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We cloak a region from a known incident wave by surrounding the region with three or more
devices that cancel out the field in the cloaked region without significantly radiating waves.
Since very little waves reach scatterers within the cloaked region, the scattered field is small
and the scatterers are for all practical purposes undetectable. The devices are multipolar point
sources that can be determined from Green's formula and an addition theorem for Hankel
functions. The cloaking devices are exterior to the cloaked region.
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1. Introduction

Interest in cloaking has surged, as reflected in the many recent reviews [2,3,10]. We introduced a new kind of cloaking for the
two-dimensional Helmholtz equation [11,12]. Our approach uses active sources (cloaking devices) to hide objects placed in an
external region. The advantages of our approach are: (a) by the superposition principle a cloak can be designed for a broad band of
frequencies (excluding discretely many frequencies where the object being cloaked, if non-absorbing, “resonates”) and (b) the
cloak does not need materials with extreme properties which are hard to realize and dispersive, as it is the case in most
transformation based cloaking strategies (see e.g. [6,8,10,16,23] — though an exception is [17]). A significant drawback of our
approach is that we assume full knowledge of the incident field. Also the active sources contain a monopole term which may be
problematic for applications in electromagnetism.

The problem of finding source distributions for cloaking is clearly ill-posed in the sense that if it admits one solution then it
admits infinitely many solutions. In [11,12] we computed particular solutions involving three point-like devices by solving a
constrained least-squares problem with the singular value decomposition (SVD). In an effort to explain rigorously our previous
results, we use the Green representation theorem for the Helmholtz equation (in short Green's formula, see e.g. [5]), to derive
explicitly a particular solution in terms of the incident field (Theorem 1).

Another cloaking method based on Green's formula is the active interior cloak introduced by Miller [19], which uses single and
double layer potentials to cancel the incident field inside a closed curve. Cancelling fields inside (or outside) a region surrounded by
active sources is known in acoustics as “active soundcontrol” andhas applications to e.g. noise suppression.Wepoint to the reviewson
active sound control by Peterson and Tsynkov [24] and Ffowcs Williams [7] and to the early work by Malyuzhinets [18]. Jessel and
Mangiante [13] recognized that the single and double layer potentials from Green's formula can be hard to realize and showed that
they can be replaced by a source density in an annular region containing the curve. Here we apply an addition theorem for Hankel
functions to replace the source distribution on a curve by a few active sources, effectively connecting the cloaked region with the
exterior. The sources we get are, as the ansatz used in [11,12], multipolar point-like sources: they are given as a series of cylindrical
radiating solutions to the Helmholtz equation, centered at a few points. We also establish convergence of the series to the fields
required for cloaking and give a specific configuration of sources (Section 2.3) similar to the onewe found empirically in [11,12]. The
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problem of controlling the sources in the time domain so that the desired cloaking effect is achieved is not considered here and is left
for future studies.

Other methods for obtaining exterior cloaks include those based on complementary media [14], surface plasmonic resonances
[25], anomalous resonances in the vicinity of a superlens [20–22] and waveguides [26].

A different idea is that of illusion optics [15] where the goal is to hide an object and make it appear as another object. The
Green's formula based approach that we present here also explains why this can be done using active devices, as was recently
observed numerically [27]. We give a way of explicitly constructing the devices to such effect, without the need for solving a least-
squares problem (see Remark 4).

We work in the frequency domain at a fixed angular frequencyω. In a medium with constant speed of propagation c, the wave
field u(x,ω) satisfies the Helmholtz equation
Δu + k2u = 0; for x∈R
2
; ð1Þ

k=2π/λ is the wavenumber and λ=2πc/ω is the wavelength. For simplicity we drop the dependency on the frequency and
where
write u(x)≡u(x,ω).

Remark 1. We assume that the frequencyω is not a resonant frequency of the scatterer wewant to hide. Resonant frequencies are
left for future studies.

Remark 2. Calling a cloak “active” can be ambiguous as one can refer to a cloak that can hide active sources [9] or a cloak that uses
active sources tohideobjects [11,12,19]. The cloakingmethodwepresenthere is “active” in both senses asweuse active devices tohide
objects and in some simple situations it is possible to hide sources (see Remark 3). However herewe focus only on cloaking scatterers.

2. Green's formula cloaks

We present the active interior cloak [19] and using an addition theorem for Hankel functions we show how this cloak can be
replaced by a few multipolar sources (Section 2.2). The price to pay for using a finite number of sources is that the cloaked region
and the region fromwhich the object is invisible are smaller compared to the active interior cloak. We then make some geometric
considerations (Section 2.3) to show that with the particular approach of Section 2.2 we need three or more sources to get a non-
empty cloaked region.

2.1. Active interior cloak

Denote byD the region ofR2 thatwewish to cloak from a known incidentfield ui.We also assume fromnowon thatD is a simply
connected bounded region of class C2. The arguments in Section 2 can be easily generalized to the case where D is composed of
several simply connected components. In order to cloak D, we construct a solution ud to the Helmholtz Eq. (1) (in R2 excluding the
boundary of D) such that
ud xð Þ = −ui xð Þ for x∈D
0 otherwise:

�
ð2Þ
Hence the total field ud+ui vanishes in D and is indistinguishable from ui outsideD. If a scatterer is placed insideD the scattered
field us resulting from the incident field ud+ui is zero. Assuming ui is an analytic solution to the Helmholtz Eq. (1) inside D, a field
ud satisfying Eq. (2) can be constructed using Green's formula (see e.g. [5])
ud xð Þ = ∫∂DdSy − n yð Þ⋅∇yui yð Þ
� �

G x; yð Þ + ui yð Þn yð Þ⋅∇yG x; yð Þ
n o

; ð3Þ

n yð Þ is the unit outward normal toD at a point y on the boundary ∂D and the Green's function for the two dimensional wave
where
equation is
G x; yð Þ = i
4
H 1ð Þ

0 kjx−yjð Þ; ð4Þ

Hn
(1) is the n-th Hankel function of the first kind ([1], Section 9). The first term in the integrand in Eq. (3) can be interpreted
where

as the potential due to a distribution of monopoles on the boundary ∂D (the single layer) while the second term can be interpreted
as the potential due to a distribution of dipoles oriented normal to ∂D (the double layer).

In the frequency domain, the cloaking scheme we obtain is the same scheme proposed by Miller [19], where the single and
double layer potentials in Eq.(3) are simulated with many sources completely surrounding the cloaked region D. We give an
example of the field ud generated by Green's formula (3) in Fig. 1. The effect of this active interior cloak can be seen in Fig. 2, where
it is used to hide a kite shaped scatterer [4] with homogeneous Dirichlet boundary conditions. The field is virtually zero inside the
cloaked region, so there are very little scattered waves to detect the object.



where

Fig. 2. Active interior cloak (a) inactive and (b) active. The region D where Green's formula is applied is the circle of radius 5λ in thick lines. The field inside the
cloaked region D is virtually zero, so that outside the cloaked region the field is indistinguishable from the incident plane wave with direction 5π/13. The axis unit
are in wavelengths λ.

Fig. 1. The field ud generated by Green's formula (3) The regionD is the disk in thick lines with radius 5λ and the incident field is a planewavewith angle 5π/13. The
field ud is very close to the incident field inside D and zero outsideD. The integral in Eq. (3) is evaluatedwith the trapezoidal rule on 28 equally spaced points on ∂D
The axis units are in wavelengths λ.
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2.2. Active exterior cloak

Our aim is to replace the single and double layer potentials on ∂D appearing in Eq. (3) by a few ndev multipolar sources (what
we call “cloaking devices”) located at some points xj∉∂D. The advantage being that the cloaked region is no longer completely
enclosed by a surface. The field generated by such sources can be written formally as
u extð Þ
d xð Þ = ∑

ndev

j=1
∑
∞

m=−∞
bj;mVm x−xj

� �
; ð5Þ

the coefficients bj;m∈C are to be determined and

Vm xð Þ ≡H 1ð Þ
m kjxjð Þexp im arg xð Þ½ �

iating cylindrical waves. Here arg xð Þ denotes the counterclockwise oriented angle from the vector (1,0) to the vector x. By a
are rad
radiating solution to the Helmholtz equation, we mean it satisfies the Sommerfeld radiation condition (see e.g. [4]).

In [11,12] we presented a numerical scheme based on the singular value decomposition (SVD) to compute the coefficients bj,m
in a way that ud(ext) approximates ud as defined in Eq. (2). We give next in Theorem 1 one way of obtaining these coefficients
explicitly such that u extð Þ

d xð Þ = ud xð Þ for x in a certain region R⊂R2, effectively reducing the cloaked region to D∩R.
Let us assign to each source xj a segment ∂Dj of the boundary. These segments are chosen such that they partition ∂D and

∂Di∩∂Dj is empty or a single point when i≠ j. An example of this setup is given in Fig. 3. The coefficients bj,m are given next.
s

image of Fig.�1


for j=

Fig. 3. Active exterior cloak construction. The contribution of portion ∂Dj to the single and double layer potentials in Green's formula (3) is replaced by amultipolar
source located at xj∉∂D.
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Theorem 1. Multipolar sources located at xj∉∂D, j=1,…,ndev, can be used to reproduce the active interior cloak in the region
R = ∩
ndev

j=1
x∈R

2jjx−xj j N sup
y∈∂Dj

jy−xjj
( )

:

The coefficients bj,m in Eq. (5)such that u extð Þ
d xð Þ = ud xð Þ for x∈ R are given by
bj;m = ∫∂Dj
dSy −n yð Þ⋅∇yui yð Þ

� �
Um y−xj

� �
+ ui yð Þn yð Þ⋅∇yUm y−xj

� �� �
ð6Þ

1,…,next and for m∈Z. Here Um xð Þare entire cylindrical waves,

Um xð Þ≡ Jm kjxjð Þexp im arg xð Þ½ �:
Proof. Clearly, the integral over the whole boundary ∂D in Green's formula (3) can be written as the sum of the integrals over the
segments ∂Dj. For segment ∂Dj, we use Graf's addition formula ([1], Section 9.1.79) to express the Green's function G x; yð Þ as a
superposition of multipolar sources located at xj,
G x; yð Þ = i
4
H 1ð Þ

0 kjx−xj− y−xj

� �j� �

=
i
4

∑
∞

m=−∞
Vm x−xj

� �
Um y−xj

� �
;

ð7Þ

the series converges absolutely and uniformly on compact subsets of jx−xjj N jy−xjj (this can be seen by e.g. adapting
where
Theorem 2.10 in [4] to two dimensions). Splitting the integral in Green's formula (5) into integrals over ∂Dj and using the
expansion in Eq. (7) we get for x∈R,
u extð Þ
d xð Þ = ∑

ndev

j=1
∫∂Dj

dSyV −n yð Þ⋅∇yui yð Þ
� �

∑
∞

m=−∞
Vm x−xj

� �
Um y−xj

� �

+ ui yð Þn yð Þ⋅∇y ∑
∞

m=−∞
Vm x−xj

� �
Um y−xj

� �
t

ð8Þ
The desired Eq. (6) can be obtained by rearranging the infinite sum and the integral. For the first term in the integrals in Eq. (8),
the uniform convergence of the series in Eq. (7) for y∈∂Dj allows us to switch the infinite sum and the integral. The second term
involves the gradient
∇yUm y−xj

� �
= k

y−xj

jy−xjj
J′m kjy−xjj
� �

exp −im arg y−xj

� �h i

+ Jm kjy−xjj
� �

−im exp −im arg y−xj

� �h i� �
∇yarg y−xj

� �
:

ð9Þ

image of Fig.�3
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Fig. 4. A configuration for a cloak with three devices forming an equilateral triangle such that |xj|=δ for j=1,2,3. The region Dwhere we apply Green's formula i
the disk of radius σ centered at the origin. The region R25R appears in gray. The green colored region is the effective cloaked region D∩R.
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Since we assumed xj∉∂D, the gradient
∇yarg y−xj

� �
=

y−xj

� �⊥
jy−xjj2

; with x⊥≡ −x2
x1

� �
; ð10Þ

nded for y∈∂Dj. Using the series representation for Bessel functions (see e.g. ([1], Section 9.3.1) and ([4], Section 3.4)) we
is bou
can get the estimates
Jn tð Þ = tn

2nn!
1 + O 1= nð Þð Þ; J

0
n tð Þ = tn−1

2n n−1ð Þ! 1 + O 1 = nð Þð Þ

1ð Þ
n tð Þ = 2n n−1ð Þ!

πitn
1 + O 1= nð Þð Þ

ð11Þ

or tN0 as n→∞, uniformly on compact subsets of (0,∞). Using Eq. (11) and the expression for the gradient in Eq. (9) we can
valid f
estimate the terms
Vm x−xj

� �
∇yUm y−xj

� �
= O jy−xjjm−1

jx−xjjm
 !

+ O m
jy−xjjm
jx−xjjm

 !
ð12Þ

∞ uniformly on compact subsets of jx−xjj N jy−xjj. Therefore the series in the second integrand of Eq. (8) converges
as m→
absolutely and uniformly in ∂Dj and the infinite sum and the integral can be switched. □

Note that Theorem 1 does not guarantee that the effective cloaked region D∩R is not empty. However we do have that the
device's field vanishes far away from the devices (i.e. u extð Þ

d xð Þ = 0 for jx j large enough) because R25R is bounded. Later in Section
2.3 we give a specific configuration where D∩R is not empty.

Remark 3. In order to guarantee that the field ud xð Þ in Green's formula (3) vanishes outside D, we need an analytic incident
field ui xð Þ inside D. If the field ui xð Þ is a radiating and also a C2 solution to the Helmholtz Eq. (1) outside D (as it is the case when
there are sources and non-resonant scatterers inside D), then Green's formula (3) converges outside D to ui xð Þ and inside D to zero
(see e.g. [5]). This is the principle behind noise suppression [7] and the same idea could be used to cloak some (assumed known)
active sources and scatterers in D.

Remark 4. Clearly the same Green's formula approach can be used to create illusions with active sources [27]: one can
simultaneously cloak an object and generate waves that correspond to the scattering from a completely different object (the
“virtual object”). All we need is knowledge of the scattered field uvirt

s xð Þ generated by hitting the virtual object with the incident
ui xð Þ. Since uvirt

s xð Þ is a radiating solution to the Helmholtz equation, to achieve illusion simply subtract usvirt from ui in Eq. (6) (this
is assuming that uvirt

s xð Þ is C2 outside D).



Fig. 5. Comparison of the Green's formula method (left column) and the SVD based method [11,12] (right column). The circle in thick lines is where we apply
Green's formula. The dashed circle is where we enforce that the field be close to the incident field and the solid circle is where we enforce that the device's field is
close to zero. The first row corresponds to the device's field and the second row to the total field.
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Remark 5. The proof of Theorem 1 generalizes easily to the Helmholtz equation in three dimensions. We leave this generalization
for future studies.

2.3. An explicit example of an active exterior cloak

In this Sectionwe describe one possible realization of the cloak configuration presented in Theorem 1. First notice that with this
particular method we need to have ndev≥3 for a non-empty effective cloaked region D∩R (with D and R given as in Theorem 1).
This is consistent with our numerical results in [11,12], as we observed that at least three devices are apparently needed to cloak
plane waves with an arbitrary direction of propagation.

To see that at least three devices are needed, first notice that R25R = ∪ndev
j = 1 Bj, where the Bj are disks centered at the j-th device

location xj and ∂Dj⊂Bj. We thus get
∂D⊂∪
ndev

j=1

Bj:
If we have only one device (ndev=1), thenD⊂R25R and thus the effective cloaked region is empty. If we have two devices and D
is simply connected, then we must also have D⊂R25R, as the union of two non-disjoint disks is simply connected.

With three devices we take as an example the configuration shown in Fig. 4. Here the devices are located at a distance δ from
the origin and are the vertices of an equilateral triangle. The region D where we apply Green's formula is the disk of radius σ
centered at the origin. The circle ∂D is partitioned into three arcs ∂Dj, j=1,2,3 of identical length which are chosen so that the
distances supy∈∂Dj

jy−xjj are equal for j=1,2,3.
Simple geometric arguments show that the region R of Theorem 1 is the complement of the union of the three disks in gray in

Fig. 4, with radius
r σ; δð Þ = σ−δ=2ð Þ2 + 3δ2 =4
� �1=2

; ð13Þ
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Fig. 6. Comparison of the cloak performance for the SVDmethod withM(δ) terms (blue) and the Green's identity method withM(δ) terms (red) and 2M(δ) term
(green). In (a) we measure how small is the total field inside the cloaked region and in (b) how small is the device field far away from the devices.
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ntered at xj, j=1,2,3. To get an idea of the dimensions of the effective cloaked region R∩D (in green in Fig. 4), we look
and ce
at the radius of the largest disk that can be inscribed inside. This disk has radius
reff σ; δð Þ = δ−r σ; δð Þ: ð14Þ
Thus for fixed δ the largest effective cloaked region is obtained when σ=δ/2, which corresponds to the case where the
intersection of two of the disks in gray in Fig. 4 is a single point. Then the radius of the largest disk that can be inscribed inside R∩D
is
r∗eff δð Þ = 1−
ffiffiffi
3

p
=2

� �
δ≈ 0:13δ: ð15Þ
3. Numerical experiments

We compare the Green's formula based method with the geometry described in Section 2.3 and the maximal cloaked region
size (i.e. σ=δ/2) to an SVD basedmethod [11,12]. In the SVD basedmethod three distances are needed to describe the devices and
the cloaked region: the distance δ from the devices to the origin, the radius α of the cloaked region and the radius γ of the circle

image of Fig.�6
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where we enforce that the device's field be small. The numerical experiments in [11,12] were done with α=δ/5 and γ=2δ. To
compare the cloaked regions for both methods we choose
Fig. 7. E
method
α = r∗eff δð Þ = 1−
ffiffiffi
3

p
=2

� �
δ

ave γ unchanged. In this way the cloaked region for the SVD method should be the largest disk that fits inside the effective
and le
cloaked region D∩R of the Green's formula method.

We first compare in Fig. 5 the device's fields and the total field in the presence of a scatterer for both the SVDmethod and Green's
formula method. Here the devices are at a distance δ=10λ from the origin, with k=1 and λ=2π. In all our numerical experiments
the series in Eq. (5) is truncated tom=−M,…,M. For the SVDmethod we follow the heuristicM δð Þ = kδ= 2ð Þ 1 +

ffiffiffi
3

p
= 2

� �
in [12],

which for the setup of Fig. 5 givesM(10λ)=59. For comparison purposes we used the same number of terms in the Green's formula
method. In both methods, the device's field cancels out the incident field in region near the origin without changing the incident
plane wave. The region where the total field vanishes is larger for the Green's formula method than for the SVD method. And for the
former method, the cloaked region seems larger than what is predicted by Section 2.3.

The fields near the devices (the “urchins” in Fig. 5) are very large as can be expected from the asymptotic behavior of Hankel
functions at the origin
H 1ð Þ
n tð Þ = O t− jn j� �

as t→0 for n∈ Zn 0f g:

The Green's formula allows us to replace each of the devices by a closed curve containing the device andwith appropriate single

and double layer potentials. The curves could be chosen as circles outside of which the device's field has reasonable values (e.g. less
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than 5 or 100 times the magnitude of the incident field). For both methods these circles do not touch, leaving “throats” connecting
the cloaked region to the exterior, so the cloaked region remains outside these “extended” devices.

We also considered larger cloaked regions in Fig. 6, keeping the same configuration as in Fig. 5 but taking δ∈ [5,50]λ. To
evaluate the cloak performance we plot in Fig. 6 the quantity
which

which
terms
When

1 The
logarith
‖ui + ud‖L2

‖ui‖L2
; on the circle jx j = 1−

ffiffiffi
3

p
=2

� �
δ;

measures how well the device's field cancels the incident field inside the cloaked region and

‖ud‖L2

‖ui‖L2
; on the circle jx j = 2δ;

measures how small the device's field is relative to the incident field far away from the devices.1 With the same number of
M(δ) the SVD method outperforms the Green's formula method in both the cloaked region and far away from the devices.
2M(δ) terms are used for the Green's formula method, the relative errors improve, but the convergence of the series in Eq.
ems slower in the cloaked region than far away from the devices.
(5) se

We estimate in Fig. 7 the size of the “extended” devices (i.e. the “urchins”where the device's field is large) by assuming they are
disks centered at the device's locations xi. The disk radius for the device centered at xi is estimated by finding the closest
intersection of the level set jud xð Þ j = βwith each of the segments between xi and the other two devices. The quantity plotted in
Fig. 7 is the maximum of these distances rescaled by δ and is always below the radius at which the extended cloaking devices do
not leave gaps with the exterior (for both cut-off values β=5 and 10). The cost of havingmore terms in Green's formula is that the
extended devices leave narrower throats. Presumably in the limit M→∞ these extended devices touch and correspond to the
region R25R in Theorem 1.

Remark 6. A natural question is whether changing the integrals over ∂Dj in Eq. (6) to integrals over subsets of ∂Dj gives good
cloaking devices. Since in the region R of Theorem 1 the device's field is identical to that of the active interior cloak, we can
reformulate the question as follows: does making small openings in ∂D give a good active interior cloak? This is not the case
because the resulting active interior cloak has fields identical in R to the fields for the cloak taking all of ∂D into account minus the
fields obtained by integrating Green's formula (3) on the portions of ∂D that were excluded. The excluded portions have a
monopole and dipole distributions that radiate and spoil the cloaking effect that we are after, even for small openings.

Acknowledgments

The authors are grateful for support from the National Science Foundation through grant DMS-070978. GMW and FGV wish to
thank the Mathematical Sciences Research Institute, where this manuscript was completed.

References

[1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 9 edition, Dover, New York, NY, 1972.
[2] A. Alú, N. Engheta, Plasmonic and metamaterial cloaking: physical mechanisms and potentials, J. Opt. Pure Appl. Opt. 10 (2008) 093002.
[3] H. Chen, C.T. Chan, Acoustic cloaking and transformation acoustics, J. Phys. D Appl. Phys. 43 (11) (2010) 113001, doi:10.1088/0022-3727/43/11/113001.
[4] D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Volume 93 of Applied Mathematical Sciences, second edition, Springer-Verlag,

Berlin3-540-62838-X, 1998.
[5] D. L. Colton and R. Kress. Integral equation methods in scattering theory. Pure and Applied Mathematics (New York). John Wiley & Sons Inc., New York, 1983.

ISBN 0-471-86420-X. A Wiley-Interscience Publication.
[6] M. Farhat, S. Guenneau, S. Enoch, A.B. Movchan, Cloaking bending waves propagating in thin elastic plates, Phys. Rev. B 79 (2009) 033102.
[7] J.E. Ffowcs Williams, Review lecture: anti-sound, Proc. R. Soc. A 395 (1984) 63–88.
[8] A. Greenleaf, M. Lassas, G. Uhlmann, Anisotropic conductivities that cannot be detected by EIT, Physiol. Meas. 24 (2003) 413–419.
[9] A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann, Full-wave invisibility of active devices at all frequencies, Commun. Math. Phys. 275 (2007) 749–789 ISSN

0010-3616.
[10] A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann, Cloaking devices, electromagnetic wormholes, and transformation optics, SIAM Rev. 51 (1) (2009) 3–33.
[11] F. Guevara Vasquez, G.W. Milton, D. Onofrei, Active exterior cloaking for the 2D Laplace and Helmholtz equations, Phys. Rev. Lett. 103 (2009) 073901.
[12] F. Guevara Vasquez, G.W. Milton, D. Onofrei, Broadband exterior cloaking, Opt. Express 17 (2009) 14800–14805, doi:10.1364/OE.17.014800.
[13] M.J.M. Jessel, G.A. Mangiante, Active sound absorbers in an air duct, J. Sound Vib. 23 (3) (1972) 383–390.
[14] Y. Lai, H. Chen, Z.-Q. Zhang, C.T. Chan, Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell, Phys. Rev. Lett. 102

(2009) 093901.
[15] Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, C.T. Chan, Illusion optics: the optical transformation of an object into another object, Phys. Rev. Lett. 102 (25)

(Jun 2009) 253902, doi:10.1103/PhysRevLett.102.253902.
[16] U. Leonhardt, Optical conformal mapping, Science 312 (2006) 1777–1780.
[17] U. Leonhardt, T. Tyc, Broadband invisibility by non-Euclidean cloaking, Science 323 (2009) 110–112.
[18] G.D. Malyuzhinets, One theorem for analytic functions and its generalizations for wave potentials, Third All-Union Symposium on Wave Diffraction, (Tbilisi,

24–30 September 1964), Abstracts of Reports, 1964.
[19] D.A.B. Miller, On perfect cloaking, Opt. Express 14 (2006) 12457–12466.
values of ∥ud ∥/∥ui ∥ reported in Fig. 4b in [12] are, due to a normalization mistake, up to a factor of
ffiffiffiffiffiffi
10

p
smaller than what they should be. In the

mic scale we use to display this quantity, the resulting shift is small and our conclusions remain the same.

http://dx.doi.org/10.1088/0022-43/11/113001
http://dx.doi.org/10.1364/OE.17.014800
http://dx.doi.org/10.1103/PhysRevLett.102.253902


524 F. Guevara Vasquez et al. / Wave Motion 48 (2011) 515–524
[20] G.W. Milton, N.-A.P. Nicorovici, On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. Lond. A Math. Phys. Sci. 462 (2006)
3027–3059 ISSN 0080-4630.

[21] G.W. Milton, N.-A.P. Nicorovici, R.C. McPhedran, K. Cherednichenko, Z. Jacob, Solutions in folded geometries, and associated cloaking due to anomalous
resonance, New J. Phys. 10 (2008) 115021.

[22] N.-A.P. Nicorovici, G.W. Milton, R.C. McPhedran, L.C. Botten, Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,
Opt. Express 15 (2007) 6314–6323.

[23] J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields, Science 312 (2006) 1780–1782.
[24] A.W. Peterson, S.V. Tsynkov, Active control of sound for composite regions, SIAM J. Appl. Math. 67 (2007) 1582–1609.
[25] M.G. Silveirinha, A. Alù, N. Engheta, Cloaking mechanism with antiphase plasmonic satellites, Phys. Rev. B 78 (20) (Nov 2008) 205109, doi:10.1103/

PhysRevB.78.205109.
[26] I.I. Smolyaninov, V.N. Smolyaninova, A.V. Kildishev, V.M. Shalaev, Anisotropic metamaterials emulated by tapered waveguides: application to optical

cloaking, Phys. Rev. Lett. 102 (2009) 213901.
[27] H.H. Zheng, J.J. Xiao, Y. Lai, C.T. Chan, Exterior optical cloaking and illusions by using active sources: a boundary element perspective, Phys. Rev. B 81 (19)

(May 2010) 195116, doi:10.1103/PhysRevB.81.195116.

http://dx.doi.org/10.1103/PhysRevB.78.205109
http://dx.doi.org/10.1103/PhysRevB.78.205109
http://dx.doi.org/10.1103/PhysRevB.81.195116

	Exterior cloaking with active sources in two dimensional acoustics
	Introduction
	Green's formula cloaks
	Active interior cloak
	Active exterior cloak
	An explicit example of an active exterior cloak

	Numerical experiments
	Acknowledgments
	References


