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Abstract
Purpose We present a scheme to characterize the defects within a one-dimensional spring–mass system comprised of an 
arbitrary number of bodies with otherwise uniform masses connected in series by springs using only a discrete set of vibra-
tional data of the first body.
Methods The system of ordinary differential equations modeling spring–mass systems was analyzed using the Laplace 
transform with the unknown mass and location of the defects as parameters. We propose a two-phase strategy to determine 
these unknown parameters using a set of discrete measurements of the longitudinal displacements of the first mass after the 
system is excited by a Dirac � impulse on the first mass. The Z-transform of the discrete time-measurements is used to obtain 
an approximation for the Laplace-domain solution curve of the vibration of the first body. First, we show how the poles of 
this simulated data can be used to determine the masses of the defects. Then the location of these defects were calculated 
using an optimization routine.
Results We also show several simulations with two defects highlighting the instances when the scheme is highly accurate 
as well as its limitations. In these cases, the algorithm was able to predict the mass and locations accurately.
Conclusions In this paper, we were able to design a stable numerical scheme that can characterize the defects, i.e., estimate 
their masses and locations, using only a discrete set of vibrational data of the first mass.

Keywords Defect detection · Spring–mass system · Laplace transform · Z-transform

Introduction

Spring–mass systems are extensively used models across a 
multitude of disciplines ranging from medicine, computer 
animation and engineering. The primary advantages of this 
model include (but are not limited to) its simple intuitive 
description, relative mathematical simplicity and ease of 
computational implementation. Due to the prevalence of 
spring–mass models across these disciplines, it is hard to 
conduct a comprehensive literature survey. Consequently, 
a brief overview consisting of select illustrations will be 
presented.

Within the medical field, the spring–mass model can 
be used to simulate the deformational properties of human 
organs [15, 23, 34]. The parameters needed to calibrate the 
spring–mass array to be accurate models of real organs could 
be determined through methods employed in Ref. [33] and 
appropriately configured for virtual surgeon training [28]. 
It is also possible to analyze the mechanics of human or 
bipedal locomotion relating to walking [17], running [19], 
and Olympic sprinting [29] using spring–mass models.

Animators seeking high-fidelity fabric dynamics will 
find utility in spring–mass models. While models derived 
from continuum mechanics are more physically consistent, 
it may be more practical to trade off high-accuracy meth-
ods for quicker simulations due to the discrete nature of 
spring–mass arrays. The works [18, 31, 35] provide deeper 
discussions on this application. Use of spring–mass systems 
in other fields of computer graphics and animations can be 
found in the review article [22].

Further afield, some mechanical engineering disciplines 
focus on studying how to suppress vibrations within a structure 
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[2, 10, 26] or a metamaterial [13] or combining the two to sup-
press structural vibrations using metamaterials [25]. Vibration 
suppression is also an integral part of vehicular suspension 
systems. Spring–mass systems are used as computational mod-
els to design improvements to semi-adaptive (or fully adaptive) 
suspension systems which can improve the comfort and safety 
of passengers inside moving vehicles [27, 30].

One dimensional spring–mass systems, despite its simplic-
ity, prove to be very useful models in acoustics, electromag-
netism (EM) and atomic lattices and other periodic materials. 
In acoustics, they can be realized as discrete models for the 
propagation of sound in a duct and other environments [21]. 
These models can also be used for advanced applications such 
as in [32] where the authors realized cloaking in acoustic meta-
materials. In EM, these systems are often used as mechanical 
analogies to electric circuits. This led to advances such as the 
characterization of the properties of the oscillations in electri-
cal circuits [12], description of the transient behavior of driven 
RLC circuits [11] and the design of novel strategies for the 
active control of vibrations using piezoelectric materials and 
other related actuator-damper systems (see works like [4, 5] 
and references therein). In the field of periodic materials and 
atomic lattices, 1D spring–mass systems are used to simu-
late the wave propagation in phononic structures [6] and other 
crystalline lattices [20]. For a more generic discussion of the 
utility of springs and masses as computational models in lat-
tice dynamics, see the review article [7].

Due to the wide physical applications of spring–mass sys-
tems, it is worthwhile to design schemes to detect and char-
acterize defects as these can profoundly alter a system’s reac-
tion to external forces. For instance, defects within photonic 
crystals or dielectric media can act as waveguides for incident 
light [16]. In another vein, regional deviations of mass density 
within a rod would change its mode shapes [1]. An example of 
defectoscopy via subjecting the system to some external exci-
tation is found in [3]. In said paper, defects within polymers 
were identified by subjecting the material to an impulse and 
measuring changes in their resonant frequency. Defectoscopy 
on a ball bearing subject to external vibrations was conducted 
by another group detailed in [24]. In this paper, we will build 
on the results and ideas proposed in [9] to develop a new com-
putational scheme in detecting and characterizing defects in 
one-dimensional spring–mass systems.

In Ref. [9], the authors proposed a scheme in character-
izing the defects in a system, the number of whom is assumed 
to be known. Their method involves comparing the theoreti-
cal solution for the vibration of the first mass expressed as 

a function of the unknown parameters of the defects against 
some data. This data may be simulated or measured, but in 
both cases must be expressed as a continuous function in the 
Laplace domain for a long enough interval. Such a data may 
be difficult to obtain from physical measurements. Moreover, 
the method presented in Ref. [9] worked well only in the case 
of two unknown information (i.e., the location and size of one 
defect or the locations of two defects with known masses or 
the masses of two defects with known locations) and required 
a very high level of numerical precision, something that is 
not feasible from the point of view of even the most sophis-
ticated measurement devices. In this work, we address some 
of these difficulties by providing a way of utilizing discrete 
time-measurements of the vibrations of the first mass to char-
acterize the defects.

Assuming a known number of defects, we propose a stable 
technique that will yield the mass and location of the defects 
present in the physical configuration of springs and masses 
based solely on discrete measurements of the longitudinal 
vibrations of the first body, i.e., the body at the left end of the 
system.

In Fig. 1, there are an arbitrary number of bodies linked 
in series by identical springs which have fixed damping coef-
ficient and stiffness constant. All bodies have a mass of unity, 
except for the defects. While Fig. 1 shows only two defects, 
multiple defects with different masses may be present. Simi-
larly, they can be located anywhere along the chain, except 
on the left and right ends. At time t = 0 , a sharp, impulsive 
force directed rightward will be applied to the leftmost body. 
To keep our model as realistic as possible, we assume that the 
vibrations of this body, x1(t) , will be measured at some dis-
crete t values and transformed into the Laplace domain via the 
Z-transform. In the discussions below, we shall establish a way 
on how to use this simulated data to recover the parameters 
of the defects. The rest of this paper is organized as follows. 
In Sect. 2 we present the mathematical model for a 1D spring 
mass system with an arbitrary number of defects. In Sect. 3, 
we detail the defect detection and characterization strategy by 
establishing the mathematical relation between the poles of the 
Laplace-domain vibration of the first mass and the masses of 
the defects and laying-out an optimization routine to recover 
the defects’ locations. In Sect. 4, we present some implementa-
tions of the proposed scheme highlighting the advantages and 
limitations of the method. Finally, we offer some concluding 
remarks in Sect. 5.

Fig. 1  The 1D spring–mass system of interest where the defective bodies are highlighted in red
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Mathematical Model for the Spring–Mass 
System

This section discusses the mathematical model for a 
spring–mass system with defective bodies leading towards 
deriving the longitudinal trajectory of any body in the system 
after it has been excited by a Dirac delta force on one of the 
terminal masses. See Fig. 1. We assume a Hookean, linear 
spring–mass system consisting of some n bodies between two 
fixed, immobile points. Each body is particle-like with some 
mass and assigned a location number (an integer) L start-
ing with 1 at the left end and increasing rightward along the 
chain up to n. All bodies has mass 1, except for p bodies with 
unknown mass mq ≠ 1 at unknown locations jq ≥ 2 , q = 1, p . 
These bodies of non-unit mass are the defects and we wish to 
find their locations and masses.

The body at location 1 is excited at time t = 0 with a right-
ward Dirac delta force ��(t) ( � is a positive scalar denoting 
the amplitude of the testing force). In the absence of other 
external forces, the longitudinal displacement of each body 
from its respective equilibrium position xL are given by the 
solution curves of the system of second-order ordinary differ-
ential equations (ODEs) with initial conditions seen as follows:

where k is the spring constant and d is the damping coef-
ficient of each spring. Both k and d are assumed invariant 
everywhere to model a homogeneous, isotropic material. 
System (1), of course, can be modified as needed to suit 
desired chain lengths and/or defect parameters.

The Laplace transform of system (1) is taken to obtain the 
matrix equation

where

and

(1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẍ1 + dẋ1 + 2kx1 − kx2 = 𝛾𝛿(t)

ẍ2 + dẋ2 + 2kx2 − kx1 − kx3 = 0

⋮

mqẍjq + dẋjq + 2kxjq − kxjq−1 − kxjq+1 = 0, 1 ≤ q ≤ p

⋮

ẍn−1 + dẋn−1 + 2kxn−1 − kxn−2 − kxn = 0

ẍn + dẋn + 2kxn − kxn−1 = 0

xL(0) = ẋL(0) = 0 1 ≤ L ≤ n

,

(2)f̃ = (s2� + sdDm − DmAe)x̃,

(3)Ae = k

⎛⎜⎜⎜⎜⎜⎜⎝

−2 1

1 − 2 1

1 − 2 1

⋱ ⋱ ⋱

1 − 2 1

1 − 2

⎞⎟⎟⎟⎟⎟⎟⎠

Specifically, x̃ = (x̃1, x̃2,… , x̃n)
T is the column vector com-

prising of the Laplace transform of the functions describing 
the longitudinal displacement of each body in the system at 
time t, f̃ = (𝛾 , 0,… , 0)T is the post-transform forcing term, 
� is the identity matrix of size n × n , Dm is the diagonal 
matrix with entries corresponding to the reciprocal mass of 
each body down the chain and Ae is the coefficient matrix 
describing the springs acting on each body in the absence 
of damping.

Knowing the locations and masses of all defects, one can 
easily solve the forward problem (2) and obtain x̃ . In [9], 
the simulated data x̃1 representing the Laplace transform of 
the longitudinal vibration of mass 1 was used to recover 
the information about the defects. As mentioned above, this 
worked well only for the case of recovering two unknown 
defect parameters. Moreover, this sort of data, a continuous 
function in the Laplace domain might be difficult to obtain 
in a physical or experimental setting. In the succeeding sec-
tions, we discuss an alternative stable scheme in recovering 
the characteristics of the defects using discrete time meas-
urements of the vibrations in the first mass.

Defect Detection Strategy

In this section, we will develop an algorithm to recover 
the masses and locations of the p defects present in the 
spring–mass system described in Sect. 2. First, discrete 
vibrational data is measured in the time domain and sub-
jected to the Z-transform to obtain an approximation of the 
Laplace domain data x̃1 . This process makes the scheme 
more feasible from a physical point of view as only discrete 
measurements are needed. It turns out, as we shall discuss 
below, that the poles of x̃1 are related to the eigenvalues of 
the spring–mass system. These eigenvalues contain informa-
tion regarding the defects’ masses that can be extracted using 
the invariants of the associated matrix (e.g., the trace and the 
determinant for the case of two defects). Then, knowing the 
masses, numerical minimization of an L2 residual function 
will reveal the locations of each and every defect.

(4)Dm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

⋱

1
1

m1

1

⋱
1

mq

⋱

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Obtaining the Input Data

As stated above, the proposed strategy uses some discrete 
measurements {x1(ti)|ti = iΔt} of the vibrations in the first 
mass over a time interval [0, T] taken with a uniform 
time step Δt . This can be easily done in a laboratory with 
appropriate measurement devices. However, the strategy 
we propose requires some Laplace domain data. To obtain 
the Laplace domain data from the discrete time measure-
ments, we apply the Z-transform as defined below.

Definition 3.1 Let X be a discrete time signal with a constant 
time step Δt . Its Z-transform X̂ is given by

In the presence of damping, the spring mass system 
will return to equilibrium after some sufficiently long 
period of time. Hence, for our purposes, the summation in 
(5) can be truncated as soon as negligible displacements 
are observed. Moreover, the Z-transform is closely related 
to the Laplace transform. In fact, letting z = esΔt and for 
sufficiently small Δt , we have

where X̃ is the Laplace transform of the continuous exten-
sion of the time signal X.

These properties allow us to obtain an approximation 
to a continuous Laplace domain data from discrete time 
measurements. At this point, one can apply the residual 
minimization approach proposed in Ref. [9] to obtain the 
characteristics of such defects. However, for a large num-
ber of defects, the dimension of the optimization problem 
becomes very large and an analytic solution extending the 
approach proposed in Ref. [9] developed extreme instabil-
ities to noise (numerical or measurement noise). This also 
causes the numerical implementation of the previously 
proposed approach to be computationally extensive. In 
the succeeding sections, we discuss an alternative way of 
characterizing the defects which involves two steps: first, 
the determination the defects’ masses using matrix invari-
ants followed by the identification of their locations by 
minimizing some residual function. The first step involves 
solving a system of nonlinear equations while the second 
applies the same optimization procedure as in [9] but this 
time with a lesser number of unknowns.

(5)X̂(z) =

∞∑
l=0

X(lΔt)z−l.

(6)
X̂(z)Δt =

∞∑
l=0

X(lΔt)e−lsΔtΔt

≈ X̃(s),

Estimating the Eigenvalues of D
m
A
e

In this subsection, we show that eigenvalues of the matrix 
DmAe , introduced at (2) and defined in (3), (4) can be well 
approximated using the poles of the input data x̃1 (i.e., 
the Laplace transform of the time-domain displacement 
of the leftmost mass in the system). This is a key step 
in our strategy as these eigenvalues give (through Viete’s 
relations for the characteristic polynomial of DmAe ) the 
invariants of DmAe involving the masses of the bodies in 
the system. These relations will be derived in the next sec-
tion. Here we focus on establishing a way of estimating 
the eigenvalues of the said matrix using the input data we 
obtained from the procedure laid above.

We begin by establishing the diagonalizability of the 
matrix DmAe . Looking at the explicit forms given in (3) 
and (4), it is easy to surmise that Dm and Ae are both 
Hermitian. As such, we can assert the following result 
(excerpts of Corollary 7.6.2 in Ref. [14]).

Theorem 3.1 [14] Let A and B be Hermitian n × n matrices.

1. If A is positive definite, then AB is diagonalizable and 
has real eigenvalues.

2. If A and B are positive semidefinite, then AB is diago-
nalizable and has nonnegative eigenvalues.

Note that the matrix Dm is positive definite. Thus, the 
product DmAe is diagonalizable. Moreover, Ae is nega-
tive definite, and so −Ae is positive definite. These means 
−DmAe has nonnegative eigenvalues or equivalently, DmAe 
has nonpositive eigenvalues.

Since DmAe is diagonalizable, there exists an n × n 
invertible matrix T such that:

where Λm is the diagonal matrix with diagonal entries equal 
to the eigenvalues of DmAe . Returning to equation (2) and 
using (7), we obtain

(7)DmAe = TΛmT
−1,

(8)f̃ = (s2� + sdDm − DmAe)x̃

(9)s2x̃ = DmAex̃ − sdDmx̃ + f̃

(10)= (TΛmT
−1)x̃ − sd(DmTT

−1)x̃ + f̃

(11)⟹ s2T−1x̃ = ΛmT
−1x̃ − sdT−1DmTT

−1x̃ + T−1 f̃ .
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Let w = T−1x̃ . This enables the previous Eq. (11) to be writ-
ten as

where A = s� −
1

s
Λm and B = −dT−1DmT . Since the explicit 

form for T is unknown, we will assert a physical assumption 
that the damping coefficient is small, i.e., ( d ≪ 1 ) and use a 
Neumann series expansion. Provided that A−1 exists (which 
is always true whenever s2 is not equal to an eigenvalue of 
Λm ), we have

where

for d ≪ 1 . Using this in Eq. (16) yields

Since d is assumed to be small, the second term of the right-
hand side of Eq. (20) can be ignored. The final result is 
obtained using this truncated approximation back into the 
original equation (15) for w:

At this point, we note that an explicit expression for T is 
unnecessary for our purpose. Recall that Tw = x̃ , and in par-
ticular, x̃1 =

∑n

l=1
T1lwl . This means that at the poles of x̃1 , 

the sum on the right-hand side must blow up. Equation (22) 
suggests that this occurs for s values with s2 ≈ � for some 
eigenvalue � of DmAe . There will be 2n poles on the complex 

(12)s2w = Λmw − sdT−1DmTw + T−1 f̃

(13)⟹ w = (s2� − Λm + sdT−1DmT)
−1T−1 f̃

(14)=
1

s
(s� −

1

s
Λm + dT−1DmT)

−1T−1 f̃

(15)=
1

s
(A − B)−1T−1 f̃ ,

(16)(A − B)−1 = [A(� − A−1B)]−1 = (� − A−1B)−1A−1

(17)(� − A−1B)−1 =

∞∑
�=0

(A−1B)�

(18)= � + A−1B + (A−1B)2 +…

(19)≈ � + A−1B,

(20)(A − B)−1 ≈ A−1 + A−1BA−1.

(21)w ≈
1

s
A−1T−1 f̃

(22)= (s2� − Λm)
−1T−1 f̃ .

s-plane since they appear in conjugate pairs. Moreover, we 
know that the eigenvalues of DmAe are all non-positive, so 
the poles occur near the imaginary axis. Further, we only 
need to consider the poles present near the positive imagi-
nary axis.

In summary, we have established a relationship between 
the eigenvalues of the system matrix DmAe and the poles of 
x̃1 . Instead of an explicit symbolic expression for x̃1 , we can 
use the approximation for it obtained via the Z-transform of 
the discrete-time data to get estimates for the eigenvalues of 
the system matrix. This will allow us to recover the masses 
of the defects, discussed next.

Recovering the Masses

After obtaining estimates for the eigenvalues, approxima-
tions to the mass of each defect can now be calculated. The 
following discussion proposes an explicit scheme of recov-
ering the masses when there is one or two defects, though 
most of the analyses are still valid even for p > 2 . For the 
case when p = 2 , we shall use some relations involving the 
trace and determinant of the system matrix. Recall that the 
trace � and determinant � of DmAe are respectively the sum 
and product of its n eigenvalues. These two parameters can 
also be expressed in terms of the masses of the bodies in the 
system by calculating them directly using the expressions in 
(3), (4). After expanding DmAe , it is easy to see that its trace, 
being the sum of the diagonal entries is given by

Now, to calculate the determinant � of DmAe , we first note 
that

Le t  M
r
 b e  t he  r × r  ma t r i x  o f  t he  fo r m 

M
r
=

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 1

1 − 2 1

1 − 2 1

⋱ ⋱ ⋱

1 − 2 1

1 − 2

⎞⎟⎟⎟⎟⎟⎟⎠

 , so that Mn =
1

k
Ae . 

Then, to calculate the determinant |1
k
A
e
| , we use cofactor 

expansion along the first row to get

(23)� = −2k

(
n − 2 +

2∑
q=1

m−1
q

)
.

(24)� = |DmAe| = |Dm||Ae|

(25)=

(
2∏

q=1

m−1
q

)
kn
||||
1

k
Ae

||||.
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where the second term is the determinant of an n − 1 × n − 1 
matrix. This term can be simplified by performing cofactor 
expansion along the first column. This results to

or equivalently

a linear homogeneous recurrence relation with initial condi-
tions |M1| = −2 and |M2| = 3 . Since the associated charac-
teristic polynomial of (28) is x2 + 2x + 1 , with a double root 
x = −1 , the solution is of the form |Mn| = (c1 + c2n)(−1)

n . 
Using the initial conditions, we obtain c1 = c2 = 1 and so 
|Mn| = (n + 1)(−1)n . Using this in (25), gives

Let 𝜏 and �̃� be the sum and product of the estimates for the 
eigenvalues of DmAe obtained via the procedure discussed in 
Sect. 3.2. Then we can relate these data values to the masses 
of the bodies in the system via the system

For the case when p = 2 , solving the nonlinear system (30) 
will give the masses of both defects. If p = 1 , then solving 
the corresponding equation from the trace relation will be 
sufficient.

(26)|1
k
Ae| = −2|Mn−1| −

|||||||||||||

1 1

0 − 2 1

1 − 2 1

⋱ ⋱ ⋱

1 − 2 1

1 − 2

|||||||||||||

,

(27)|Mn| = −2|Mn−1| − |Mn−2|,

(28)|Mn| + 2|Mn−1| + |Mn−2| = 0,

(29)� = (n + 1)(−k)n
2∏

q=1

m−1
q
.

(30)

⎧⎪⎪⎨⎪⎪⎩

𝜏 = −2k

�
n − 2 +

2∑
q=1

m−1
q

�

�̃� = (n + 1)(−k)n
2∏

q=1

m−1
q

.

Remark 3.1 The extension of this approach to more defects 
is mathematically non-trivial. In cases when p > 2 , one can 
use other invariants of DmAe aside from its trace and deter-
minant, obtained via the Viete relation between the coeffi-
cients of the characteristic polynomial and the eigenvalues 
of DmAe on one hand, and the Newton relations between the 
coefficients of the characteristic polynomial and the traces 
of (DmAe)

l , on the other. This approach can be extended 
iteratively to handle cases when more than two defects are 
present. In these cases, we need to rely on more matrix 
invariants to completely determine the defects’ masses. The 
mathematical framework for these cases will be more tedi-
ous and will be explored by the authors in a forthcoming 
article.

Recovering the Locations

In general, once the defects’ masses are estimated, the last 
step is performing an integer optimization to determine the 
defects’ location numbers j1, j2,… , jp . This is accomplished 
by minimizing the L2 residual function

In Eq. (31), x̃∗
1
 is taken to be the explicit solution of Eq. (2) 

in terms of the variable s and the yet unknown parameters 
j1, j2,… , jp.

For the case of two defects located at j1 and j2 , we mini-
mize the functional defined in (31) with p = 2 . In Refs. [8, 
9] , an analytic solution for x̃∗

1
 was given for the case of 

one and two defects. Let � satisfy cosh � =
s2+ds+2

2
 and for 

1 ≤ i, j ≤ n , define

If there is a single defect on location j with mass m, then

Meanwhile, when there are two defects at locations j1 and j2 
of masses m1 and m2 , respectively, then

(31)r(j1, j2,… , jp) =

∞

∫
0

|x̃∗
1
(s, j1, j2,… , jp) − x̃1(s)|2ds.

(32)

Rij = −
cosh

[
(n + 1 − |j − 1|)�] − cosh

[
(n + 1 − i − j)�

]
2 sinh � sinh[(n + 1)�]

.

(33)x̃∗
1
(s, j) = −𝛾R11 − R1j(1 − m)s2 ⋅

−𝛾Rj1

1 + Rjj(1 − m)s2
.

(34)

x̃∗
1
(s, j1, j2)

=
−R11 + s2

(
(1 − m1)R

2

1j1
− (m2 − 1)R2

1j2
+ (m1 − 1)R11Rj1j1

+ (m2 − 1)R11Rj2j2

)

1 + s2
(
(1 − m1)Rj1j1

+ (1 − m2)Rj2j2
+ s2(m1 − 1)(m2 − 1)(Rj1j1

Rj2j2
− R2

j1j2
)
)

+
s4(m1 − 1)(m2 − 1)

(
R2

1j2
Rj1j1

− 2R1j1
R1j2

Rj1j2
+ R11R

2

j1j2
+ R2

1j1
Rj2j2

− R11Rj1j1
Rj2j2

)

1 + s2
(
(1 − m1)Rj1j1

+ (1 − m2)Rj2j2
+ s2(m1 − 1)(m2 − 1)(Rj1j1

Rj2j2
− R2

j1j2
)
) .
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On the other hand, x̃1 remains the Laplace transform data 
obtained from the discrete time measurements. When q ≤ 2 , 
the minimizer can be found by visually inspecting the plot of 
r. However, numerical integer optimization techniques will 
be required for three or more defects.

Numerical Simulations

We will now apply the strategy devised in Sect. 3 to two different 
100-body, two-defect spring–mass systems with common param-
eters given in Table 1. The case of two defects was the selected focus 
as it is not as simple as a one-defect system but not too computation-
ally complex as a system with three defects. In all cases, the input 
data, i.e., the longitudinal position of the first body x1(t) was meas-
ured in 50000 t-values with increment Δt = 0.002s from 0 to 100 
seconds. The simulations for the input data and all intermediate steps 
taken to fully characterize the defects in each scenario were carried 
out within MatLab. The first simulation presents a generic scenario 
where the algorithm worked very accurately. The second and third 
scenarios involve extreme cases where the accuracy of the method 
might be limited due to the physical forces in play.

Two Well‑Separated Heavy Defects

In this first simulation, we consider the scenario when we have 
two well-separated defects with relatively high masses. The 
defect parameters are shown in Table 2.

In lieu of a physical experiment, we shall use simulated 
data obtained by solving the forward time-domain problem 
(1) using MatLab’s built-in ODE solver. The solution curve 
x1 representing the longitudinal vibration of the first mass as a 
function of time is shown in Fig. 2.

The Z-transform (as defined in (5)) is applied to the discrete 
set of time measurements to obtain an estimate for the Laplace 
domain solution x̃1 . Following the discussion in Sect. 3.2, the 
values of s corresponding to the poles of the estimate for x̃1 
were computed. This yields our estimates s2 to the eigenvalues 
of the system matrix DmAe . Using these approximate eigenval-
ues, we obtain the estimates 𝜏 = − 197.3996 and �̃� = 10.1822 
for the trace and determinant of the system matrix respectively. 
Now, Eq. (30) fitted for the parameters of this simulation, reads

(35)

{
𝜏

2
− 98 =

1

m1

+
1

m2
101

�̃�
= m1m2

.

Solving this 2 × 2 nonlinear system yields our estimates for 
the masses, m1 = 2.0124 and m2 = 4.9291 , which have rela-
tive error of just around 0.62% and 1.42%, respectively.

Lastly, we use the residual function defined in (31), to find 
the locations j1 and j2 of the defects. For cases when there are 
more than two defects, a numerical optimization routine is nec-
essary to find the integer minimizers of the residual function 
r. For our case however, we only have two unknowns so we 
can simply plot r as a function of j1 and j2 and observe where 
the minimum occurs. We use MatLab’s intrinsic integration 
routine to evaluate r with the integral’s infinite upper bound 
replaced by 100. This truncation did not affect the quality of 
the results as both terms in the integrand vanishes rapidly as s 
increases. The plots in Fig. 3 show different perspectives of the 
graph of r on a semilogarithmic scale. The top plot shows the 
3D graph which suggests the existence of a global minimum. 
To pinpoint the location numbers, the bottom plots show the 
projection of the graph to the j1 - and j2-axes. They reveal the 
minimizers j1 = 30 and j2 = 60 , which are indeed the prior 
unknown locations of the defects.

In this simulation where the defects are relatively heavy 
and are far apart, the defects were characterized accurately 
with their masses determined with errors under 2% and their 
locations computed exactly. This also seems to be the case 
even if the heavy mass comes first in the chain, as long as 
there is a moderate separation between the two defects.

The good results we obtained above relied heavily on 
the use of time-domain data. The choice of using 50,000 

Table 1  Common values of 
system length, defect count, 
spring constant, impulse scalar, 
and damping coefficient for the 
simulations

n p k � d

100 2 1 1 0.1

Table 2  Defect parameters for 
the system in Sect. 4.1

q 1 2

m
q

2 5
j
q

30 60

Fig. 2  The solution curve x
1
(t) for the spring mass system with defect 

parameters given in Table 2
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sampling points in time is quite arbitrary and and is a result 
of multiple tests. Theoretically, the more sampling points 
used, the Z-transform will give better approximation to the 
Laplace transform. However, performing lots of time domain 
measurements is impractical in a physical setting. For the 
spring mass system above, we performed several simula-
tions using different number of time domain points used and 
recorded the relative errors of the resulting estimates for m1 
and m2 . The results are shown in Fig. 4.

From this figure, we observe that there are signifi-
cant errors in both m1 and m2 whenever we have less 
than 35,000 sampling points. Then there is a significant 
decrease in both errors once we have at least 40,000 
sampling points. This suggests that we should use at 
least 40,000 sampling points in our simulations. A more 
detailed mathematical and numerical study on the effects 
of the sampling frequency to the accuracy of the method 
is warranted to obtain a reliable threshold on the num-
ber of measurements required to produce results accurate 
within desired levels.

(a) Bird’s eye view

(b) Projection on j1 axis (c) Projection on j2 axis

Fig. 3  Plots of the residual as a function of j
1
 and j

2
 for the spring–mass system of Sect. 4.1
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In the next simulations, we test the proposed algorithm 
in more challenging scenarios when we have two defects 
that are next to each other.

Two Defects in Close Proximity

Our second simulation will involve the extreme case where 
we have two defects situated right next to each other near the 
middle of the chain. In particular, we consider a system with 
parameters given in Table 3. Note that the first defect has 
a mass relatively close to the uniform mass in the system.

Again, instead of a physical experiment, we shall use 
simulated data obtained by solving the forward time-domain 
problem (1) with the defect parameters given in Table 3 
using MatLab’s built-in ODE solver. The solution curve 
x1 representing the longitudinal vibration of the first mass 
as a function of time is shown in Fig. 5. This curve was 
obtained using 50000 uniformly-spaced points in time with 
Δt = 0.002.

Using these 50,000 discrete time measurements in the 
Z-transform as defined in (6), we obtain an approximation 
to the Laplace transform x̃1 of x1 . Observing the poles of our 
approximation to x̃1 gives the estimate trace and determinant, 
𝜏 = −198.4844 and �̃� = 30.1419 . We then use these values 
in our matrix invariants relations:

Solving this nonlinear system results to m1 = 1.0910 and 
m2 = 3.0714 , which have relative errors of just around 0.82% 
and 2.38% , respectively.

Now, we try to obtain the locations of the defects by 
plotting the residual function (of the defect locations j1 and 
j2 ) as defined in (31). Figure 6 offers three views of the 
graph of the residual function. The minimum of r occurs 
at j1 = j2 = 50 . This indicates that the algorithm’s best 
’guess’ is that there is only one defect located at position 

(36)

{
𝜏

2
− 98 =

1

m1

+
1

m2
101

�̃�
= m1m2

.

Fig. 4  Plot of the relative errors 
for the estimates to m

1
 and m

2
 

as a function of the number of 
time-domain measurements 
used

Table 3  Defect parameters for 
the system in Sect. 4.2

q 1 2

m
q

1.1 3
j
q

49 50

Fig. 5  The solution curve x
1
(t) for the spring mass system with defect 

parameters given in Table 3
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50. This ‘anomaly’ makes sense from a physical point of 
view as the defect at position 50 is three times heavier than 
all non-defective bodies while the defect at position 49 has 
actual mass 1.1, which is close to the uniform mass. This 
‘tricks’ our algorithm into thinking that the two defects 
are just a very heavy single defect. In cases like this, when 
the minimizer of the residual is the point of the form (j, j), 
but one is sure that there are two defects, we can look at 
the point with the second smallest residual (which in most 
of the times will be the point of the form (j1 ± 1, j2) or 

(j1, j2 ± 1) . In our simulation, the second smallest residual 
occur at (49, 50) which gives the exact locations of the 
defects. For reference, r(50, 50) ≈ 3.4496 × 10−7 while 
r(49, 50) ≈ 4.6656 × 10−7.

(a) Bird’s eye view

(b) Projection on j1 axis (c) Projection on j2 axis

Fig. 6  Plots of the residual as a function of j
1
 and j

2
 for the spring–mass system of Sect. 4.2

Table 4  Defect parameters for 
the system in Sect. 4.3

q 1 2

m
q

3.1 3
j
q

49 50
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Two Defects of Almost the Same Mass in Close 
Proximity

In this simulation, we subject our proposed scheme to a more 
difficult scenario where we have two defects of almost the 
same size that are next to each other. Specifically, we still 
consider a 100-mass system with unknown defect param-
eters given in Table 4. Here we see that unlike the previous 
simulation, the masses of the defects are relative close to 
each other, with relative difference of just about 3.33%.

As in the previous cases, we shall use simulated data 
instead of physical time-measurements. These are obtained 
using Matlab’s intrinsic ODE solver over the time interval 
[0, 100] with time increment Δt = 0.002 . The solution curve 
showing the displacement x

1
(t) of the left-most body at a 

give time t is shown in Fig. 7.
Using these 50000 data points, we approximated the 

Laplace transform x̃1 of the time-domain curve x1 using the 
Z-transform defined in (6). Then following the discussions 
in Sects. 3.2 and 3.3, we used the approximate poles of x̃1 
to obtain some estimates to the eigenvalues of the system 
matrix DmAe . This resulted to our estimates for the system 
matrix’ trace and determinants: 𝜏 = − 197.311830 and 
�̃� = 10.863558 , respectively. These values give rise to the 
following system of equations that will yield our estimates 
for the unknown masses m1 and m2:

Solving this system gives our estimates for the masses: 
m1 ≈ 3.049267 and m2 ≈ 3.049267 , with relative errors of 
about 1.745362 × 10−2 and 1.745069 × 10−2 , respectively. 
We see that the algorithm was still able to produce accurate 

(37)

{
𝜏

2
− 98 =

1

m1

+
1

m2
101

�̃�
= m1m2

.

estimates for the masses. Now, to predict the locations of 
the defects, we plot the residual function (of the defect loca-
tions j1 and j2 ) as defined in (31) and see where its minimum 
occurs. The graph is given in three perspectives in Fig. 8.

The plot shows that indeed the residual is minimized near 
the middle of the chain. The minimum value r(j1, j2) occurs at 
the point (49, 50) with r(49, 50) ≈ 3.6609 × 10−7 . This shows 
that the algorithm predicted the locations exactly. However, 
on a close second is the value r(50, 49) ≈ 3.8909 × 10−7 . 
This indicates that it is likely that the algorithm will inter-
change the locations of these two defects, which is under-
standable since the two defects have very similar masses and 
they are on very close proximity.

Remark 4.1 Our numerical investigations suggest that this 
method is stable with respect to measurement noise. We 
performed numerical tests in which the time-domain meas-
urements were perturbed by 1% Gaussian noise. In these 
simulations, the defects’ masses were predicted with error of 
just at most 5% while the defects’ locations where retrieved 
accurately.

Conclusion

In summary, we devised and executed an algorithm deter-
mining the location and masses of defects embedded 
within a 1D spring–mass system of known length. Par-
ticularly, the characteristics of the defects were recovered 
using solely some discrete measurements of the vibrations 
of the first body in the chain.

Assuming a sufficiently small spring damping coefficient, 
the algorithm developed consists of four steps: (1) gathering 
discrete time-domain data and converting it into the Laplace 
domain data x̃1 via the Z-transform, (2) obtaining estimates 
for the system’s eigenvalues using the poles of x̃1 on the 
complex plane, (3) recovering the masses of the defects by 
solving a non-linear system of equations involving the sys-
tem’s trace and determinant, and (4) determining the loca-
tions of each defect by minimizing an L2 residual function.

This algorithm was applied to three independent 
spring–mass systems with two defects. The first involves a 
generic case of having two defects with moderate to gener-
ous separation. In this case, very accurate results for both 
the masses and locations of the defects were obtained. The 
second simulation presented some of the limitations of the 
algorithm, in which the physical configuration of the sys-
tem led to difficulties of characterizing all the parameters 
of the defects with high accuracy. The algorithm thought 
that there is only one huge defect at the location of the 
bigger defect. However, since we know that there are two 
defects in the chain, we look at minimum residual value 
r(i, j) where i ≠ j . The last simulation involves two similar 

Fig. 7  The solution curve x
1
(t) for the spring mass system with defect 

parameters given in Table 4
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defects next to each other. The defects’ masses were esti-
mated accurately but the determination of the locations is 
a bit of a challenge. This is attributed to the fact that the 
masses of the two defects are relatively near to each other.

The proposed scheme, in the current form applied in 
the simulations above, though backed by a very general 
mathematical framework, has some limitations. First, 
the scheme illustrated only works for cases with one or 
two defects. An adaptation and extension of parts of the 
mathematical framework (described below) is needed to 

accommodate the case of an arbitrary number of defects 
and unknown defect parameters. Second, some accuracy 
in the determination of the unknown masses is lost when 
the defects are next to each other. This is a physical limit 
as the two proximal defects may be seen as a single larger 
defect, especially for longer systems. Lastly, the scheme 
only works well when the damping coefficient is small 
enough. This was required by the asymptotics used in the 
mathematical framework. This can be remedied through 
the use of exact expressions in the manipulation of Eq. (8), 

(a) Bird’s eye view

(b) Projection on j1 axis (c) Projection on j2 axis

Fig. 8  Plots of the residual as a function of j
1
 and j

2
 for the spring–mass system of Sect. 4.3
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but at a very high computational expense that is impracti-
cal, especially for systems with more than ten bodies.

The authors plan to perform some numerical investiga-
tions for cases when there are more than two defects. We 
already alluded to the theoretical framework that can be 
used in determining the masses of the defects, i.e., via the 
Viete relations for the characteristic polynomial and the 
eigenvalues of DmAe and the Newton relations for the char-
acteristic polynomial and the traces of (DmAe)

l . Obtaining 
the location of the defects will also be more computation-
ally involved as simply plotting r will not work. For this, 
we shall need numerical integer optimization techniques.

An interesting follow-up to this work would be the applica-
tion of the algorithm in a physical setting where we do actual 
measurements of the vibrations in the first mass. One can also 
extend this work and explore the possibility of using measure-
ments from both ends of the chain to address the limitations 
of the current work. We can also do a numerical study by 
performing sensitivity tests with respect to the damping coef-
ficient. Our current method assumes a small damping coef-
ficient d, so it might be worthwhile to look at the effects of the 
magnitude of d on the quality of results and perhaps find an 
acceptable threshold or upperbound for it. Another immediate 
extension would be to study the case of non-negligible damp-
ing coefficient. We also mentioned above the reliance of the 
method on discrete time measurements. Hence, a mathemati-
cal and numerical study on the effects of sampling frequency 
on the accuracy of the results is worthwhile. This may lead 
us to determining a threshold on the number of time-domain 
measurements required so that the results are within some 
error bounds. Further extensions to the work presented here 
include, but are not limited to: non-Hookean spring–mass sys-
tems, scenarios where every spring has a different stiffness/
damping property, and multi-dimensional spring–mass arrays.
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