

(the first case is valid for 0 < α ≤ 1
2
) and the same bounds hold for ‖H̃n ◦ T n‖Lp(m̃), where

Hn ◦ T n := Em([Sn−1]m |Bn), H̃n ◦ T n := Em̃([Sn−1]m̃ |Bn), Bn := T −nB.

Note that if 1 ≤ p < 1
α
− 1, then ‖Hn ◦ T n‖Lp(m) ≤ Cp,α,‖ϕ‖C1+m(g), though this observation

does not play a role in our subsequent analysis.

Proof. We prove the statement for H̃n. The one for Hn is obtained the same way, using
Proposition 3.3 instead of (3.6).

Using the definition of H̃n:

(3.10) ‖H̃n ◦ T n‖Lp(m̃) = ‖
n−1∑
k=1

Em̃(
[
ϕ ◦ T k

]m̃ |Bn)‖Lp(m̃) ≤
n−1∑
k=1

‖Em̃(
[
ϕ ◦ T k

]m̃ |Bn)‖Lp(m̃)
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We will bound each term of the above sum in both L1 and L∞, and then use (3.8) to obtain
an Lp-bound.

In L∞ we have

‖Em̃(
[
ϕ ◦ T k

]m̃ |Bn)‖L∞(m̃) ≤ ‖
[
ϕ ◦ T k

]m̃ ‖L∞(m̃) ≤ 2‖ϕ‖L∞(m̃).

In L1 we use (2.2) to compute the conditional expectation. Since the conditional expecta-
tion preserves the expected value, one can check that the centering holds as written below2.

We can then use (3.6) for the decay, with h = Pk(g), because P̃k(1) = g−1Pk(g).

‖Em̃(
[
ϕ ◦ T k

]m̃ |Bn)‖L1(m̃) = ‖
P̃n ◦ . . . ◦ P̃k+1(

[
ϕ · P̃k(1)

]m̃
)

P̃n(1)
◦ T n‖L1(m̃)

= ‖P̃n ◦ . . . ◦ P̃k+1(
[
ϕ · P̃k(1)

]m̃
)‖L1(m̃) = ‖P̃n ◦ . . . ◦ P̃k+1(

[
ϕ · g−1Pk(g)

]m̃
)‖L1(m̃)

≤ CαF1(‖ϕ‖C1 +m(Pk(g)))(n− k)−
1
α

+1(log(n− k))
1
α .

Note that m(Pk(g)) = m(g), so the coefficient above does not depend on k.

Apply now (3.8), noting that ‖f‖
1− 1

p
∞ ≤ max{1, ‖f‖∞}, to obtain for 1 ≤ p ≤ ∞ that

‖Em̃(
[
ϕ ◦ T k

]m̃ |Bn)‖Lp(m̃) ≤ Cα,‖ϕ‖C1+m(g)

[
(n− k)−

1
α

+1(log(n− k))
1
α

] 1
p

If p = 1
α
− 1 ≥ 1 we bound the last sum in (3.10) by

∑n−1
k=1 Cα,‖ϕ‖C1+m(g)

[
k−1(log(n))

1
pα

]
to obtain

‖H̃n ◦ T n‖Lp(m̃) ≤ Cα,‖ϕ‖C1+m(g)(log n)1+ 1
1−α .

If p > max{1, 1
α
−1} we bound the sum in (3.10) by

∑n−1
k=1 Cα,‖ϕ‖C1+m(g)

[
k−

1
α

+1(log(n))
1
α

] 1
p

to obtain the bound

‖H̃n ◦ T n‖Lp(m̃) ≤
1

1− 1
p

(
1
α
− 1
)Cα,‖ϕ‖C1+m(g)n

1+ 1
p

(1− 1
α

)(log n)
1
pα .

Note that if 1 ≤ p < 1
α
− 1 the series converges to a constant Cp,α,‖ϕ‖C1+m(g). �

A useful remark is the following lower bound for functions in the cone C2:

Proposition 3.7 ([LSV99, Lemma 2.4]). For every function f ∈ C2 one has

inf
x∈[0,1]

f(x) = f(1) ≥ min

{
a,

[
α(1 + α)

aα

] 1
1−α
}
m(f).

Denote the constant in the above expression by Dα. Then Pn1 ≥ Dα > 0 for all n ≥ 1.

We will also use Rio’s inequality, taken from [MPU06]. This is a concentration inequality
that allows us to bound the moments of Birkhoff sums.

2m̃(ϕ·P̃k(1)) = m̃(ϕ◦T k) because, by the definition of the transfer operator,
∫
ϕ·P̃k(1)dm̃ =

∫
ϕ◦T k ·1dm̃

9



Proposition 3.8 ([MPU06, Rio17]). Let {Xi} be a sequence of L2 centered random variables
with filtration Fi = σ(X1, . . . , Xi). Let p ≥ 1 and define

bi,n = max
i≤u≤n

‖Xi

u∑
k=i

E(Xk|Fi)‖Lp ,

then

E|X1 + . . .+Xn|2p ≤

(
4p

n∑
i=1

bi,n

)p

.

4. Polynomial large and moderate deviations estimates

4.1. Sequential dynamical systems. Recall we fixed a sequence T ∞ = . . . Tαn , . . . , Tα1

where each of the maps is of the form

Tαj(x) =

{
x+ 2αjx1+αj , 0 ≤ x ≤ 1/2,

2x− 1, 1/2 ≤ x ≤ 1
,

for 0 < αj ≤ α < 1. In the first part of this section we prove that for such a fixed sequence
of maps T ∞, a polynomial large deviations bound holds for the centered sums.

Theorem 4.1 (Sequential LD). Let 0 < α < 1 and ϕ ∈ C1([0, 1]). Then the centered sums
satisfy the following large deviations upper bound: for any ε > 0 and p > max{1, 1

α
− 1},

m

{
x :

∣∣∣∣∣
n∑
j=1

[ϕ(T j)(x)−m(ϕ(T j))]

∣∣∣∣∣ > nε

}
≤

(
4p

1− 1
p

(
1
α
− 1
))p

Cp
α,‖ϕ‖C1

n1− 1
α (log n)

1
α ε−2p

where C = Cα,‖ϕ‖C1 is a constant depending on α and the C1 norm of ϕ, but not on the
sequence T ∞.

In particular, for p > max{1, 1
α
− 1} we obtain the following moment estimate:

(4.1) Em

∣∣∣∣∣
n∑
j=1

[ϕ(T j)(x)−m(ϕ(T j))]

∣∣∣∣∣
2p

≤

(
4p

1− 1
p

(
1
α
− 1
))p

Cp
α,‖ϕ‖C1

n2p+(1− 1
α

)(log n)
1
α

The same estimates (by the same proof) hold for the measure m̃. More precisely,

m̃

{
x :

∣∣∣∣∣
n∑
j=1

[ϕ(T j)(x)− m̃(ϕ(T j))]

∣∣∣∣∣ > nε

}
≤

(
4p

1− 1
p

(
1
α
− 1
))p

C̃p
α,‖ϕ‖C1

n1− 1
α (log n)

1
α ε−2p

Remark 4.2. Our result gives that the dependence on ε is better in the case α > 1
2
, where

we may take p→ 1 to obtain

m

{
x :

∣∣∣∣∣
n∑
j=1

[ϕ(T j)(x)−m(ϕ(T j))]

∣∣∣∣∣ > nε

}
≤ C̃α,‖ϕ‖C1n

1− 1
α (log n)

1
α ε−2

where C̃α,‖ϕ‖C1 = 4α
2α−1

Cα,‖ϕ‖C1 . The worse bound for α < 1
2

is probably an artefact of our
proof, and not an optimal result.

10



Remark 4.3. In [Mel09, Corollary A.2], improving [MN08], these bounds are shown to be
basically optimal if a single map Tα, 0 < α < 1, is being iterated, with respect to its absolutely
continuous invariant measure µ: there exists an open and dense set of Hölder observables ϕ
such that

µ

{
x :

n∑
j=1

[ϕ(T j)(x)− µ(ϕ(T j))] > nε

}
≥ Cεn

1− 1
α infinitely often.

As a corollary of Theorem 4.1 we obtain moderate deviations estimates.

Theorem 4.4 (Sequential Moderate Deviations). Let 0 < α < 1, β := 1
α
− 1, ϕ ∈ C1([0, 1])

and τ ∈ (1
2
, 1]. Then the centered sums satisfy the following moderate deviations upper

bounds, where Cα,‖ϕ‖C1 is a constant depending on α and the C1 norm of ϕ, but not on the
sequence T ∞:

(a) If α > 1
2

then for any t > 0

m

{
x :

∣∣∣∣∣
n∑
j=1

[ϕ(T j)(x)−m(ϕ(T j))]

∣∣∣∣∣ > nτ t

}
≤ 4

2− 1
α

Cα,‖ϕ‖C1n
−β+2(1−τ)(log n)

1
α t−2

(b) If α ≤ 1
2

then

m

{
x :

∣∣∣∣∣
n∑
j=1

[ϕ(T j)(x)−m(ϕ(T j))]

∣∣∣∣∣ > nτ t

}
≤ (4β)βCβ

α,‖ϕ‖C1+m(g)(log n)
2
α
−1n−β(2τ−1)t−2β

The same estimates (by the same proof) hold for the measure m̃.

Proof of Theorem 4.1. We prove the estimate for m, the one for m̃ is obtained the same way.
Fix n and for i ∈ {1, . . . , n}, define the sequence of σ−algebras Fi,n = Fi = T −(n−i)(B).

Note that Fi ⊂ Fi+1 hence {Fi}ni=1 is an increasing sequence of σ−algebras. Take Xi =
[ϕ]n−i ◦ T n−i, so that Xi is Fi measurable. Recall that ψj = [ϕ]j + Hj − Hj+1 ◦ Tj+1 for

all j ≥ 0. We define Yi = ψn−i ◦ T n−i, hi = Hn−i ◦ T n−i for i ∈ {1, . . . , n}. Hence
Yi = Xi + hi − hi−1.

Note also that Gi := σ(X1, . . . , Xi) ⊂ σ(F1, . . . ,Fi) = Fi, as σ(Xi) ⊂ Fi for all i. Since
E(ψi ◦ T i|T −i−1B) = 0, E(Yi|Fj) = 0 for all i > j. Hence E(Yi|Gj)) = E(E(Yi|Fj)|Gj) = 0 for
i > j.

For p ≥ 1 define bi,n as in Rio’s inequality, with Gi, Xi as described above so that

bi,n = max
i≤u≤n

∥∥∥∥∥Xi

u∑
k=i

E(Xk|Gi)

∥∥∥∥∥
Lp(m)

.

Here all the expectations are taken with respect to m.
Recalling the expression we have for the martingale difference, we can write the sum inside

the p-norm as
u∑
k=i

E(Xk|Gi) =
u∑
k=i

[E(Yk|Gi)− E(hk|Gi) + E(hk−1|Gi)]

= [
u∑
k=i

E(Yk|Gi)] + E(hi−1|Gi)− E(hu|Gi).
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If k > i, then E(Yk|Gi) = 0. This reduces the expression above to

E(Yi|Gi) + E(hi−1|Gi)− E(hu|Gi).

We note that ‖E[f |G]‖p ≤ ‖f‖p for any f ∈ Lp(m), p ≥ 1. Therefore, we may bound bi,n
by maxi≤u≤n ‖Xi‖∞(‖Yi‖p + ‖hi−1‖p + ‖hu‖p).

We now pick p > max{1, 1
α
− 1}. Since ‖Xi‖∞ is uniformly bounded by 2‖ϕ‖∞ and

Yi = Xi + hi − hi−1, we may bound maxi≤u≤n ‖Xi‖∞(‖Yi‖p + ‖hi−1‖p + ‖hu‖p) by

1

1− 1
p

(
1
α
− 1
)Cα,‖ϕ‖C1n

1+ 1
p

(1− 1
α

)(log n)
1
pα

where Cα,‖ϕ‖C1 is independent of n. This is a consequence of Proposition 3.6.

Therefore (4p
∑n

i=1 bi,n)p ≤
(

4p

1− 1
p(

1
α
−1)

)p
Cp
α,‖ϕ‖C1

n2p+(1− 1
α

)(log n)
1
α , which, by Rio’s in-

equality (see Proposition 3.8), is an upper bound for Em|X1 + X2 + · · · + Xn|2p; this
proves (4.1). Thus, by Markov’s inequality,

m(|X1 + . . .+Xn|2p > n2pε2p) ≤

(
4p

1− 1
p

(
1
α
− 1
))p

Cp
α,‖ϕ‖C1

(n−2pε−2p)n2p+(1− 1
α

)(log n)
1
α

=

(
4p

1− 1
p

(
1
α
− 1
))p

Cp
α,‖ϕ‖C1

n1− 1
α (log n)

1
α ε−2p

which is the claimed Large Deviation bound. �

Proof of Theorem 4.4. Assume the hypotheses of Theorem 4.4 and let τ ∈ (1
2
, 1].

(a) Let α > 1
2

so that 1
α
− 1 < 1. For τ ∈ (1

2
, 1] define tnτ = nε so that ε = tnτ−1. Then

by Theorem 4.1 for any t > 0 and p > 1,

m

{
x :

∣∣∣∣∣
n∑
j=1

[ϕ(T j)(x)−m(ϕ(T j))]

∣∣∣∣∣ > nτ t

}
≤

(
4p

1− 1
p

(
1
α
− 1
))p

Cp
α,‖ϕ‖C1

n1− 1
α (log n)

1
αn2p(1−τ)t−2p

where Cα,‖ϕ‖C1 is a constant depending on α and the C1 norm of ϕ, but not on the sequence

T ∞ or p. Fix t > 0 and let p→ 1 to obtain, where β := 1
α
− 1,

m

{
x :

∣∣∣∣∣
n∑
j=1

[ϕ(T j)(x)−m(ϕ(T j))]

∣∣∣∣∣ > nτ t

}
≤ 4

2− 1
α

Cα,‖ϕ‖C1n
−β+2(1−τ)(log n)

1
α t−2

(b) If α ≤ 1
2

we take p = 1
α
− 1 ≥ 1 and have from Lemma 3.6 that ‖Hn ◦ T n‖Lp(m) ≤

Cα,‖ϕ‖C1+m(g)(log n)1+ 1
1−α . In the proof of Theorem 4.1 we can then bound (4p

∑n
i=1 bi,n)p ≤

(4p)pCp
α,‖ϕ‖C1+m(g)n

p(log n)p+
p

1−α and hence by Rio’s inequality

Em|X1 + . . .+Xn|2p ≤ (4p)pCp
α,‖ϕ‖C1+m(g)n

p(log n)p+
p

1−α .

Markov’s inequality gives

m(|X1 + . . .+Xn| > nε) ≤ n−2pε−2p(4p)pCp
α,‖ϕ‖C1+m(g)n

p(log n)p+
p

1−α

= n−pε−2p(4p)pCp
α,‖ϕ‖C1+m(g)(log n)p+

p
1−α .
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Taking nε = nτ t for τ ∈ (1
2
, 1] and the choice p = β = 1

α
− 1 we obtain

m(|X1 + . . .+Xn| > nτ t) ≤ (4β)βCβ
α,‖ϕ‖C1+m(g)(log n)

2
α
−1n−β(2τ−1)t−2β

as claimed. �

4.2. Random dynamical systems. Now we prove large deviations estimates for the ran-
domized systems. First we recall some notation. The annealed transfer operator P : L1(m)→
L1(m) is defined by averaging over all the transformations:

P =
∑
β∈Ω

pβPβ =

∫
Σ

Pω dν(ω).

This operator is dual to the annealed Koopman operator U : L∞(m)→ L∞(m) defined by

(Uϕ)(x) =
∑
β∈Ω

pβϕ(Tβx) =

∫
Σ

ϕ(Tωx)dν(ω) =

∫
Σ

ϕ̃(F (ω, x))dν(ω)

where ϕ̃(ω, x) := ϕ(x). The annealed operators satisfy the duality relationship∫
X

(Uϕ) · ψ dm =

∫
X

ϕ · Pψ dm

for all observables ϕ ∈ L∞(m) and ψ ∈ L1(m).

Remark 4.5. It is easy to see that the averaged transfer operator P has no worse rate of
decay in L1 than the slowest of the maps (so better than n−

1
α

+1(log n)
1
α , by Proposition 3.3).

By taking a limit point of 1
n

∑n
k=1 P

k(1), there is an invariant vector h for P in the cone
C2, see [LSV99]. The measure µ = hm is stationary for the RDS; by Proposition 3.7,
h ≥ Dα > 0.

Moreover, Bahsoun and Bose [BB16b, BB16a] have shown that there exists a unique ab-
solutely continuous (with respect to the Lebesgue measure) stationary measure µ, and ν ⊗ µ
is mixing — so also ergodic.

Using the same idea as in the proof of Theorem 4.1, we can obtain an annealed result for the
random dynamical system. Note that Pµ, the transfer operator with respect to the stationary
measure µ, satisfies Pµ1 = 1 and so ‖Pµϕ‖∞ ≤ Pµ(‖ϕ‖∞) = ‖ϕ‖∞‖Pµ1‖∞ = ‖ϕ‖∞. An
easy calculation shows that Pµ(ϕ) = 1

h
P (hϕ) where h ∈ C2 is the density of the invariant

measure µ and hence h ≥ Dαm(h) is bounded below. As before this observation allows
us to bootstrap in some sense the L1(µ) decay rate to Lp(µ) for p ≥ 1, a technique used
in [MN08, Mel09].

Theorem 4.6 (Annealed LD). Let ϕ ∈ C1([0, 1]) with µ(ϕ) = 0 and let 0 < α < 1. Then
the Birkhoff averages have annealed large deviations with respect to the measure ν ⊗ µ with
rate

(ν ⊗ µ){(ω, x) :

∣∣∣∣∣
n∑
j=1

ϕ ◦ T jω (x)

∣∣∣∣∣ ≥ nε} ≤ Cα,p,‖ϕ‖C1n
1− 1

α (log n)
1
α ε−2p

for any p > max{1, 1
α
− 1}.

Note that the Birkhoff sums above are not centered for a given realization ω, only on
average over Σ.
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Proof. To prove this result we will use the construction used to prove the annealed CLT in
[ANV15]: let ΣX := XN0 , endowed with the σ-algebra G generated by the cylinders, and the
left shift operator τ : ΣX → ΣX .

Denote by π the projection from ΣX onto the 0-th coordinate, that is, π(x) = x0 for
x = (x0, x1, . . .). We can lift any observable ϕ : X → R to an observable on ΣX by setting
ϕπ := ϕ ◦ π : ΣX → R.

Following [ANV15, §4], one can introduce a τ -invariant probability measure µc on ΣX such
that

Eµ(ϕ) = Eµc(ϕπ), and the law of Sn(ϕ) on Σ×X under ν⊗µ is the same as the law of the
n-th Birkhoff sum of ϕπ on ΣX under µc and τ ; thus it suffices to establish large deviations
for the latter.

Define now

Hn :=
n∑
k=1

P k
µ (ϕ) : X → R

From the relation Pµ(.) = 1
h
P (.h), we have that ‖P n

µ (ϕ)‖L1(µ) ≤ Cα,ϕn
1− 1

α (log n)1/α because

µ(ϕ) = 0. We calculate Eµ|P i
µ(ϕ)|p = Eµ[|P i

µ(ϕ)|p−1|P i
µ(ϕ)|] ≤ ‖P i

µ(ϕ)‖p−1
∞ ‖P i

µ(ϕ)‖L1(µ).

Hence ‖P k
µ (ϕ)‖Lp(µ) ≤ Ck(1−1/α)/p(log k)1/(pα) and thus ‖Hn‖Lp(µ) satisfies the bounds of

Lemma 3.6.
We lift ϕ and Hn to ΣX and denote them by ϕπ and Hn,π respectively, and define

χn := ϕπ +Hn,π −Hn,π ◦ τ : ΣX → R.
We now continue as in the proof of Theorem 4.1, applying Rio’s inequality. For i = 1, . . . , n

take the sequences {Xi = ϕπ ◦ τn−i}, {Yi = χn−i ◦ τn−i} and Gi = τ−(n−i)G. We have
Eµc [Yi|Gk] = 0 for i > k and so, for p > max{1, 1

α
− 1},

bi,n = max
i≤u≤n

∥∥∥∥∥Xi

u∑
k=i

Eµc(Xk|Gi)

∥∥∥∥∥
Lp(µc)

≤ Cn1+ 1
p

(1− 1
α

)(log n)
1
pα

which gives, as in Theorem 4.1,

µc(|X1 + . . .+Xn|2p > n2pε2p) ≤ Cα,ϕ,pn
1− 1

α (log n)
1
α ε−2p

�

Using similar ideas, it is possible to obtain an annealed central limit theorem. This has
been established already by Young Tower techniques in [BB16a, Theorem 3.2]. We include
the statement of the annealed central limit and an alternative proof for completeness and to
give an expression for the annealed variance.

Proposition 4.7 (Annealed CLT). If α < 1
2

and ϕ ∈ C1 with µ(ϕ) = 0 then a central limit

theorem holds for Snϕ on Σ×X with respect to the measure ν⊗µ, that is, 1√
n
Snϕ converges

in distribution to N (0, σ2), with variance σ2 given by

σ2 = −µ(ϕ2) + 2
∞∑
k=0

µ(ϕUkϕ)

Proof. We will use the results of [ANV15, Section 4] and [Liv96, Theorem 1.1] (see Theo-
rem 6.3 in the Appendix). We proceed as in Theorem 4.6, using the averaged operators U
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and P . As in [ANV15, Section 4], to U corresponds a transition probability on X given by
U(x,A) =

∑
β{pβ : Tβx ∈ A}. The stationary measure µ is invariant under U . Extend µ to

the unique probability measure µc on ΣX := XN0 = {x = (x0, x1, x2, . . . , xn, . . .)}, endowed
with the σ-algebra G given by cylinder sets, such corresponding to µ such that {xn}n≥0 is a
Markov chain on (ΣX ,G, µc) (where xn is the n-th coordinate of x) induced by the random
dynamical system. The left shift τ on ΣX preserves µc. Given ϕ : X → R, µ(ϕ) = 0, we
define ϕπ on ΣX by ϕπ(x0, x1, x2, . . . , xn, . . .) := ϕ(x0). As in [ANV15, Section 4], to prove
the CLT for Sn(ϕ) with respect to ν ⊗ µ on Σ × X it suffices to prove the CLT for the
Birkhoff sum

∑n
j=0 ϕπ ◦ τ k with respect to µc on ΣX .

We introduce the Koopman operator Ũ and transfer operator P̃ for the map τ on the
probability space (ΣX ,G, µc). We define the decreasing sequence of σ-algebras Gk = τ−kG,

and note that P̃ , Ũ satisfy P̃ kŨkf = f and ŨkP̃ kf = Eµc(f |Gk) for every µc-integrable f .

We note that ϕπ ∈ L∞(µc). As in [ANV15, Lemma 4.2] we have P̃ n(ϕπ) = (P nϕ)π. Thus∑∞
k=0 P̃

kϕπ converges in L1(µc) if α < 1
2

and therefore
∑∞

k=0 |
∫
ϕπŨ

kϕπdµc| <∞. Thus the

result for
∑n

j=0 ϕπ ◦ τ k follows from [Liv96, Theorem 1.1]. The stated formula for σ2 is also

given in [Liv96, Theorem 1.1]. �

We will use the annealed and sequential results to obtain quenched large deviations for
random systems of intermittent maps. We denote the Birkhoff sums by Sn,ω(x) to stress the
dependence on the realization ω.

Theorem 4.8 (Quenched LD). Suppose ϕ ∈ C1 and µ(ϕ) = 0. Fix 0 < α < 1. Then, given
p > max{1, 1

α
− 1} and κ := d 4p

1−αe (rounded up), for ν-almost every realization ω ∈ Σ the
Birkhoff averages have large deviations with polynomial rate, even without centering: there
is an N(ω) such that for each ε > 0

m{x : |Sn,ωϕ| > 4nε} ≤ Cα,p,ϕn
1− 1

α (log n)
1
α ε−κ for n ≥ N(ω).

Note that the Birkhoff sums Sn,ωϕ above are not centered with respect to the realization
ω, only on average over Σ.

Remark 4.9. The point of the above Theorem, compared to the sequential Theorem 4.1, is
that for almost each realization the large deviation estimates hold even without centering.
That is, the contribution of the means (with respect to the measure m on X) can be ignored
for almost each realization ω.

Proof of Theorem 4.8. Choose p > max{1, 1
α
− 1} and ε > 0. By Theorem 4.1, for all ω ∈ Σ,

m

{
x :

∣∣∣∣∣ 1nSn,ωϕ(x)− 1

n

n∑
j=1

m(ϕ ◦ T jω)

∣∣∣∣∣ ≥ ε

}
≤ Cα,p,ϕn

1− 1
α (log n)

1
α ε−2p

with Cα,ϕ,δ independent of ω. Integrating over Σ with respect to ν we obtain

ν ⊗m

{
(ω, x) :

∣∣∣∣∣ 1nSn,ωϕ(x)− 1

n

n∑
j=1

m(ϕ ◦ T jω)

∣∣∣∣∣ ≥ ε

}
≤ Cα,p,ϕn

1− 1
α (log n)

1
α ε−2p

By Theorem 4.6, we also have the annealed estimate for the non-centered sums:

ν ⊗m
{

(ω, x) :

∣∣∣∣ 1nSn,ωϕ(x)

∣∣∣∣ ≥ ε

}
≤ Cα,p,ϕn

1− 1
α (log n)

1
α ε−2p
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Theorem 4.6 refers to the measure ν⊗µ but since dm
dµ

= 1
h
≤ 1

Dα
, the large deviations estimate

applies also to ν ⊗m. Observe now that{
(ω, x) :

∣∣∣∣∣ 1n
n∑
j=1

m(ϕ ◦ T jω)

∣∣∣∣∣ > 2ε

}

⊂

{
(ω, x) :

∣∣∣∣ 1nSn,ωϕ(x)

∣∣∣∣ < ε,

∣∣∣∣∣ 1nSn,ωϕ(x)− 1

n

n∑
j=1

m(ϕ ◦ T jω)

∣∣∣∣∣ ≥ ε

}
⋃{

(ω, x) :

∣∣∣∣ 1nSn,ωϕ(x)

∣∣∣∣ > ε

}
.

Thus

ν ⊗m

{
(ω, x) :

∣∣∣∣∣ 1n
n∑
j=1

m(ϕ ◦ T jω)

∣∣∣∣∣ > 2ε

}
≤ Kα,p,ϕn

1− 1
α (log n)

1
α ε−2p

and, as there is no dependence on x ∈ X, this means

ν

{
ω :

∣∣∣∣∣ 1n
n∑
j=1

m(ϕ ◦ T jω)

∣∣∣∣∣ > 2ε

}
≤ Kα,p,ϕn

1− 1
α (log n)

1
α ε−2p(4.2)

Denote β := 1
α
− 1 > 0.

The proof we give does not give an optimal value of κ. In the case β > 1 a simpler
proof may be given but the resulting exponent κ is also not optimal and no better than the
estimate we give.

Let τ = 2
β

and δ > 0 small. Choose γ = 1
2p

(β− 1
τ
)− δ = β

4p
− δ and κ = d(1 +β−1)(4p)e =

d 4p
1−αe. The notation dxe indicates the smallest integer greater than or equal to x. Then

(2pγ − β)τ < −1 and γκ > β for δ > 0 small enough.
For ε = n−γ the bound (4.2) becomes

ν

{
ω :

∣∣∣∣∣ 1n
n∑
j=1

m(ϕ ◦ T jω)

∣∣∣∣∣ > 2n−γ

}
≤ Kα,p,ϕn

2pγn−β(log n)
1
α

Consider the subsequence nk := kτ . As (2pγ−β)τ < −1, for ν almost every ω there exists
an N(ω) such that for all nk > N(ω),∣∣∣∣∣ 1

nk

nk∑
j=1

m(ϕ ◦ T jω)

∣∣∣∣∣ ≤ 2n−γk

If nk ≤ n < nk+1 then∣∣∣∣∣ 1n
n∑
j=1

m(ϕ ◦ T jω)

∣∣∣∣∣ ≤ 1

nk

∣∣∣∣∣
nk∑
j=1

m(ϕ ◦ T jω) +
n∑

j=nk+1

m(ϕ ◦ T jω)

∣∣∣∣∣
≤ 2n−γk +

‖ϕ‖∞
nk
|nk+1 − nk|

There is K > 0, independent of ω, depending only on τ , γ and ‖ϕ‖∞, such that

2n−γk +
‖ϕ‖∞
nk
|nk+1 − nk| < 3n−γ if k ≥ K.
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Indeed, limk→∞
nk+1

nk
= 1, 1

nk
|nk+1 − nk| = O( 1

k
), 1

k
= O( 1

n1/τ ) and n−1/τ < n−γ because

1/τ > γ.
Increase N(ω) such that n > N(ω) implies n ≥ Kτ and Cα,p,ϕn

γκ−β(log n)1/α > 1.
We will show that for n > N(ω)

m(x : | 1
n
Sn,ωϕ(x)| ≥ 4ε) ≤ Cα,p,ϕε

−κn−β(log n)1/α.

Suppose ε < n−γ. Then Cα,p,ϕε
−κn−β(log n)1/α ≥ Cα,p,ϕn

γκ−β(log n)1/α > 1 and there is
nothing to prove.

If ε ≥ n−γ and n > N(ω) then, as | 1
n

∑n
j=1m(ϕ ◦ T jω)| < 3ε,{

x : | 1
n
Sn,ωϕ(x)| ≥ 4ε

}
⊂

{
x : | 1

n
Sn,ωϕ(x)− 1

n

n∑
j=1

m(ϕ ◦ T jω)| ≥ ε

}
Hence the result holds by Theorem 4.1, as

m(x : | 1
n
Sn,ωϕ(x)− 1

n

n∑
j=1

m(ϕ ◦ T jω)| ≥ ε) ≤ Cα,p,ϕε
−2pn−β(log n)1/α

and 2p < κ. �

We remark that the methods used to prove these results in the uniformly expanding case
are not applicable here, as they rely on the quasi-compactness of the transfer operator. In
the uniformly expanding case, which has exponential large deviations for Hölder observables,
it is possible to obtain a rate function.

5. The Role of Centering in the Quenched CLT for RDS

In this section we discuss two results: Proposition 5.1, that the quenched variance is the
same for almost all realizations ω ∈ Σ, and Theorem 5.3, that generically one must center
the observations in order to obtain a CLT (as opposed to LD Theorem 4.8, where centering
did not affect the quenched LD). Note that these hinge on the rate of growth of the mean of
the Birkhoff sums; we see that it is o(n) but not o(

√
n). We use the recent paper by Hella

and Stenlund [HS20] to extend and clarify results of [NTV18].
In [NTV18, Theorem 3.1] a self-norming quenched CLT is obtained for ν-a.e. realization

ω of the random dynamical system of Theorem 4.6. More precisely, recalling the definition of

the centered observables [ϕ]k (ω, x) = ϕ(x)−m(ϕ◦T kω ) and σ2
n(ω) :=

∫ [∑n
k=1 [ϕ]k (ω, T kω x)

]2
dx

it is shown that 1
σn(ω)

∑n
k=1 [ϕ]k (ω, ·) ◦ T kω → N(0, 1) provided σ2

n ≈ nβ, with α < 1
9

and β > 1
2(1−2α)

. Various scenarios under which σ2
n(ω) > nβ are given in [NTV18]. See

also [HL19].
If the maps Tωi preserved the same invariant measure then it suffices to consider observables

with mean zero, since the mean would be the same along each realization. In the setting
of [ALS09] this is the case, namely all realizations preserve Haar measure, and the authors
address the issue of whether the variance σ2

n(ω) can be taken to be the “same” for almost
every quenched realization in the setting of random toral automorphisms. They show that
for almost every quenched realization the variance in the quenched CLT may be taken as
a uniform constant. The technique they use is adapted from random walks in random
environments and consists in analyzing a random dynamical system on a product space.
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A natural question is whether in our setup of random intermittent maps, after centering,
σn(ω) can be taken to be “uniform” over ν-a.e. realization. Recent results of Hella and
Stenlund [HS20] give conditions under which 1

n
σ2
n(ω)→ σ2 for ν-a.e. ω, as well as information

about rates of convergence. Note that this is also true in the context of uniformly expanding
maps considered by [AA16] using the same method used in [HS20].

A related question is whether we need to center at all. For example, if µ(ϕ) = 0, where µ
is the stationary measure on X, then for ν-a.e ω

lim
n→∞

1

n

n∑
j=1

[ϕ(T jω x)−m(ϕ(T jω ))]→ 0 for µ-a.e. x

by the ergodicity of ν ⊗ µ, but also

lim
n→∞

1

n

n∑
j=1

m(ϕ(T jω ))→ 0 for ν-a.e. ω,

by the proof of Theorem 4.8. So for the strong law of large numbers centering is not necessary.
Using ideas of [AA16] we consider the related question of whether centering is necessary to
obtain a quenched CLT with almost surely constant variance. We show the answer to this
is positive: to obtain an almost surely constant variance in the quenched CLT we need to
center.

5.1. Non-random quenched variance. For Proposition 5.1, we verify that our system
satisfies the conditions SA1, SA2, SA3 and SA4 of [HS20]; then, by [HS20, Theorem 4.1],
the quenched variance is almost surely the same, equal to the annealed variance.

Proposition 5.1. Let α < 1
2
, ϕ ∈ C1 and define the annealed variance

σ2 := lim
n→∞

1

n
‖ [Sn]ν⊗m ‖2

L2(ν⊗m) = lim
n→∞

1

n
‖Sn −

∫
Σ×X

Snd ν ⊗m‖2
L2(ν⊗m)

=
∞∑
k=0

(2− δ0k) lim
i→∞

∫
Σ

[m(ϕiϕi+k)−m(ϕi)m(ϕi+k)]dν

If σ2 > 0 then for ν-a.e. ω

lim
n→∞

1√
n

n∑
j=1

[
ϕ(T jω ·)

]m →d N(0, σ2)

in distribution with respect to m.

Remark 5.2. Proposition 4.7 shows that the annealed CLT holds for α < 1
2

and under the
usual genericity conditions the annealed variance satisfies σ2 > 0. Thus Proposition 5.1
extends [NTV18, Theorem 5.3] from the parameter range α < 1

9
to α < 1

2
. Note that [HL19],

proved the CLT for α < 1
3
.

Proof of Proposition 5.1. We will verify conditions SA1, SA2, SA3 and SA4 of [HS20, The-

orem 4.1] in our setting, with η(k) = Ck−
1
α

+1(log k)
1
α in the notation of [HS20].

SA1: If j > i then∣∣∣∣∫ ϕ ◦ T iω(x)ϕ ◦ T jω (x)dm−
∫
ϕ ◦ T iω(x)dm

∫
ϕ ◦ T jω (x)dm

∣∣∣∣
18



=

∣∣∣∣∫ ϕ ◦ T j−i+1
ω (T iωx)ϕ(x)P i

ω1dm−
∫
ϕP iω1dm

∫
ϕ(x)Pjω1dm

∣∣∣∣ ≤ C(j−i)−
1
α

+1(log(j−i))
1
α

by the same argument as in the proof of [NTV18, Proposition 1.3].
SA2: Our underlying shift σ : Σ→ Σ is Bernoulli hence α-mixing.
SA3: We need to check [HS20, equation (4)] that∣∣∣∣∫ ϕ(TωkTωk−1

· · ·Tω1x)dm−
∫
ϕ(TωkTωk−1

· · ·Tωr+1x)dm

∣∣∣∣ ≤ Cη(k − r)

and ∣∣∣∣∫ ϕ · ϕ(TωkTωk−1
· · ·Tω1x)dm−

∫
ϕ · ϕ(TωkTωk−1

· · ·Tωr+1x)dm

∣∣∣∣ ≤ Cη(k − r).

Using the transfer operators, rewrite∣∣∣∣∫ ψ · ϕ(TωkTωk−1
· · ·Tω1x)dm−

∫
ψ · ϕ(TωkTωk−1

· · ·Tωr+1x)dm

∣∣∣∣
=

∣∣∣∣∫ ϕ · PωkPωk−1
· · ·Pω1(ψ)dm−

∫
ϕ · PωkPωk−1

· · ·Pωr+1(ψ)dm

∣∣∣∣
≤ ‖ϕ‖∞‖PωkPωk−1

· · ·Pωr+1 [ψ − Pωr · · ·Pω1(ψ)]‖L1

We have to bound this for ψ either 1 or ϕ. If ψ = 1 then

‖PωkPωk−1
· · ·Pωr+1 [1− Pωr · · ·Pω11]‖L1 ≤ C(k − r)−

1
α

+1(log(k − r))
1
α

with C independent of ω and r by [NTV18, Theorem 1.2] (see Proposition 3.3) because 1
and Pωr · · ·Pω11 both lie in the cone and have the same m-mean. If ψ = ϕ, using Lemma 3.4,
can write ϕ−(

∫
ϕdm)1 as a difference of two functions in the cone, and then the same decay

estimate holds.
SA4: (σ,Σ, ν) is stationary so SA4 is automatic. �

5.2. Centering is generically needed in the CLT. Now we address the question of the
necessity of centering in the quenched central limit theorem. We show that if

∫
ϕdµβi 6=∫

ϕdµβj for two maps Tβi , Tβj , where µβi is the invariant measure of Tβi , then centering is
needed: although

lim
n→∞

1√
n

n∑
j=1

[
ϕ(T jω )−m(ϕ(T jω ))

]
→d N(0, σ2)

for ν-a.e. ω, it is not the case that

lim
n→∞

1√
n

n∑
j=1

ϕ(T jω )→d N(0, σ2)

for ν-a.e. ω.
Our proof has the same outline as that of [AA16], adapted to our setting of polynomial

decay of correlations. First we suppose that the maps Tβi do not preserve the same measure.
After reindexing we can suppose that Tβ1 and Tβ2 have different invariant measures and that∫
ϕdµβ1 6=

∫
ϕdµβ2 , a condition satisfied by an open and dense set of observables. Recall

that the RDS has the stationary measure dµ = hdm, h ≥ Dα > 0 and we have assumed
µ(ϕ) = 0, ϕ ∈ C1.

Here are the steps:
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• construct a product random dynamical system on X ×X and prove that it satisfies
an annealed CLT for ϕ̃(x, y) = ϕ(x)− ϕ(y) with distribution N(0, σ̃2);
• observe that almost every uncentered quenched CLT has the same variance only if

2σ2 = σ̃2, where the original RDS with stationary measure dµ = hdm satisfies an
annealed CLT for ϕ with distribution N(0, σ2);
• observe that the conclusions of [AA16, Theorem 9] hold in our setting and σ̃2 = 2σ2

if and only if limn→∞
1
n

∫
Σ

(∑n−1
k=1

∫
X
ϕ ◦ T kω hdm

)2
dν = 0;

• use ideas of [AA16] to show the limit above is zero only if a certain function G on Σ
is a Hölder coboundary, which in turn implies

∫
ϕdµβ1 =

∫
ϕdµβ2 , a contradiction.

Let ϕ : X → R be C1, with
∫
X
ϕdµ = 0, and define Sn(ϕ) =

∑n−1
k=0 ϕ(T kω x) on Σ × X.

Recall the standard expression (e.g. see [AA16]) for the annealed variance,

σ2 = lim
n→∞

1

n

∫
Σ

∫
X

[Sn(ϕ)]2 dµdν.

We also consider the product random dynamical system (Σ̃ := Σ×X×X, ν̃ := ν⊗µ⊗µ, T̃ )
defined on X2 by T̃ω(x, y) = (Tωx, Tωy). For an observable ϕ, define ϕ̃ : X2 → R by ϕ̃(x, y) =
ϕ(x)−ϕ(y), and its Birkhoff sums Sn(ϕ̃). In Theorem 6.1 and Corollary 6.2 of the Appendix
we show 1√

n

∑n
j=1 ϕ̃ ◦ T̃ j →d N(0, σ̃2) with respect to ν ⊗ µ⊗ µ for some σ̃2 ≥ 0.

The following lemma from [ANV15] is general and does not depend upon the underlying
dynamics. It is a consequence of Levy’s continuity theorem (Theorem 6.5 in [Kar93]).

Lemma ([ANV15, Lemma 7.2]). Assume that σ2 > 0 and σ̃2 > 0 are such that

(1) Sn(ϕ)√
n

converges in distribution to N (0, σ2) under the probability ν ⊗ µ,

(2) Sn(ϕ̃)√
n

converges in distribution to N (0, σ̃2) under the probability ν ⊗ µ⊗ µ,

(3) Sn,ω(ϕ)√
n

converges in distribution to N (0, σ2) under the probability µ, for ν almost
every ω.

Then 2σ2 = σ̃2.

Suppose two of the maps Tβ1 and Tβ2 have different invariant measures. It is possible to
find a C1 ϕ such that

∫
ϕdµβ1 6=

∫
ϕdµβ2 . In fact,

∫
ϕdµβ1 6=

∫
ϕdµβ2 for a C2 open and

dense set of ϕ.

Theorem 5.3. Let ϕ ∈ C1 with µ(ϕ) = 0 and suppose that
∫
ϕ dµβ1 6=

∫
ϕ dµβ2. Then it is

not the case that

lim
n→∞

1√
n

n∑
j=1

ϕ(T jω .)→ N(0, σ2)

for almost every ω ∈ Σ. Hence, the Birkhoff sums need to be centered along each realization.

Proof. We follow the counterexample method of [AA16, Section 4.3]. We show that in the
uncentered case 2σ2 6= σ̃2. To do this we use [AA16, Theorem 9] which holds in our setting,
namely σ̃2 = 2σ2 if and only if

lim
n→∞

∫
Σ

(
1√
n

n−1∑
k=1

∫
X

ϕPωk . . . Pωn(h)dm

)2

dν = 0(5.1)

(as in [AA16, Section 4.3] we change the time direction and replace (ω1, ω2, . . . , ωn) by
(ωn, ω2, . . . , ω1); this does not affect integrals with respect to ν over finitely many symbols).
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Note that the sequence Pω1Pω2 . . . Pωnh is Cauchy in L1, as α < 1
2

and

‖Pω1Pω2 . . . Pωn(h)− Pω1Pω2 . . . Pωn . . . Pωn+k(h)‖1 ≤ Cn−
1
α

+1(log n)
1
α

by Proposition 3.3. Thus Pω1Pω2 . . . Pωnh→ hω in L1 for some hω ∈ C2. This limit defines hω,
in terms of ω̄ := (. . . , ωn, ω2, . . . , ω1), i.e. ω reversed in time. We define G(ω) :=

∫
X
ϕhωdm.

Note also that ‖Pω1Pω2 . . . Pωnh − hω‖1 ≤ Cn−1−δ for some δ > 0, uniformly for ω ∈ Σ.
Hence∫

Σ

(
n−1∑
k=1

1√
n

∫
X

ϕPωk . . . Pωnhdm

)2

dν

=

∫
Σ

(
n−1∑
k=1

1√
n

(∫
X

ϕhτkω dm+O

(
n−1∑
k=1

1

(n− k)1+δ

)))2

dν

which gives, using (5.1), that

lim
n→∞

∫
Σ

(
1√
n

(
n−1∑
k=1

G(τ kω)

))2

dν = 0.(5.2)

We put a metric on Σ by defining d(ω, ω
′
) = s(ω, ω

′
)−1− ε

2 where s(ω, ω
′
) = inf{n : ωn 6=

ω
′
n}. With this metric Σ is a compact and complete metric space. Note that ‖hω−hω′‖L1 ≤
Cs(ω, ω

′
)−

ε
2 hence G(ω) is Hölder with respect to our metric.

As in the Abdulkader-Aimino counterexample, (5.2) implies that G = H − H ◦ τ for a
Hölder function H on the Bernoulli shift (τ,Σ, ν): by [Liv96, Theorem 1.1] (see Theorem 6.3
in the Appendix) G is a measurable coboundary, and therefore a Hölder coboundary, by the
standard Livšic regularity theorem (see for instance [VO16, Section 12.2]). Now consider
the points β∗1 := (β1, β1, · · · ) and β∗2 := (β2, β2, · · · ) in Σ; they are fixed points for τ , and
correspond to choosing only the map Tβ1 , respectively only the map Tβ2 . This implies
G(β∗1) = G(β∗2) = 0 which in turn implies

∫
ϕdµβ1 =

∫
ϕdµβ2 , a contradiction. �

6. Appendix

We will show that the system F̃ (ω, x, y) = (τω, Tω1x, Tω1y) with respect to the measure
ν ⊗ µ2 on Σ × [0, 1]2 (recall that ν := P⊗N and µ is a stationary measure of the RDS) has
summable decay of correlations in L2 for α < 1

2
, and as a corollary it satisfies the CLT.

Theorem 6.1. Suppose that for ω ∈ Σ, h = dµ
dm
∈ C2 and each ϕ ∈ C1 with m(ϕh) = 0

‖Pωn . . . Pω1(ϕh)‖L1(m) ≤ Cρ(n)(‖ϕ‖C1 +m(h))

(that is, the setting of Proposition 3.3).

Then there is a constant C̃, independent of ω, such for each ψ ∈ C1(X × X) and ϕ ∈
L∞(X ×X) with (µ⊗ µ)(ψ) = 0, one has∣∣∣∣∫ ϕ(T nω x, T nω x)ψ(x, y)dµ(x)dµ(y)

∣∣∣∣ ≤ C̃ρ(n)‖ϕ‖L∞(‖ψ‖C1 + 1)
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Proof. Since X×X is compact, ψ is uniformly C1 in both variables in the sense that ψ(x0, y)
is uniformly C1 for each x0 and similarly for ψ(x, y0). We want to estimate

I :=

∫
ϕ(T nω x, T nω y)ψ(x, y)dµ(x)dµ(y).

Define

ψ(x) :=

∫
ψ(x, y)dµ(y), hx(y) := ψ(x, y)− ψ(x).

Then ψ, hx ∈ C1(X), with C1-norms bounded by 2‖ψ‖C1 , uniformly with respect to x.
We can write I as

I =

∫
ϕ(T nω x, T nω y)

[
ψ(x, y)− ψ(x, y)

]
dµ(x)dµ(y)︸ ︷︷ ︸

:=I1

+

∫
ϕ(T nω x, T nω y)ψ(x, y)dµ(x)dµ(y)︸ ︷︷ ︸

:=I2

.

Define now gω,x(y) := ϕ(T nω x, y). Then (note that
∫
hx(y)h(y)dm(y) = 0)

|I1| =
∣∣∣∣∫ (∫ gω,x(T nω y)hx(y)h(y)dm(y)

)
dµ(x)

∣∣∣∣ =

∣∣∣∣∫ (∫ gω,x(y)Pnω(hx(y)h(y))dm(y)

)
dµ(x)

∣∣∣∣
≤ ‖ϕ‖L∞ sup

x
‖Pnω(hx(y)h(y))‖L1(m(y))

≤ C ′‖ϕ‖L∞(‖ψ‖C1 +m(h))ρ(n).

by the hypothesis.
Similarly, define kω,y(x) := ϕ(x, T nω y) so then (again,

∫
ψ(x)h(x)dm(x) = 0)

|I2| =
∣∣∣∣∫ (∫ kω,y(T nω x)ψ(x)dµ(x)

)
dµ(y)

∣∣∣∣
=

∣∣∣∣∫ (∫ kω,y(x)Pnω(ψ(x)h(x))dm(x)

)
dµ(y)

∣∣∣∣
≤ ‖ϕ‖L∞‖Pnω(ψ(x)h(x))‖L1(m(x))

≤ C ′‖ϕ‖L∞(‖ψ‖C1 +m(h))ρ(n).

These imply that |I| ≤ 2C ′‖ϕ‖L∞(‖ψ‖C1 +m(h))ρ(n). �

Corollary 6.2. Under the assumptions of Theorem 6.1, for ψ ∈ C1(X×X) with (µ⊗µ)(ψ) =

0, 1√
n

∑n
k=1 ψ ◦ F̃ k(ω, x, y) satisfies a CLT with respect to ν ⊗ µ⊗ µ, that is

1√
n

n∑
k=1

ψ ◦ F̃ k(ω, x, y)→d N(0, σ̃2)

in distribution for some σ̃2 ≥ 0.

Proof. Let Q be the adjoint of F̃ (ω, x, y) = (σω, Tω1x, Tω1y) with respect to the invariant
measure ν ⊗ µ⊗ µ on Σ×X2 so that∫

ϕ ◦ F̃ (ω, x, y)ψ(ω, x, y)dµ(x)dµ(y)dν(ω) =

∫
ϕ(ω, x, y)(Qψ)(ω, x, y)dµ(x)dµ(y)dν(ω).
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for ϕ ∈ L∞(Σ×X ×X). Iterating we have∫
ϕ ◦ F̃ n(ω, x, y)ψ(ω, x, y)dµ(x)dµ(y)dν(ω) =

∫
ϕ(ω, x, y)(Qnψ)(ω, x, y)dµ(x)dµ(y)dν(ω).

Taking ϕ = sign(Qnψ), we see from Theorem 6.1 that ‖Qnψ‖L1 ≤ C ′ρ(n).
The proof now follows, as in Proposition 4.7, from [Liv96, Theorem 1.1] (see Theorem 6.3

in the Appendix). �

Proof of Lemma 3.4. Let f1 = (ϕ+ λx+ A)h+B and f2 = (A+ λx)h+B.
First we show that f1 ∈ C2. It is clear that f1 ∈ C0(0, 1]∩L1(m). Choose λ < 0 such that
|λ| > ‖ϕ′‖L∞ and A > 0 large enough so that

ϕ+ λx+ A > 0.

This ensures that f1 ≥ 0 for any value of B ≥ 0. Note now that

(ϕ+ λx+ A)′ = ϕ′ + λ ≤ 0

so ϕ + λx + A is decreasing. Since both ϕ + λx + A and h are positive and decreasing, we
obtain that f1 is decreasing as well. We show now that xα+1f2 is increasing. Since h ∈ C2, h
is non-increasing so h′ exists m-a.e. and h′ ≤ 0 m-a.e. Then (xα+1h)′ exists m-a.e. as well,
and we can compute this derivative as

(xα+1h)′ = (α + 1)xαh+ xα+1h′ ≥ 0

because it is increasing.
We compute now the derivative of xα+1f2:

(xα+1[(ϕ+ λx+ A)h+B])′ = (α + 1)xαϕh+ xα+1ϕ′h+ xα+1ϕh′ + (α + 2)xα+1hλ+

λxα+2h′ + (α + 1)Axαh+ Axα+1h′ + (α + 1)xαB.

We group terms conveniently: note that

(α + 1)xαϕh+ (α + 1)Axαh+ xα+1ϕh′ + Axα+1h′ = (ϕ+ A)[(α + 1)xαh+ h′xα+1] ≥ 0

m-a.e., since the term in the square brackets corresponds to (xα+1h)′ ≥ 0. The term λxα+2h′

is non-negative m-a.e. since λ, h′ ≤ 0. Since 0 ≤ h(x)xα ≤ am(h), we have 0 ≤ −xα+1h′ ≤
(α+1)xαh ≤ (α+1)am(h) and then the terms (α+2)λxα+1h+xα+1hϕ′ are bounded. Thus,
we can take B > 0 big enough so that

(α + 1)xαB ≥ (α + 2)λxα+1h+ xα+1hϕ′.

With this, we have that (xα+1h)′ ≥ 0 and so xα+1h is increasing.
Finally, we check that f1(x)xα ≤ am(f1). Using that h(x)xα ≤ am(h),

[(ϕ+ λx+ A)h+B]xα ≤ (ϕ+ λx+ A)hxα +B ≤ sup(ϕ+ λx+ A)am(h) +B.

On the other hand, am((ϕ+ λx+A)h+B) ≥ a inf(ϕ+ λx+A)m(h) + aB, so it suffices to
have

sup(ϕ+ λx+ A)am(h) +B ≤ a inf(ϕ+ λx+ A)m(h) + aB

⇐⇒ B ≥ a

a− 1

[
sup(ϕ+ λx+ A)− inf(ϕ+ λx+ A)

]
m(h).

Thus, we see that f1 ∈ C2. The proof that f2 ∈ C2 is the same, take ϕ(x) ≡ 0. �
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Theorem 6.3 (special case of [Liv96, Theorem 1.1]). Assume T : Y → Y preserves the
probability measure η on the σ-algebra B. Denote by P its transfer operator.

If ϕ ∈ L∞(η) with η(ϕ) = 0 and
∑

k ‖P kϕ‖L1(η) <∞ then a central limit theorem holds for
Snϕ :=

∑n
k=1 ϕ ◦ T k with respect to the measure η, that is, 1√

n
Snϕ converges in distribution

to N (0, σ2). The variance is given by

σ2 = −η(ϕ2) + 2
∞∑
k=0

η(ϕ · ϕ ◦ T k).

In addition, σ2 = 0 iff ϕ ◦ T is a measurable coboundary, that is ϕ ◦ T = g − g ◦ T for a
measurable g.
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