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Abstract. In this paper we prove the existence of approximate controls for certain classes of parabolic problems with non-
smooth coefficients and discuss as examples the problem of approximate controllability for the heat flow in heterogeneous
media such as, periodic composites, perforated domains or periodic microstructures separated by rough interfaces.
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1. Introduction

Interior approximate controllability of heat flows through various materials within complex given
geometrical settings is of paramount practical importance [7–9,11,15]. As an example, let us introduce
� ⊂ R

N bounded open set with smooth boundary, ω ⊂ � a non empty open subset and consider A a
symmetric N × N -matrix field in M(α, β, �), that is,

{
(i) A ∈ (L∞(�))N2

and aij = aji, 1 � i, j � N,

(ii) (A(x)λ, λ) � α|λ|2, |A(x)λ| � β|λ|, (1.1)

for every λ ∈ R
N and a.e. in � where α, β ∈ R with 0 < α < β.

In the sequel we denote by ′ the first time-derivative. The classical linear parabolic interior control
problem reads:

Let δ be a real number with 0 < δ < 1 and z ∈ L2(�) a given target function. Given f ∈ L2((0, T )×
�) and u0 ∈ L2(�), determine v ∈ L2((0, T ) × ω) such that the solution u in C([0, T ], L2(�)) of the
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following problem⎧⎪⎨
⎪⎩

u′ − div(A∇u) = f + vχω in � × (0, T ),

u = 0 on ∂� × (0, T ),

u(x, 0) = u0 in �,

satisfies∥∥u(T ) − z
∥∥

L2(�)
� δ.

The question of interior approximate controllability for the classical linear heat equation has been
thoroughly studied in the literature ([18,26] and references therein). It is well known that, in the case
of time-independent coefficients A, this question is equivalent to the question of unique continuation
for elliptic problems. The latter question has been answered in the affirmative in two dimensions in [3]
for the classical elliptic divergence operator with measurable coefficients) (see also [1] for more general
linear elliptic operators and bounded coefficients). In three or higher dimensions it is known to hold
only for Lipschitz coefficients [14] (see also [24] with counterexamples (for less smooth coefficients)
provided for instance in [19,20,23].

In the control literature, there exist several papers studying the control of parabolic problems with
nonsmooth coefficients. In this context, null controllability for non smooth coefficients was addressed
for the 1-D case in papers [13,16,27] while null and exact controllability for higher dimensional case
with piece-wise smooth coefficients was discussed in [12,17].

In this paper we will provide a general strategy for obtaining approximate controls for parabolic prob-
lems via periodic approximations. In this regard, we will first prove our strategy for the approximate
control of the classical linear parabolic problem with non-smooth coefficients in Theorem 2.1 (in par-
ticular Corollary 2.2 presents the proof of approximate control of periodic microstructures) and then
state the general control scheme and its application for the approximate controllability of multi-scale
parabolic problems considered in [7–11,15] in the general case of non-smooth coefficients.

2. The classical problem

In this section, we will present our ideas in the context of the classical diffusion problem. Thus, the
next result describes a general scheme for computing approximate controls in the context of general
linear parabolic problems with non-smooth coefficients. We have,

Theorem 2.1. Let � ⊂ R
N be a bounded open set with smooth boundary, ω ⊂ � a non-empty open

subset, and Y ⊂ R
N a cell with the paving property in R

N . Assume that {ε} is a parameter taking its
values in a sequence of positive real numbers that converges to zero.

Let δ be a real number with 0 < δ < 1 and z ∈ L2(�) a given target function. For f ∈ L2((0, T )×�),
u0 ∈ L2(�), and A ∈ M(α, β, �) a given symmetric N × N -matrix field as defined in (1.1), consider
the following problem⎧⎪⎨

⎪⎩
u′ − div(A∇u) = f in � × (0, T ),

u = 0 on ∂� × (0, T ),

u(x, 0) = u0 in �.
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Suppose that, for some αB, βB ∈ R with 0 < αB < βB , there exists v0 ∈ L2(�) and a Y -periodic
matrix field B ∈ M(αB, βB, Y ), such that the sequence of matrices Bε(x) = B(x

ε
) has the property that

for any f ∈ L2((0, T ) × �), there exists {u0
ε}ε ⊂ L2(�) (depending on f , B and v0) with u0

ε → v0

strongly in L2(�), such that the solution uε of⎧⎪⎨
⎪⎩

u′
ε − div(Bε∇uε) = f in � × (0, T ),

uε = 0 on ∂� × (0, T ),

uε(x, 0) = u0
ε in �,

verifies, for some ε0 > 0,

∥∥uε(·, T ) − u(·, T )
∥∥

L2(�)
� δ

3
for all ε < ε0. (2.1)

Then there exists a control v ∈ L2((0, T ) × ω) such that solution of the following problem⎧⎪⎨
⎪⎩

p′ − div(A∇p) = f + χωv in � × (0, T ),

p = 0 on ∂� × (0, T ),

p(x, 0) = u0 in �,

verifies∥∥p(·, T ) − z
∥∥

L2(�)
� δ.

Proof. For every function ψ ∈ L2(Y ) define its average MY (ψ) = 1
|Y |

∫
Y

ψ dy where |Y | denotes
the measure of the set Y . Next consider the space of periodic functions with mean zero defined by
Wper(Y ) = {ψ ∈ H 1

per(Y ), MY (ψ) = 0}. Let B0 be the homogenized matrix corresponding to Bε (see
[2,6]), i.e.,

B0λ = MY (B∇qλ), for every λ ∈ R
N, (2.2)

where wλ solves{∫
Y

B∇qλ∇ψ = 0, for all ψ ∈ Wper(Y ),

(qλ − λ · y) ∈ Wper(Y ).
(2.3)

Classical controllability results (see [25,26]) imply there exists ϕ0 ∈ L2(�) such that the solution of⎧⎪⎨
⎪⎩

w′
0 − div(B0∇w0) = f + χωϕ0 in � × (0, T ),

w0 = 0 on ∂� × (0, T ),

w0(x, 0) = v0 in �,

(2.4)

verifies

∥∥w0(·, T ) − z
∥∥

L2(�)
� δ

3
. (2.5)
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Consider now the problem

⎧⎪⎨
⎪⎩

p′ − div(A∇p) = f + χωϕ0 in � × (0, T ),

p = 0 on ∂� × (0, T ),

p(x, 0) = u0 in �.

The hypothesis implies that there exists {ξε
0 }ε ⊂ L2(�) with ξε

0 → v0 strongly in L2(�) such that the
solutions of⎧⎪⎨

⎪⎩
w′

ε − div(Bε∇wε) = f + χωϕ0 in � × (0, T ),

wε = 0 on ∂� × (0, T ),

wε(x, 0) = ξ ε
0 in �,

(2.6)

satisfy, for some ε1 > 0, the inequality

∥∥wε(·, T ) − p(·, T )
∥∥

L2(�)
� δ

3
for all ε < ε1. (2.7)

Note that classical homogenization theory and correctors ([6]) implies that problem (2.4) is the homog-
enized limit of the sequence of problems (2.6) and one has the following corrector results

∥∥wε(·, T ) − w0(·, T )
∥∥

C([0,T ];L2(�))
→ 0.

This implies that there exists ε2 > 0 such that

∥∥wε(·, T ) − w0(·, T )
∥∥

L2(�)
� δ

3
for all ε < ε2. (2.8)

From (2.5), (2.7), (2.8) we conclude that

∥∥p(·, T ) − z
∥∥

L2(�)
� δ,

and so v = ϕ0 satisfies the conclusion of the theorem. �

The next corollary shows that one can prove and compute approximate controls for parabolic problems
associated with given micro-structures as long as their characteristic length is small enough, depending
on the desired level of control accuracy. Indeed we have,

Corollary 2.2. Let δ be a real number with 0 < δ < 1, z ∈ L2(�) a given target function and
f ∈ L2((0, T ) × �). Suppose that {η} is a parameter taking its values in a sequence of positive real
numbers that converges to zero, and {y0

η}η ⊂ L2(�) a sequence such that y0
η → y0 strongly in L2(�)

for some y0 ∈ L2(�).
Also consider a sequence of given matrices Dη(x) = D(x

η
), with D being Y -periodic, D ∈

M(αD, βD, Y ) for some αD, βD ∈ R with 0 < αD < βD.
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Then there exists a number 0 < η0 < 1 and a function ϕ0 independent of η < η0 such that for any
η < η0 the solution of

⎧⎪⎨
⎪⎩

y ′
η − div(Dη∇yη) = f + χωϕ0 in � × (0, T ),

yη = 0 on ∂� × (0, T ),

yη(x, 0) = y0
η in �,

(2.9)

satisfies

∥∥yη(·, T ) − z
∥∥

L2(�)
� δ for all η < η0. (2.10)

Proof. The proof of the corollary follows as a consequence of Theorem 2.1, written for B = D and
u = yη, but here we present a shorter more direct solution. Let D0 be the homogenized matrix defined
by (2.2) and (2.3) with matrix B replaced by matrix D. Classical control results imply that there exists a
control function ϕ0 ∈ L2(�) such that the solution of

⎧⎪⎨
⎪⎩

y ′ − div(D0∇y) = f + χωϕ0 in � × (0, T ),

y = 0 on ∂� × (0, T ),

y(x, 0) = y0 in �,

satisfies

∥∥y(·, T ) − z
∥∥

L2(�)
� δ

2
. (2.11)

On the other hand, the classical corrector results applied to the sequence of problems (2.9) imply that
there exists 0 < η0 < 1 such that

∥∥yη(·, T ) − y(·, T )
∥∥

L2(�)
� δ

2
for all η < η0. (2.12)

Finally, from (2.11) and (2.12), we obtain (2.10). �

Next we make the observation that our results presented above can be easily adapted to remain true
(under certain assumptions to be described below) for the case when the periodicity assumption is re-
placed by the more general concept of H -convergence.

Remark 2.3. We recall (see [21,22]) that a sequence {Aε}ε ⊂ M(α, β, �) H -converges to A0 ∈
M(α′, β ′, �) (for some α′, β ′ with 0 < α′ < β ′) iff for every function h ∈ H−1(�) the solution ξε

of

{
− div(Aε∇ξε) = h in �,

ξε = 0 on ∂�
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is such that{
i) ξε ⇀ ξ0 weakly in H 1

0 (�)

ii) Aε∇ξε ⇀ A0∇ξ0 weakly in (L2(�))N,

where ξ0 is the unique solution of the problem{
− div(A0∇ξ0) = h in �,

ξ0 = 0 on ∂�.

By using the corrector results for the classical parabolic equations associated to an H -convergent
matrix of coefficients (see [4]) and the unique continuation property for parabolic problems with C1

coefficients (see [24]), the results of Theorem 2.1 and Corollary 2.2 remain true (with identical proofs)
if, while still requiring that the approximation property (2.1) holds true, instead of periodicity of the
sequences {Bε}ε and {Dη}η one assumes that they are H -convergent with smooth (i.e., C1) limits.

3. General strategy

In this section, we will state our strategy for the approximate control of general linear parabolic prob-
lems in heterogeneous media occupying possibly complex geometries (e.g. perforated domains, domains
with inclusions or materials separated by interfaces). Thus consider parameter δ, �, ω and target func-
tion z ∈ L2(�) as above and denote by � ⊂ R

N−1 a possible connected interface separating � in two
components or a disconnected set describing the boundary of perforations. In what follows, we will
consider a generic parabolic flow {P} associated to a general source f ∈ L2((0, T )×�) and initial con-
dition u0. For this problem we assume a general heterogeneous media with given boundary conditions
{BC} on ∂�, for instance Dirichlet conditions and, if an interface � is considered as part of the geometry
(i.e., as described above), with possibly interface conditions {IC} prescribed on �, e.g., flux-temperature
proportionality conditions, (see [7–9,11,15]). We can also treat the case of a perforated domain, where
one can assume for instance homogeneous or nonhomogeneus Robin conditions (in particular Neumann
conditions, see [11]) on the boundaries of the holes. In this case, in the statement below, the fixed domain
� has to be replaced by a varying one, with the obvious modifications, and for a nonperiodic setting one
can use the H -convergence extension to perforated domains (see [5]).

We have:

Theorem 3.1. Consider problem {P}, {BC} or, if an interface is part of the geometry, problem {P},
{BC}, {IC} and assume that each of these two problems admits a unique solution, denoted generically
by u. Assume that there exist a function v0 and a sequence of well posed periodic parabolic flow problems
{Pε}, {BCε} or {Pε}, {BCε}, {ICε} (with solution generically denoted by uε), with the property that for
any associated source f ∈ L2((0, T )×�) there exists initial condition u0

ε → v0 (where the convergence
holds in appropriate strong topologies depending on the problem considered) such that uε satisfies:

There exists ε0, ε1 positive parameters such that{
1. Approximation property: ‖uε(·, T ) − u(·, T )‖L2(�) � δ

3 for all ε < ε0,

2. Corrector property: ‖uε(·, T ) − uh(·, T )‖L2(�) � δ
3 for all ε < ε1,
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where uh solves the limit homogenized problem {Ph}, {BCh} or {Ph}, {BCh}, {ICh} associated to the
same source f ∈ L2((0, T ) × �) and initial condition v0. If the limit homogenized problem {Ph}, {BCh}
or {Ph}, {BCh}, {ICh} admits an approximate control ϕh ∈ L2(ω) then the initial problem {P}, {BC} or
{P}, {BC}, {IC} can be approximately controlled by ϕh ∈ L2(ω).

Proof. The proof follows the identical steps as in Theorem 2.1. �

Remark 3.2. Theorem 3.1 implies the possibility to extend the approximate control results for the
parabolic problems considered in [7,8,11,15] to the general case of non-smooth coefficients (i.e., general
heterogeneous materials). We also mention that, for the multiscale parabolic flow through a connected
interface considered in [9], assuming approximate controllability of the proposed limit problem (which
can be proved by adaptation of standard control techniques (i.e., adaptation of the HUM method pro-
posed in [18])), the limit analysis and corrector results obtained in [9] together with Theorem 3.1 imply
the possibility to characterize approximate controls for the initial multiscale parabolic flow.
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