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In this paper, we analyze the asymptotic behavior of a Stekloff spectral problem associ-
ated with the Neumann Sieve model, i.e. a three-dimensional set §2, cut by a hyperplane
% where each of the two-dimensional holes, e-periodically distributed on X, have diame-
ter re. Depending on the asymptotic behavior of the ratios Eﬁ- we find the limit problem
of the ¢ spectral problem and prove that the sequences A5, formed by the nth eigenvalue
of the e problem, converge te Ag, the nth eigenvalue of the limit problem, for any n € N.
We also prove the weak convergence, on a subsequence, of the associated sequence of
eigenvectors uj,, to an eigenvector associated with An. When An s a simple eigenvalue,
we show that the entire sequence of the eigenvectors converges.

As a consequence, similar results hold for the spectrum of the DtN map associated
to this model.
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1. Introduction

In this paper we study a spectral problem associated with the Neumann sieve. Con-
sider a plane ¥ that separates a three dimensional domain Q into two subdomains
Q; and 2y and distributes e-periodically on X two dimensional small holes of diam-
eter T < €, denoted by T,.

Set
V = {ue H'(1) UH"(Q)|u =0 on 8Q}
and
Ve={ueV]u =00nT.},

where [u] =4t — 4~ and ut =wu on 1 and 4~ = on (.
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70 D. Onofrei & B. Vernescu

The problem can be formulated as a Steklov-type spectral problem associated
with the Neumann sieve problem presented in Damlamian [5] (see also
Attouch [1]), i.e.

—Aut =0, in QU UT,,

6(u5)+ _ 8(u‘)’ L velL€ 1.1
T = Bn = X[uf], on¥X-T,, (1.1)

ut =10, on o1,

An equivalent, formulation exists in terms of the DtN map. For this, we consider
for any z in H%(E) the solution v of the following problem

1
inf {EEV'uﬁz(nluﬂﬁﬂv € V with [v]y = z} .

Let #n be the unit normal to ¥ towards (3. Then denote by L the map from z to
Lz=9 = _8 [ isa well defined fixed operator from H#(Z) to H~4(E). It
is known that L™! is onto V and is compact (see [13}).

Let TV, be the subspace of H%(Z) of elements which vanish on 7%, i.e. TV, is
the trace subspace of V.. The e-speciral problem is then, find z. € TV, and A¢ € R,
such that

L{z) = Xze. (1.2)

The spectral problem (1.1) is associated with the Neumann sieve problem:

~Aut = §, in 1 UQaUT,,
ey+ €\ —
BT )T _ 0, onX T, (1.3)
on an
u® =0, on 940,

Depending on the order of r. with respect to ¢ it has been proved in Damlamian (5]
that the homogenized problem is of the form

—Au = f, on £; U s,
dut du- C

r—— T e T — E.

on o g on

where C = 0 if r. < €2, C is the capacity in R? of the holes if r. = ¢” or C = c0 if
re 3> ¢ and [u] is defined above.

This type of behavior was first observed in the work of Cioranescu and Murat [4],
where the same problem, but with three-dimensional holes periodically distributed
in the entire domain or on a hyperplane, was studied.

Homogenization of a Stekloff type problem for perforated domains with three-
dimensional ¢ sized holes distributed in the entire domain has been studied in
Vanninathan {14], using multiscale analysis and Tartar’s method.
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In Sec. 2, we set the functional framework and the problem to be analyzed. By
using G-convergence techniques and the homogenization result of (1.3) obtained by
Damlamian [5], we obtain in Sec. 3 the limit problem for (1.1),

—Au =0, in O UQy,
out fu~ C

on T on ("‘ z) tul, on %,

u =0, on 09,

or, equivalentiy, the limit problem for (1.2),

Lz=()\—%)z,

where L: H%(X) —» H~%(X) is the DtN operator defined above, and X is a limit
point of a sequence of eigenvalues {A¢}>0 of (1.2) or (1.1).

We show that the entire sequence formed by the nth eigenvalue of the e-problem,
ie. {X&}e converges to the nth eigenvalue of the limit problem (1.4). When A, is a
simple eigenvalue we can prove that the entire sequence of eigenvectors, uj, associ-
ated with Ag, for the problem (1.1) will converge to the eigenvector u,, associated
with An. Sections 3.1 and 3.2 present the cases when & = co and I = 0, respec-
tively.

In the form (1.1}, our problem is related to the modelling of earthquake initiation
phase where one has a periodic system of faults on which slip-weakening friction
is considered. The eigenvalues X provide stability properties of the solutions of
the dynamic problem (see [7] and [9]). Also (1.1) can be considered as the spectral
problem associated with a heat conduction problem, where imperfectly conducting
interfaces are present (see Sanchez-Palencia [12], Lipton and Vernescu [11] and
Belyaev et al. [2]).

In the form (1.2), the problem is a spectral problem for DtN operator in domains
perforated along a hyperplane. The asymptotic behavior of the spectrum is similar
and is obtained as a consequence of the analysis for (1.1).

2. Problem Statement

Consider an open set @ C R3 and a plane T that separates 2 into two open subsets
£1,%)s such that

Q=0 U UL

For simplicity we will consider in the sequel X = {z = 0}.

We define Y = {0,1}2 as the reference square and an open set T C Y. With
0 < r. <e< 1, we construct on X e-periodically distributed obstacles obtained by
re-homothety from T and denote by T its union:

T. = | reT + ke).
kez?




72 D. Onofrei & B. Vernescu

We introduce the natural functional framework for our problem by defining
V={ue H{(U)UH (Q)u=00n060}, V'={ueV|u=0onT)}

where [u] denotes the jump on ¥ defined as above. V is a Hilbert space endowed
with the following scalar product:

{v,v)y = / VuVu
Q.00

and V¢ is a subspace of V.

Let us remark that Hj(Q) is a closed subspace of V¢ and denote by W¢ =
(H3 ()" its orthogonal in V¢ and by W = (H}{€2))* its orthogonal in V. Thus
Ve = H}{(Q) @ W* and, V = H}(Q) © W. Let us also define Pye: V¢ — W€, the
orthogonal projection onto We.

Also, it is easy to see that the trace space of V¢, TV® is identical to the trace
space of W¢, TWE.

In this setting, the problem (1.2) is equivalent to the following spectral problerm:
find u* € V<, X¢ € R, such that

—Auf =(, on UL UT,,
(P Qo o)~ .. . (2.1)
- B =X, onE-T.

The corresponding equivalent variational formulation is: find u¢ € V¢, X¢ ¢ R,
such that

] VuVw = /\Ef [uf][w], for any w € V*. (2.2)
QU -7

The equivalence between the problems (1.2) and (2.1) is understood in the sense

that they have the same eigenvalues and related eigenvectors. Thus, if {28 }nen is
an orthonormal sequence of eigenvectors for (1.2), then the sequence { — u;} ,

; AL neEN
where uf, is, for any n € N, the solution of

v e W with [v]g = z;}, (2.3)

] 1
inf { E va]iz(ﬂl U}

is an orthonormal sequence of eigenvectors for problem (2.1). Conversely, if
{uS }nen is an orthonormal sequence of eigenvectors for (2.1}, then the sequence

{z;-\! A;}neN, with
zp = [ug] forne N, (2.4)

is an orthonormal sequence for (1.2).
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From the compactness of L~!, we have that L has an increasing sequence of
eigenvalues {AS }nen and an orthonormal sequence of corresponding eigenvectors
{2 }nen in L2(X). Also, from the Rayleigh's principle, we have

= mf  ERAre

" z€TW<,21z; ” z ”12(2) .

i=1l,n-1

(2.5)

3. Asymptotic Analysis

Because of the equivalence relations (2.3) and (2.4), we will study only the asymp-
totic behavior of (2.1). Similar results for the problem (1.2) will be stated as
corollaries.

Now, it is easy to observe that from the equivalence relation, (2.3) and (2.4),
we have

Lz, 2
z€TW* ,z Lz ”zﬂfﬂ(x) t:!.EW’E [TRETH [ {u zdg
i=1,n—1 i=I,n—1%1
From (2.5) and (3.1), we get the following representation for Ag, ie.
. Il 652)
. .
uc W"E ,u_Lu / [u] 2d0‘
i=1,n—-1

Lemma 3.1. If im0 5 < oo, then C1 < A} and limsup, A, < oo, where C) s
a constant with respect to ¢ and n.

Proof. Using the trace continuity and (3.2), we obtain
AL, >y foranyn e N, (3.3)

with C1 not depending on ¢, and therefore {15} is uniformly bounded from below.
We will prove next that all the limit points A, of {A}}. > 0 are finite. We
consider the following capacity potential:

—-Aw* =0, inB,—rT,
wt =1, on r.T,
wt =9, on JB,,

where B, is the ball of radius e centered in the €Y cube. The function w* is extended
by periodicity on a layer of size € around & and then by zero to R®. The sequence
w* has the property that (see [1])

w* =0 weakly in H(Q).
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Consider u € V 1 [C™(£2;) U C*(£22)], with the orthogonal decomposition u =
@y + @iz, where @iy € W and @y € H§({2). We suppose that %; # 0 and @, # 0.
Define z* = (1 — w®)u, then z¢ satisfies
F—uweaklyinV, [2°] = (1 —wf)[t] on X and 2¢ € V<.
We make the observation that, for e small enough, 2 ¢ H}() and z¢ ¢ We.
Indeed, we have [2¢] = (1 — w){@;] # 0 on X, since 4, € W. On the other hand,
letting € go to zero, we obtain:

lim (¢, @p) = f VuVis =|| g% 0.
e—0 Q

Therefore, there exists g > 0, such that (2%, @2) # 0 for any ¢ < ¢, ie. 2¢ ¢ W©
for any € < €.
From (3.2), we have that

e A AR e

[[PW12 - -[E[ZE]Q - L[zc]21

where we used the orthogonal decomposition V¢ = W¢ @ H}(f) in order to obtain

[Pt = [

Since {2°} is weakly convergent to u and using the continuity of the trace, we get

limsup A < %!

0 7 [2{1—“]2

where € is a constant independent of e.
Next, we will use an induction argument to prove the statement for all n € N.
Let us assume that

< 0Q,

limsupAf <o foramy k<n-—1. (3.4)

«—0
We need to prove
limsup Af, < oo.

e—0
Let {A}, }e>0 be a subsequence of {A% }5 still denoted by e. Then, using the induc-
tiun hypothesis (3.4), the orthonormality of the associated sequence of eigenvectors
and a diagonalization argument, we find a decreasing sequence {e;};en, such that

¢; — 0 and
u L ew, (3.5)
lim A7 = X < oo, (3.6)
J—D
for k=1,n-1.
Let 2z be as in the proof of Lemma 3.1, with
Ty ¢ span{uy,..., Un-1} (3.7)

We can do that because W has infinite dimension.
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From (3.2), we obtain
. o
\o el 65)
uGW‘J,u_Lu ] [u,]2do'

i=1l,n—1

Consider now

29 = 2% — nz_:lufj (2, u )y
i=1
First, we can see that
(z9,u)y =0 foranyi=1,n— 1. (3.9)
Then z% € V< and 2% ¢ H}(Q) for j big enough. Indeed from (2.2), we have
@y =7 [ 1)

and using the trace continuity, the definition of 2%, (3.5) and (3.6) in the above
relation implies

n—1
I s ply— Z Ui/\i/ (2] fuss].-
i=1 E

If we suppose

[ zhz[mmd=,

i=1

Plzﬁ,/mmq

i=I

this is equivalent to

which implies

n-1

iy — Z Uz A /);[ﬁll [u,] =0, (310)

because i1 — Y1  u; Js[@1]fui] € W and W is orthogonal on H}(Q). But (3.10)
leads to a contradiction with (3.7).

Therefore [z] # 0 and this implies the statement, i.e. 259 ¢ H}() for j big
enough. Next, using (3.9) and (3.8), we obtain

so < WPzl _ oty G

N
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where C; is a constant independent of j. Passing to the limit when j — og,

we obtain

limsup A% < &
oo 22

< oo. (3.11)

So we have proved that any subsequence of A has a subsequence {\;/ Yiens
such that (3.11) is satisfied. Therefore, we have that
limsup A, < oo
e—0

for any n ¢ N. )

The next corollary shows that the weak-limits %n of the sequence {uf}.»q of
the normal eigenvectors associated with the eigenvalue A%, cannot be zero.

Corollary 3.1. Let {ug}nen be the orthonormal sequence of eigenvectors associ-
ated with X;, for the problem (P,). Then, every weak-limit un of {uftnen (ie. un

€ .
such that on a subsequence ur, — ug), 15 nenzero.

Proof. Because ||luf)|= 1 a subsequence, still denoted by uf,, will weakly converge
to some u,. Using the variational form of (P.), we have

—

Letting € go to zero above, we obtain
1

J
b
Next, using Lemma (3.1), we obtain that

[l £0

and this implies the statement. O

limsup Af, =

Remark 3.1. Similar results hold for the problem (2.1), i.e. all the strong-L%(T)
limit points of the sequence {z¢}. are nonzero.

Let us now consider the duality operator J¢: 1€ — (vey
{Ju, wWyyey,ve = {u,whye for any u,w € V.
J¢ is an operator of subdifferential type
JO =0, 0%V = R, (3.12)
1
o) =l (3.13)

By using the results in Damlamian [5] and Attouch [1}, we have the following
lernma:
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Lemma 3.2. The sequence of functionals {9} is [-convergent weakly in V to ¢
given by
_1 2 ,C 2
o) = 5 (1t +5 [12),

R-cap T, if lim 2% = R< oo.
e—0 €

where

C= r
N . €

o, if lim — = co.
e—0 ¢

We have used cap T for the capacity of the set T in R3, i.e.
capT = inf {f [Vwl’dz|w € HYR®*),w>1lae on T}.
R3

Corollary 3.2. The sequence of operators J¢ is G convergent to B, with respect
to the weak x strong topology in V x V°.

Proof. Using the G-convergence result for subdifferentials of I'-convergent
sequences (see Attouch [I, Theorem 3.67]), we have that the I-convergences of
the sequence ©° to  imply the G-convergence of the subdifferentials,

dpc S ayp. =
Next, we state the first homogenization result for problem (2.1).

Theorem 3.1. There is o decreasing sequence {e;}; € N with ¢; — 0, such that
u = Un, AF — An, where (An, un) solves the limit problem (P):

—Au, =0
(P) S O(ua)t Hun)~ ¢
on  on (An - Z) {un),

where C' # oo 15 as in Lemma 3.2.

Proof. Let an arbitrary fixed n € N. Let {Af }e»p be the sequence of eigenvalues for
the problem (P,) and uf the corresponding orthonormal sequence of eigenvectors.
Then there is a subsequence {¢;}; € N, such that:

ud = uz and AP -+ A,

We have proved in Lemma 3.1 that A,, < co.
Let fn’ € V' be defined as

£ (w) = X9 [E ufw] forallwe V.

Using the variational formulation {2.2), we have:

[ (w) = (J9u, w)yey,ye forallw e Ve
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This implies
fa? €095 . (3.14)
The next observation is that:
£ 2725 1, strongly in V', (3.15)

where

falw) = Ay /2 [un][w] forallweV.

The proof of the above convergence is straightforward. Indeed,

N G| olfu])

weW
llwllv<1

NOW from the reflexivity of the space V, we have that there exists wg € V with
[l < 1, such that

15 = fobve = (3% [ wslud) <2 [ )
= 07 =) | pulhed] M [ 10t = ]

Thus, from the Cauchy—Schwartz inequality

+An( /E [uss —Un]‘*’)l/z ( /E [wg]z)”f

Next, we will use the following interpolation inequality (see [8]):
el iaesy < Milull oy lellzy  YueV (3.16)
and the fact that [lwi[ly< 1 to obtain:
o iz Jn strongly in V.
Therefore, from (3.14}, (3.15) and using the Corollaiy (3.2), we obtain that:
fn € Bp(un). (3.17)

But (3.17) is exactly the problem (P). D
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The limit problem {P) is equivalent to the following spectral problem for the
DtN operator defined above. Indeed, problem (P) is:
Find A € R and z € H#(Z) such that:

Lz= (A - %) z. (3.18)

Using the equivalence relations (2.3) and (2.4), the next corollary is a obvious
consequence of the above discussions.

Corollary 3.3. There is o decreasing sequence {¢;}; € N with €; — 0, such that
2y —rzy, strongly in L%(3)) and Ad = Ap, where (A, zn) solves the limit problem:

Ly = (/\n - %) 2n,

where C # oo is as in Lemma 3.2.

The main homogenization result is:
Theorem 3.2. If lim,_q -:—;— < oo, them:

(1) lim, .o AL = Ap on the entire sequence.
(ii) There s o decreasing sequence {€;}jen with €; — 0, such that uyf —uy weakly
in V and 2y —z, strongly in L*(X).
(iil) Ap = (% + ,(:'ln) with Lzy, = Pnin, where By, is the nth eigenvalue of the DN
operator L, and C is as in Lemma 3.2.

Proof. Suppose there is A # A, for any n € N eigenvalue for the limit problem.
Let u € W be the associated normal eigenvector, ie. |lu]y =1 and

oty w) = (A - -if) /[u][w] for all w € W,
b
There is m € N, such that
A< Apti- (3.19)
From the Lax Milgram lemma, we have that there exists w® € W*, such that
(o, w) et ey = ,\f [u]{w], for all we W=,
b

It can be earily seen that w® is bounded in the norm of V.
Then, on a subsequence still denoted by e, we have
w* 1w ase-—0,
for some @ € W. But, if we consider f € V/ with fa(w) = X f[uj[w], then clearly
a(w) = (T, w) e ey = fr € et (wf).

So, using the G-convergence result stated in (3.2), we obtain

fx € 0p(@) & @)+ 5 [ plel = [l
for any v € W.
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Therefore, because of the definition of u, we have that « = @, Now by Uryson's
property, we can see that

w* — u whene— 0.
Let
m
vt = wt — E wi{w, u)y.
i=1

We can see that
(', u)y = A¢ ]E sl 5 A ]2 ful ).

But, using the variational form of problem (P), the last integral in the above equal-
ity is zero by the assumption X 3 )\, for any n € N.

Thus, v* — u weakly in V. Noticing that v € W¢ and v 1 u¢ for all i = I, m,
from the Rayleigh’s principle for (2.1), we have

c||2
Moy < v (3.20)
o

Now, from the definition of w*® and the inequality (3.16), we have
i o= Ll =1 [ (i
e—0 €—0 b}

From the last relation and Theorem 3.1, passing to the limit when ¢ — 0 in {(3.20),
we obtain the contradiction.

Using the equivalence relations (2.3), (2.4) and Corollary 3.3 we obtain (i)
and (iii). W

Next, following an idea in [1}, we give a Mosco-convergence {see [1] for the
definition of Mosco-convergence) result for the case lim,_.g 5 < o

Theorem 3.3. Let lim._.o &5 < 0o and i € N be arbitrarily fized.
Then, if m; is the order of multiplicity of X, i.e.
Aim1 <A = A1 = = Aipmi—1 < Aigmgs

the sequence of subspaces generated by {u§,.. ., uf +mi—1} Mosco-converge in L2(Q)
to the eigenspace {u;,..., U m,—1} associated with );.

Proof. We remark that the multiplicity of A¢ might be strictly smaller than that
of X;. So, if we denote

span{us,..., u5, . 1} = Sf and span{u;,..., Uitme—1} = S,
we can see that as in the above remark S may be strictly larger than the eigenspace
of Af. Now, from Theorem 3.2, we have that there is a subsequence {ufrs’ }ien,
such that

2'_113% An=An and  uf-up,

where (u,,, Ay} solves the spectral limit problem P.
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From the linearity of P¢ and P, we can say that

limsup 5§ C §;.

e—0

We can easily see that for arbitrarily fixed 7,5 € N, with £ # 7 and
u; = and u§ —u;
we have
(s, us}y = 0.

Indeed, from
0= (uf, uldy = A [ ] )
b

passing to the limit when € — 0, we have
Ai f [u‘l-][u_?] = 0 = (uiauj>V = 01
)

using the variational form of the limit problem. Next using the linear independence
of {t,...,Uitm,—1} and the fact that the dimension of the eigenspace associated
with X; is m;, we have in fact that

limsup 5§ = 5;.

e—0

Because of the compact imbeding of H' in L2, we have that there is a subsequence
€5, such that

liminf 57 = lim sup 5;°.

J—o0
Now, if there is v, such that
v li?l,i{,]f Sy,
then from the above relation, we have

v ¢ limsup S;7 = §;,

J—oo
which implies
8; C liminf S§.
e—0

So we have proved the statement. O

The next corollary is a consequence of the above results and states.
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Corollary 3.4. Let lime_o T < 0o and i € N be arbitrarily fized.
Then, if m; is the order of multiplicity of ), i.e.

Aic1 <X = A1 = = dipmi—1 < Aitmgs
the sequence of subspaces generated by {zf,.. - Zipmi—1) Mosco-converge in L2(¥)
to the eigenspace {zi, ..., ziym,—1} associated with A; for the problem (3.18).

Next we will analyze the case when ); is a simple eigenvalue of the limit problem.
We have the following result:

Theorem 3.4. Let lim._.g % < oo If X, — X, and A\, is a simple eigenvalue of
the limit problem (P), then the whole sequence {uS} is convergent, us — uy,, where

-1
un @5 an eigenvector for (P) essociated with A, and [[up|% = (fx% + 1) , where

Bn 13 as in Theorem 3.2 and C is defined in Lemma 3.2.

Proof. Let i, be the unit eigenvector associated with \,. Because A, is simple,
we will have that A will be simple for € small enough. We can select .., such
that for every € > 0

(U, itn) > 0. (3.21)

From the orthogonality of (u)}nen, we have that their limits (u,)nen form an
orthogonal subsequence. Indeed, using Theorem 4.2 and (3.16), we have that there
is a subsequence still denoted by €, such that we can pass to the limit when ¢ -— 0
in the next equality

0= {uS,u)y = /\Zfz[ufl][ufn]-

In the limit when € — 0 in the last equality, we obtain
An

TL

)‘ﬂf{un][um] =0 (Un, Um}v - g =0 (unum)v =0,
z T
and therefore the orthogonality of the limits eigenfunctions is proved.
On the other hand, using the orthonormality of (uf )nen, We have that for any
subsequence (u;; ); there is a subsequence of it (ur7* )z, such that ug* — wu,,.
Because A, is a simple eigenvalue, we find that there is a constant 7, such that

Up, =7 - lp. Then, from the orthonormality, we find again
iy =1 (@i, ud*), =1 & ’\“f o |fue] = L.
b

Passing to the limit when & — co in the above equality and using A, = %‘: + B, we

obtain
(F+80) [fmltund =16 by - (55 +1) =1
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Therefore, because u,, =7 i, ¥n € N, we have that

So, we have proved that every subsequence {uij" }oem of {ug }eso has a subsequence

—1/2
of it, which converges in the weak topology of V, to u, = ﬁn(;@l:% + 1) .
Therefore, the conclusion follows immediately. O

The next corollary follows from the equivalence relations (2.3), {2.4) and
Corollary 3.3.

Corollary 3.5. Let lim._.q Ef < oo. If X5, — A, and A, is a simple eigenvalue
of the limit problem (P), then the entire sequence of eigenvectors for the problem
(2.1), {2}, is convergent to z, strongly in L(X.), where z, is an eigenvector for
(3.18) and |lznllZa(s) = ooz, -

3.1. Case lim I = 0

In this case, we can see that the sequence {¢®}c»o defined in 3.2, T-converge to ¢
and we have

otherwise.

2 if HYO
olu) = /ﬂiVu| dr, ifue Hy(Q),
OC,

Now, suppose that there is n € N, such that AL 5 A\, < o0.
Then, using the same approach as before, we obtain from Theorem 3.1 and
Corollary 3.2 that f, € dp(uy,). This means that

un € Dom(y) = H3(Q).
But, we know that u& € W€ C W, which means that
u, & W.

Using the fact that W = (H}(2))* in V, we obtain u, = 0, which contradicts
Corollary 3.1. Therefore, A5, - co. Now, from the variational form of (2.1), if uf, is
the normal eigenvector associated to AS, we have

1_ €12
5= L
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Consider up, € W to be the weak limit of u¢ when e — 0. Passing to the limit for
€ — ( in the equality above, we obtain

fz fun]? = 0.

This together with the fact that u, € W and W L HE(52) give us that u, = 0. So,
in this case, we have that all the eigenvectors of the P, converges to zero and all
the eigenvalues of the same problem converges to oco.

3.2. Case lime,0 5 =0

Although this can be seen as a particular case for all the results stated above, we
will discuss it separately due to the fact that we can obtain a stronger variant of
Theorem 3.3. This case is very interesting because the holes T. “disappear” in the
limit problem.

First, we can observe following (1, Theorem 1.27] that in this case, we have

w* — 0 strongly in H}(Q),

where w*® is the capacity potential defined in Lemma 3.1.
It can be easily seen that for each u € W, smooth, using w* we can construct
the sequence @, = u — wy, such that %, € V¢ and Pyeii, — u strongly in W.
Using the strong convergence of the capacity potential, we obtain:

i — u stronglyin V' when € — 0. (3.22)

Now, we have
e = Pyyetie + (ﬂe - chﬁe).

Let a = lime_.g Pw-it and b = lim._o(@ — Pyy«ii) be two (arbitrarily chosen)
weak limit points of { Py<ic}e»o and {iic — Piyeiic }e>o, respectively.

It is easy to see that @ € (H}(Q))' and b € HS). Therefore, we obtain
U =a+b. Thus b = 0 and a = u. From the arbitrary choice of a and b, and the
compactness of the above sequences, we obtain that

Pyt — u,
3.23
ity — Pwe e — 0, ( )
Next, we will use the following lemma in order to get the conclusion.

Lemma 3.3. Let {an}nen and {bn}nen be two sequences in V {(where V' can be
a general Hilbert space, and (. , .) the scalar product in V) such that an, 1 by, for
every i € N.

If (an +by) — L strongly in V and a,, — L, then ¢ — L and b, — 0 strongly
nV asn — oo.

Proof. First we have that

"an”% = (an + b, as) — ”L”%’




Asymptotic Analysis of o Spectral Problem 85

Therefore, we have that
lanllv — IL]|v -

Then, from reflexivity of V' we obtain the result. m|
Next, from the above lemma, (3.23), (3.22) and using the orthogonal decompo-
sition of 4., we obtain

Py.ti, > u strongly in V,

.24
Ue — Py, — O strongly in V. (3.24)

Noticing that W* is a closed subspace of W, using (3.24) we can easily prove that
Pyeu — u.
Indeed, we have
|Pwew — ully < |lde — ullv + {|Pwew — Pwediv -+ [|[Paretie — aiel|v - (3.25)
But, for any v € V, we have
1Pweu — Pwediclly = ||Pwe(Pu) = Pwetd|ly < [|[Pfu — ||y
S WP —llv + e — ullv < 2- Jlie - ully. (3.26)

Thus, from (3.24), (3.22) and (3.26), the right-hand member in (3.25) goes to 0
when ¢ — 0. This implies, using a density argument that,

Pyeu—u foreveryucW. {3.27)
Let Pn}e =R..
Now, for u € W* we define K“: We — Weand K: W — W as
(Ku, w)y =.[2 . [u)fw], for any w e W*, (3.28)
and
(Ku,w)y = /2 [lw], for any w € W, (3.29)

We can see that K*.and K, are compact and symmetric operators and they have the
eigenvalues {71,‘:}"6" and {Bin}neN, respectively, and the associated eigenvectors
sequence {u;, }ren and {u, }nen, respectively. It is easy to check now that R. verify
the properties stated in [10, Sec. 11.1]. In these conditions all the results obtained
in [10, Chap. 11] are valid in our case too. Define

1
N{fn,K)= {u e W Ku= H—u}
. B
as in [10]). Now, following the results in [10], we have A% — 8, and
L _1lco. sup 1K Rt — R Kl (3.30)
A P EN(Bn K lullw=1
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and for the eigenvectors {uf, }nen, the following stronger version of Theorem 3.3
holds:

Theorem 3.5. Let i > 1 be an integer and

Aol < A== )\i-*rm.-—l < Am.‘+i1 i.€e.
the multiplicity of the eigenvalue X\; is equal to my, then for any w € N (3, K),
llwljy = 1, there ezists a linear combination u° of eigenvectors uf,..., Ui m, 1
of K¢, such that
[a® — wiy < MJ|K Rew — ReKully + [Rew — wilv, (3.31)

where the constant M; does not depend on €.

Remark 3.2. Using (3.27) and the relation above, we can see that Theorem 3.5
states, in fact, the Mosco-convergence in the strong topology of V of the sequence
of the spaces generated by {uf,...,u$,,._1} to the eigenspace associated with A,
and this is stronger than Theorem 3.3.

Remark 3.3. As a last observation, we can see that by using (2.3} and (2.4)
similar results to those obtained in Secs. 3.1 and 3.2 can be stated and proved for
the problem (1.2).
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