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Abstract This paper is concerned with the well posedness and homogenization for a multiscale parabolic
problem in a cylinder Q of RY. A rapidly oscillating non-smooth interface inside Q separates the cylinder
in two heterogeneous connected components. The interface has a periodic microstructure, and it is situated
in a small neighborhood of a hyperplane which separates the two components of Q. The problem models a
time-dependent heat transfer in two heterogeneous conducting materials with an imperfect contact between
them. At the interface, we suppose that the flux is continuous and that the jump of the solution is proportional
to the flux. On the exterior boundary, homogeneous Dirichlet boundary conditions are prescribed. We also
derive a corrector result showing the accuracy of our approximation in the energy norm.
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Mathematics Subject Classification 35J75 - 35J65 - 35B27

1 Introduction

This work is devoted to the homogenization of a heat transfer problem posed on a domain separated by a
non-smooth interface. The interface is modeled as a highly oscillatory Lipschitz surface (for example, the
“sawtooth interface” sketched in Fig. 1) of height O () (with k > 0) and the resulting interfacial resistance
gives rise to the flux of temperature proportional to a jump of the temperature, by a factor of order ¥, where &
is the small parameter characterizing the small scale in the problem and y < 1 is a given real parameter. The
complexity of the domain geometry and the imperfect contact on the interface create interesting multiscale
phenomena with different macroscale behaviors depending on model parameters « and y .

A similar geometric setting was recently considered in the papers of Donato and Piatnitski [16] and Donato
and Giachetti [15] that discussed stationary diffusion problems. Domains with rough surfaces or boundaries
can be found in many applications such as flows, elastic bodies and electromagnetic waves over rough walls or
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interfaces. The roughness in the interface influences the general response of the system under consideration,
which rends the model difficult to handle numerically. This motivates the use of multiscale analysis, in order
to obtain a macroscopic homogenized model with a flat interface.

The use of homogenization to analyze problems in a domain with a rough or rapidly oscillating boundary
can be traced back from the works of Kohler et al. [25] and of Brizzi and Chalot [6,7]. A similar approach was
applied by Nevard and Keller [31] to analyze Maxwells equation and to the equations of the theory of linear
elasticity. In [1], Achdou et al. studied boundary conditions or wall laws for a laminar flow over a rough wall
with periodic roughness elements using homogenization.

Another related work on boundary homogenization can be found in Chechkin et al. [10] which considered
the asymptotic behavior of solutions of an elliptic problem with an inhomogeneous Fourier boundary condition
in domains with rapidly oscillating locally periodic boundary. An unlimited growth of the (n — 1)-dimensional
volume of the boundary as the small parameter tends to zero is assumed therein. On the other hand, for the cases
studied in [4-8,20,21,32], the (n — 1)-dimensional volume of the oscillating boundary remained uniformly
bounded.

Asymptotic analysis of imperfect transmission problems on two-component composites due to interfacial
resistances (as modeled by Carslaw and Jaeger [9]) was considered for different types of PDEs. First, Auriault
and Ene [2] considered the elliptic case, after which [13,18,27] continued the study. For the parabolic and
hyperbolic cases, one can check [14,17,19,23]. Hummel [22] showed earlier in the general case that when
y > 1, the solution becomes unbounded.

Homogenization problems on a prefractal layer were studied by Lancia et al. [26] (see also references
therein), while the multiscale analysis for optimal control problems on domains with highly oscillating bound-
aries was studied by Nandakumaran et al. [28] (see also [29]), among others. For general references on
homogenization, one can see [3,11,32].

In this paper, we study the well posedness and prove several homogenization results for a parabolic
problem with an imperfect contact on the rough fast oscillating interface separating a domain occupied by
heterogeneous materials. The peculiarity of this time-dependent problem is apparent in the lack of regularity
for the time derivative of the & solution which further complicates the homogenization procedure in general,
and in particular the identification of the initial data. This is overcome by using a suitable compactness result
(Theorem 4), stated and proved in Sect. 4. Another challenge appearing in the present time-domain analysis
was the proof of uniform convergence with respect to time of the e-solution to the homogenized solution
needed to assess the convergence of the initial data and in the corrector analysis.

Proposing several new arguments to deal with the challenges appearing in the time-dependent problem and
building up on the ideas presented in [15, 16], depending on values of « [introduced in (3)] and y [introduced at
(26)], we characterize in Theorem 5 the homogenized limit as the unique solution of a macroscale problem and
prove suitable time-domain energy convergence and associated corrector results (Theorem 6). More explicitly
we characterize three possible macroscale behaviors as follows:

I.If(k >1and y =0)or (0 <« <1 and y = 1 — k), then the macroscale problem is modeled by
a parabolic PDE over a domain separated by a hyperplane with the continuous flux across it given by a
homogenized law.

2. If(k >1land y <0)or (0 <« < 1and y < 1 —k), then the contribution of the microscale transmission
interface disappears in the homogenized limit and the macroscale model is governed by a parabolic PDE
in a smooth domain with homogeneous Dirichlet boundary conditions.

3.If(k >1and y >0)or (0 <k < 1and y > 1 — k), then the microscale transmission interface has a
very strong effect in the limit and the macroscale problem is modeled by a parabolic homogenized PDE on
two disjoint domains with identical initial conditions and homogeneous mixed boundary conditions, zero
flux on the flat part of the boundary and zero temperature otherwise.

This paper is organized as follows. In Sect. 2, the problem’s geometric setting and the relevant functional
spaces with their properties are presented. We then describe the parabolic problem and our assumptions in
Sect. 3. The existence and uniqueness of the solution of our problem are also shown in Sect. 3, using a theorem
based on a Galerkin type method. In Sect. 4, some uniform a priori estimates and compactness results which
are important for homogenization are derived. The homogenization of our multiscale problem (limit analysis
for ¢ << 1) is examined in Sect. 5, while the corrector results showing the form of the second term in the
asymptotic expansion for the multiscale solution are discussed in Sect. 6. Lastly, in Sect. 7, we present a
physical interpretation of the results as well as comments about possible applications.
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Fig. 1 An example of a possible geometry for a “sawtooth” interface

2 Preliminaries

In this work, we use the geometric framework and notations introduced in [16] (also used in [15]). Let N > 2
and suppose o is a smooth bounded subset of R¥~! with [ a positive number. We define the domain Q by

0 =owx]-11, (1)

which is an open bounded cylinder in RY .

We denote by ¥ =10, 1[Y the volume reference cell and by Y’ =10, 1[¥-! the surface reference cell.
Furthermore, we let ¢ denote a positive sequence converging to zero. Assume g : ¥’ — R to be a Y’-periodic
positive Lipschitz continuous function, that is, there exists L, > 0 such that,

lg(y) — gDl < Lgly" — yil, forevery ', yjeY’. 2)
Suppose ¥ > 0 and x’ = (xq, ..., xy—1). We divide the set Q in two subdomains
x/
Q1 = {x €0,x,>eg (;)} 3)
and
/
e (X
QsZZ{XEQ,xN<Sg<;>}’ (4)
which are called the upper and the lower parts of Q, respectively.
The set
x/
FSZ{XEQ,XN=8K8<;>} )

represents an oscillating interface which separates Q.1 and Q.2 (see Fig. 1).

As observed in [16], the case x = 1 presents a self-similar geometry because the interface I; can be
obtained by dilatation of the fixed function yy = g(y’) in RV. The case x > 1 represents the “flat” case (i.e.,
Vexy — 0ase — 0), while the case 0 < k < 1 describes a highly oscillating interface (see [16] for details).

Setting g = max g, by construction, the set @ x [0, £“g] contains the oscillating interface, and the measure
of this set goes to zero as ¢ — 0 (see Fig. 1). Consequently,

Xo., = Xo, strongly in L?(Q), 1 < p < +oo, and weakly * in L*°(Q).
In the sequel, we will also make use of the decomposition of wx]0, £“g[ introduced in [16], that is,
wx]0, 8K§[= B;i UBo U Ty,

where
Bei = 0x]10,e2[NQi, i=1,2. (6)
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We suppose that A is a Y-periodic matrix field satisfying, for 0 < o < 8,
(AO)A, A) > alrl?, |A(y)A| < BA, ae.inY and for any A € RV, (7
Moreover, i will denote an Y’-periodic function such that, for some kg € R*Jr,

heL®), and0 < hg < h(y'), a.e.on I, (8)

where
r={yy=80" yev)

We set, for any ¢ > 0,
/

ey — A% ey (X
A (x)_A<8), h (x)_h<8). ©)
For any function v defined on Q we set
Vel =UjQ,  Ve2 = V|Qgy- (10)

Hence, for any v € L?(Q) we have

2 _ 2 2
”v”LZ(Q) - ”USI ”Lz(le) + ”USZHLZ(QSZ)'
Also, we use the notations:

— ¥ for the zero extension to the whole of RY of a function v defined on a subset of Q,

— xE, the characteristic function of any set E C RY,
1
- my(v) = v / f dy’, the average on Y’ of any function v € L' (Y”).
y/

— C to denote any generic positive constant independent of ¢.

We define the limit domains with a flat interface by

Qi1={xe Q:xy>0}, Oo={xe Q:x, <0}, Io={x€ Q:x,=0} (11)
and, for any function v defined on Q,
vl =)o, V2 = V|Q,-
Observe that from definitions (3), (4) and (6),
01 = Q1 U Bea, 02 =0\ Bea.
In the sequel, we also use the notations
Q&::Q\Fey QOZQ\FO’ FE,OZF&:UFOy Qe,OZQ\Fs,O~
Now, for our functional spaces, we define the space W}, by
Wi == f{vi € H'(Qei) | v =00n30 N3 Qi)
equipped with the norm
loillwg, = 1Vl 20,0)- (12)
As in [16], we also introduce [under notation (10)] the space W defined by
Wi = {v e L*(Q) | ve1 € H'(Qe1), ver € H'(Qe2) and v =0 0n 00}, (13)

equipped with the norm
lvllwe == 1IVullL2(g,) (14)
where

Vo = Vo1 + Voo,

that is, we identify Vv with the absolutely continuous part of the gradient of v.
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Let us observe that (14) is a norm, due to the following Poincaré inequality: there exists a constant C such
that, for any v € W,

Ivliz2) = ClIVVllL2(g,)- (15)

Then we introduce the space
Wy == {ve L*(Q) | vi € H'(Q1), v2e H'(Q2) v=00ndQ),

equipped with the norm
Ivllwo = [IVVllLy0)-

In this paper, we use the usual product norm, that is, if £ and E; are Hilbert spaces then

1
V(u,v) € E1 x Ea, [[(u, )|l g, x> = (Ilullg, + IvIE,)7 -

Remark 1 Itis straightforward from the definition and notation (10) thatif v € W then (ve1, ve2) € Wi, x W,.
On the other hand, if (vq, v2) € W, x W, then v = 0] + 02 € W{.
Moreover, the map
¢ ve W5 — (ve1, v2) € W5 X Wg,
is a bijective isometry, that is,

2 2
ollye = 1ers ve2) e we, -

Indeed from (12) and (14),

Il = f |Voer|* dx +f |Vvea ? dix
(O &2

= IVvetllZ2 g, + 1VVe2l 720, = Vet iy, + llveallye -
Since ¢ is bijective, in this paper we identify v € W with its image ¢ (v) € Wg; x W,.
Proposition 1 Letv € (Wé ). Accordingly with Remark 1, let V be the map defined by

Vi(ur,up) € Wi x Wi, — v(u) = v(iy) +v(ia), foru = (ur, uz).
Then V e (W§))' x (W§,)". Conversely, if V.= (Vi, V2) € (W) x (W,)' then
viue W5 — V(ugr, ug) = Vi(ugr) + Va(ug2)
defines an element of (W;)'. Moreover,
IV Ilewe,yxawgy = IVillowey + 1V2llowgy = vl owey - (16)

Proof Suppose v € (W{)'. Observe that from the preceding remark,

[V (@i, u2)| = [v@)| < lollwey llullwe

= [lvllwey I @1, u2) llwe, xwe, -
0 01 02

This gives

[V (ui, u2)|
IV g,y x(weyy = sup

u = lvllwey- 7
uz0 1, u2) lwe, xwe, o)

Therefore, V e (Wg;) x (W5,)'".
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On the other hand, let V e (W3,)" x (W{,)". Then
)| = [V (uer, ug2)| = |Vi(uer) + Va(ue2)l
< IVillewe,y luetllwe, + V2l owe,y lueallwe,
= WV llewe,y xowey 1 et uea) llwe, < we,

= 1V llwz,y < we,y Nl we -

Thus,
lvllwey = sup ()] < WV llewe y < we,y s (18)
O o llullwe o 02
from which we have v € (W ). Equality of the norms follows from (17) and (18). O

Proposition 2 There exists a positive constant C such that
k=1
lver = veall 2y = Cmax {1,675 ollwg,

for every v = (ve1, ve2) in W.

Proof In terms of the coordinates x” (see Remark 2.3 of [16]), we can write
o = vl = [ o0 = v ds
= [ (e (5)) e e (9)))
o) & 3
x (1 +sz<“—“|vyfg(y/)|2)f,zx, dx'.
Clearly, since g is Lipschitz continuous,

11+ 27DV g (DIl g,y < € max{l, &2,

x/ , x' 2
et = ve2ll7a < € max(l, 8“71}/ (Uel (x/, g (;)) — Ve2 <x &g (;))) de.  (19)
' w

For fixed ¢, let z. be defined as

e x’
2e1(xX', xN) = Vg (x/, ‘g <?> +XN) )

where x’ € w and 0 < xy < [. Observe that

/
Ze1 (', 0) = 031 (x’, g (";)) on o (20)

so that

and
ze1(x’, ) =0, ae. inw.

Then since w x {0} C 901, using the trace theorem and the Poincaré inequality (in the direction of xy), we
have

0Z¢1
lze1 (', )l 2 < c(uzgl(x’,xN)an(Ql) + 52w )

oxy L2(Q1) @1
d
L, xn)

=¢|

dxn L2(Qn)’
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In fact, the proofs of these results in O are similar to the analogous ones in the half-space (see for instance
[12], Chapter 7). On the other hand, since

9 00,1 x’/
el xy) = 2k (x',eg (—) + mv) ,
3)CN &

oxy
we get
[T ] s, = I
szv ’ L2y laxy ez
This together with (21) implies
261G, Ol 2y = €| 220 22)
R FFIVE VEYT R
Now, let z, be defined, for fixed ¢, as
/
/ —~ !/ K X
Ze2(X', XN) = Vg2 (x €8 (;) +x1v> ,
where x’ € w and —(I + 1) < xy < 0, for some n > 0. Here, we have
x/
ze2(x’,0) = U2 <x’, e¥g (—)) , on w (23)
&
and
z020(x’, (+1) =0, ae. inw.
Then as done above, but for Q,, = wx] — (I + 1), O[ instead of Q1, we have
/ / 0Ze2 ,
leea (', Ol 2y = € (a2l xm) 20, + [ 5 @oxw)|
§ dxn L2(Qy)
(24)
Z82 /
<l
) L2(Qy)
where C is independent of €. Also, since
0 00, !
2 ) = 2 (e g (S ) +xn )
3xN axN &
we have "
H 8282 , H 0Vg2
X', xN) = .
8x1v L2(Qy) dxn 1L2(Qe2)
This implies together with (24) that
302
22 Ol o) < CH . (25)
llze2 I22(w) dn 120000

From (19), (20), (22), (23), (25) and Remark 1, we get

1

(/|(Zsl(x 0) — ze2(x, 0) dX)

k=1
S (220 L 00122, + 2022, 012,

—1
= vl

lver — veallp2(ry) < CmaX{

2

< Cmax{l,e
Cmax i1,

< cma|
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3 Statement of the problem

The goal of this paper is to prove some existence and homogenization results as ¢ — 0, of the following
problem:

ul, — div(A*Vu,) = f in Q0.x]0,T[,

(A*Vug)| - ve = (A*Viug)a - vg on I,x]0,TI,

(A5Vug) - ve = —&Y (ug) — ug2)h® on I, x]0, T, (26)
us =0 on d0x]0,TJ,

e (x,0) = u? in Q,,

where y < 1, v, is the outward normal to Q. and A?, h? satisfy (7)—(9).
Further, we make the following assumptions on the data:

{u? e L%(0). o

[ € L*0,T; L*(Q)).
To establish the existence of a solution of problem (26), we consider its variational formulation as follows:

Find u, € W#, such that
(ugys ver)wey.wg, + (Ui, ve2) (Weyy Wi,

+ / AV, Vo dy + ¢ / B (et — s2) (ve1 — ve2) dos
. r (28)

= fQ fvdx, foreveryve L*0, T, WE),

u®(x,0) = u?in Q,

where
WE i= {v = (ve1. Ve2) € L*(0, T; W§) and v’ € L*(0, T3 (W)},
equipped with the norm [see (14)]
lvllwe = 1IVUll20,7:22(0,)) + ||v/||L2(0,T;(W5)’-

Using a Galerkin type method (see Zeidler [34], Theorem 23.A and Corollary 23.26, pp. 424-426), we can
deduce directly the following existence and uniqueness result for our problem:

Theorem 1 Let T > 0 and & > 0 be fixed. Suppose that Wi, A®* and h® are defined by (13), (7), (8) and (9),
respectively. If (27) holds then problem (28) has a unique solution.

Analogously, we define the space W given by
WO = (v = (v, v2) € L*0, T; W) and v e L?(0, T; (WD)},

equipped with the norm
lvihwo = ||VU||L2(O,T;L2(Q0)) + ”U/”L2(O,T;(W8)"

Remark 2 Ifv € LZ(O, T; W(‘f ) then in view of Proposition 2,

k=1
||Ug] - U52||L2(0,T;L2(F€)) < C max {1, g2 } ”U”LZ(O,T;WS)'

Remark 3 As a consequence of Proposition 1, it is straightforward to check that if v € L?(0, T’ (W§)') and
w e L*(0, T; W§) then
(0, )20, 72 (Wey).L20.7:wg) = (Vels Wel) L2(0.7: (W), L2O.T: W)
+ (Ve2, We2) 12(0,7:(W5y)).L2(0.7: W)

Remark 4 Observe that the properties satisfied by W{; and stated in Remarks 1, 2, 3 and Propositions 1, 2 still
hold in W(()), with the obvious changes, simply by writing them for ¢ = 0.
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4 A priori estimates and compactness result

In this section, we prove some uniform estimates (with respect to €) as well as a compactness result which is
essential for the homogenization of our problem. To do that, we assume that the initial data ug are bounded in

L?(Q) that is,
ludll 20y < C. (29)

Theorem 2 Let u. be the solution of problem (28) with A® and h® as in Theorem 1. Suppose (27) and (29)
hold. Then,

(D) lluellpooo,7: 2200y < €,

(ii) lluer — eall 20, 75021,y < €& 7,

(iii) | Vuell 207,120, < C- (30)
(i) gl 20,75 weyy = € (1 + 7 max {1, 8’(2;1}) )

) lugsll 20, 7:H-1(0y)) < C-

Moreover; for every § > 0,
||u;1||L2(0’T;H,1(Q?)) < C, forevery & <&, 31)

where
Q) ={x e Q:xy>8) (32)

and &g is such that Q‘i NI, =W, for every ¢ < g5, with C independent of § and .

Proof Choose v = (u,1, ug2) in the variational formulation (28). Applying integration on [0, 7'] and using the
Holder inequality we get for all ¢ € [0, T'],

1 t t
—||u5(t)||iz(Q) +/ / AfVu,Vu, dx ds + &7 / / he\ugt — uen|? doy ds
2 0 Jo, 0Jr

1 02 !
= S 1612 g, +/0 /qug dx ds
1 02 !
< 1122 g, + /O 1) llz2(0) (51 20y -

The properties of A® and h® yield

1 t t
E||u8(t)||i2(Q)+ot/ / |Vue|? dx ds—i—gyh()/ / g1 — g |* doy ds
0 Qa 0 I

102 '
< Elluglle(Q) +/0 IF 20y lue ()2 gy ds

s+ ’<”f(s)”2 + e )22 g)) ds
el g L%(Q) eWliLz2g)) -

From here, we obtain for any ¢ €]0, T'[,

t
2 02 2 2
”u&‘ (t)”Lz(Q) S ”ug ||L2(Q) + ”f||L2(O,T;L2(Q)) + ‘/0 ”ué‘(s)”LZ(Q) dS.
Using Gronwall’s Lemma, (27) and (29), we conclude that

2
||u€ ||L°°(0,T;L2(Q)) S C

Hence, we have (i). Using the above computations with + = T, we deduce further that

T

T
o / IVugliZs g, ds + " ho / luer —uealf, ds < C,
0 0
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obtaining (ii) and (iii). To show (iv), we take v = (v¢1, ve2) € W as test function in the variational formulation
(28). Using the Holder inequality, the boundedness of A and A, results (ii) and (iii), in view of (16), Remark
2 and Proposition 2 we have

|y, U)L2(o T(WE)).L20.T; W)

Uy1s Vel) [2(0.7: (W), L20,T;We) T (g0, Ve2) 1207 (W), L2(0.T: Wiy |

= [(u
_’/ /fvdxdt //A€Vu5Vvdxdt

-7 / / h®(ug1 — ugn)(ve1 — vge2)do, dt‘
0 I

< I flle20,7:2c0n 20,7 22¢0)) + BIVuel20,7: 2200 IVVI 200,72 22¢0.))
y y
+ 17| oo (ryye 2 lluer — ue2llz20,7:22(r) € 2 Vel — ve2ll 20,7221

< Cllvll20.7:ws) +Ce? max{l e }”U”L2(0T WE)
=C<1+87max{1,871}> ”U”LZ(O,T;WS)' (33)

This proves (iv). To prove (v), let v, € HO1 (Q2). Then, choosing v = 12 € W in the previous computation
gives

T T
[y, v2)] = ‘/ Sfupdx dt — / / A®Vu Vv, dx dt
0 [0} 0 (%))
= ||f||L2(0,T;Q2)||U2||L2(0,T;Q2) + /3||Vue||L2(0,T;Q2)||VU2||L2(0,T;Q2)

= Cllv2ll20.7: 80 02))

since here the boundary term equals zero, which gives the result. Similarly for v € H(} (Q‘f), choosing v = 13
as test function in (33) gives (31). This ends the proof. O

As shown in [15], a function in W(g) which present a jump on I, can be approximated by functions in W
which have jumps on ;. This is important since it allows to use test functions with jumps on the oscillating
interface and obtain, when passing to the limit, test functions with jumps on the flat interface. We state this
property below as a lemma and rewrite the proof for clarity and convenience.

Lemma 1 [15,16] Let ¢ € W(?. Then, for every ¢, there exists g, € W such that the sequence {¢;} verifies
(i) ¢ — @, strongly in LZ(Q) and in Hl(Q‘?),

(i) x0.Vp: = x0;Ve,  weaklyin (L2(Q)Y, i=1,2, (34)
(iii) IV@ellp2(mp\ry = IVOIl L2\ 1) -

for every § > 0, where Q‘i is given by (32) and
= {xe Q:0=<xy <6} (35)

Proof Let ¢ € Wg be given by
¢ = (1, 92) = (119,5 ¥210,)-

with Y1 and Y, € HOl (Q). Then, the claimed sequence {¢;} can be obtained by setting for every ¢,
pe = Wilo.» V2lo.,) € Wg,

observing that for any § > 0,
Q% C Q¢1, for & small enough.

O

We state the following theorem by Simon [33] that would be useful in proving our compactness result in
the succeeding theorem.
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Theorem 3 [33] Let X, B, Y be Banach spaces with X C B C Y and X — Y a compact embedding. Suppose
oF
F is bounded in LP(0,T; X) where 1 < p < o0 and o be bounded in L'(0, T; Y). Then F is relatively
compact in L (0, T; B).
Theorem 4 Let I, be defined by (5) and suppose that {v.}¢ is a family of functions ve € W such that
(D) lvell 20, 75wy = €
(ii) ||U£‘1 ”LZ(O,T;H*I(Q‘?)) <C, (36)
(iii) iyl 20,75 11020 = €
where Q‘? is given by (32).
Then, there exists a subsequence (still denoted {€}) and a function v € L0, T; Wg) such that
(i) ve = v, strongly in L?(0,T; L*(Q)),
(ii) X, VVe = X, Vv weakly in L*(0, T; (L*(Q)"), 37)
(iii) %, VVe = X, Vv weakly in L?(0, T; L*>(Q)M).

Moreover, the following convergence holds:
v, =~ V', weakly in D'([0, T1 x {Q1 x Q2}) (38)
and for any ¢ = (¢1, ¢2) in D(Q1) x D(Q2) and ¥ € L*(0, T),

T (vgs Y 0) 20,7 11008 % H-1 (020,120, T; HY (@) x HY (02) 9

= (V' V) 120,72 H-1(Q1)x H~1(02)). L2O.T: HL (01 x HL (02)"
Furthermore, let ¢ be given in Wg and let {¢.} be the corresponding sequence given by Lemma 1. If
||U;||L2(0,T;(Wg)’) <C, (40)
for some C independent of € then v € W and for every € L*(0, T) the following convergence holds:
(v, VQe) 120.7:(WE)).L20.T: WE) — (v, V@) 1200.7:(W0y).L20.7: W)+ 4D
Proof For any fixed § > 0, let Q1 and Q‘f be given by (11) and (32), respectively. We show first that
ve — v, strongly in L2(0, T; L*(Q9)) x L*(0, T; L*(Q2)).
Applying Theorem 3 with
X=H'"(Q) x H'(Q2). B=L*Q}) xL*(Q2). Y=H "0} xH (0.
and using (15) and (36) (ii)—(iii), we get
{ve} relatively compact in L2(0, T; L*(Q3)) x L*(0, T; L*(Q2)), (42)

since for ¢ sufficiently small (depending on §), one has Q‘? C Qs.

To prove (37) (i), we use a diagonalization argument for the sequence {v.}. Let {3, } be a positive sequence
converging to zero.

Applying (42) for § = §1, there is a subsequence {véii)} of {v.} (depending on &) which converges to v in
L0, T; LZ(Q‘fl)) x L%(0, T; L*>(Q3)). Similarly, applying (42) for § = &, there exists a subsequence of
{véi‘)}, denoted by {véii)} (depending on ) which converges to v in L0, T; L2(Q‘§2)) x L2(0, T; L*(07)).

1
Gj-1)

Proceeding in this manner, for § = §;, we get a subsequence {véii )} of {vgnk } (depending on §;) which

converges to v in L0, T; LZ(Q?j)) x L2(0, T; L2(Q>)). Note that all of these sequences are subsequences
of {v.}.
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Taking the “diagonal sequence” {vy(j)}jen defined by v,y = véi’] ), for every j € N, which is still a
subsequence of {v,}), we have '

Vp(j) — v strongly in L2(0, T; L*(Q3)) x L*(0, T; L*(Q2)), forall & > 0. (43)
What we want to prove is that
Vg(j) —> V strongly in L2(0, T; LZ(Q)).

It remains to show that v,y — v strongly in LZ(O, T; L2(Q1)), that is,

T
//(vw(j)—v)zdxdt—)O.
0 01

By definition, for n > 0, we need to find a j, such thatif j > j,, then

T
/ / (Vp(jy — v)* dxdr <. (44)
0 JOi

Now, for §p > 0 let us decompose the integral above as

T T
[ / (Vp(j) — v)* dxdr = / /50 (Vp(jy — v)? dx dr
o Jo o Jo

T
—|—/ f s (v(p(j)—v)2dxdt.
o Jongy

Let us show that there exists a do such that the second term of the right-hand side of (45) becomes smaller

(45)

than g To do that, let us write for any §,

T T
(p(jy — v)? dx dr < 2[ / w2+ v2> dx dr. (46)
/0 /QI\Q? o Jong ( v0)

Observe first that there exists a §* such that

T
/ / v dxdr < L. forall § <8, (47)
0o Jong 8

/ / ;
v, . dxdr.
0 JOo\Q} v

We adapt to our case the same process used to prove (2.25) in [16], but integrating in time and with §
instead of ¢“g. Therefore, if ¢, = (0, ..., 0, 1) then

Now, let us consider

_ [T Bug 5
Vo(j) (X +8ep) — vy(j(x) = x dx,, ae. xe 01\ Q].
X n

It follows that

T T Xn+dey ) 2
2 - ) _ Vg (j)
Vp(jy¥) dxdr = Vo (j) (x + 8en) D ds ) dxdr.
0 Jono 0o Jongs . s

Following the straightforward computations in [16], using notation (1) we get

T T
2 2 2 2
V2 dxdt§2/ (/ W2, dx 4 82 lug il ) dt. (48)
/o /‘QI\Q‘? () 0 \Joxsasr #Y PTG
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2N
As shown in [16], by the Sobolev embedding theorem and (36) (i) if N > 2 and 2* = ) we have

T (N=2) 2
2 N N
. dxdr < ; X . 8,28[)~
[0 /wx]a,za[ Yo () e dt = ool aq, 7 12% x1s 20~ MES(@ 19 20D

(N-2)

(N-2) 2
< Clei)ll 20, 7 12 (i e = OF

<CO), (49)

for every j, where we used the fact that the embedding operator from H L(wx]18, £]) into L (wx]18, £]) is
uniformly bounded with respect to §.
If N = 2, the embedding H! (wx]8, £]) C LP(wx]8, £]) is continuous for any p < oo, so that we can use

p—2
in the computation above any p > 2 instead of 2*, and then § ¥ is replaced by & 5 in (49).
From (49) and (48), together with assumption (36) (i), it follows that there exists §** so that

T
/ / U2(~) dxdr < Q, for all § < §™*. (50)
o Jongs *Y 8

By choosing 8o = min{§*, §**}, from (46), (47) and (50), we have that

T
/ / () — P dedr < 2, (51)
0o Jonop 2

On the other hand, for the above §¢, by using (43), there exists a jy (depending on 1 and §p) such that

T
/ f (Wp(jy — ) dxdr < 2 forall j > jo. (52)
0 Jol 2

From (51) and (52) applied in (45), we obtain (44).

Following the same arguments in [16] adapted to our time-dependent case and using (36) (i) together with
convergence (37) (i), one can show (37) (ii) and (iii).

To prove (38), first notice that from (36) (ii) and (iii) we have that

v, = (v, V) € D'([0, T x {Q1 x Q2})

Next, take ¢ = (@1, 2) in D(Q1) x D(Q2). Observe that for ¢ sufficiently small there exists 8, > 0 such
that supp @1 C Q‘i so that ¢ € Hol(Q‘i). From (37) (1), for every ¥ € D(0, T), we have

slig})(v;, V@YD ([0, T1x{Q1 x 021, D(0,T1x{Q1 x 02})

—_— 1 /
= lim Cvp. Y 0) 120, 7: 11 (0} x H1(02)).L2(0.T: HL(03) < HY (02))

T
=—lim/ / Vv dx dt
e—0 Jo 0

T
=—/ / Y've dx dt
0 Jo

/
= (VL V@) 1200, 7:H-1(01) x H=1(02)). L2(0.T: HL (1) x H (02))
= (U, Y O)D/(10.71%1 Q1 x 02)). DAO.TTx Q1 x 02))

which proves (38) and by density, we get (39).
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To prove (41), under assumption (40), let ¢ be given in W(()) and {¢.} be given by Lemma 1. From (34) (i)
and (37) (i), for every ¥ € D(0, T'), we have

T
—/ / Vv dx dt
0 Jo

T
=—lim/ /w’vsgog dx dt
e—=0 Jo 0
T

= — lim /U, ey e dr
lim V' (Ve @) (WY, Wi

. /
= 8‘1%(%’ VQe) L20.7:(WE)).L2(0.T: W)

IA

. /
glgr%) ||v£||L2(0’T;(W(§)’)||‘!’(08||L2(O,T;W(§)'

Hence, (34) (iii) and our boundedness assumption on {v,} imply that

T
[V, ) 20,7 woy). L2 0.7 w0 | = ‘ —/0 fQI//WP dxdt‘

=<C SIE;% 1Y ¢e ||L2(O,T;Wg) =C”¢(p||L2(0’T;W8),

for every ¢ in W(()) and ¢ € D(0, T). By a density argument, this is still true for v € L>((0, T)), which proves
that v’ belongs to L0, T; (Wg)’ ) and convergence (41) holds true. O

The following is immediate from the preceding result and Theorem 2.

Corollary 1 Under the assumptions of Theorem 2, there exists a subsequence (still denoted u.) and a function
ueL*0,T; W(?) such that

(i) ug = u, strongly in L2(O, T; LZ(Q)),
(ii) X, Vite = X, Vu  weakly in L%, T; (L2(Q)N), (53)

(iii) X,,Vite = X,V weakly in L0, T; (L*(Q)M).
Moreover, the following convergence holds:
u, — u', weakly in D'([0, T1 x {Q1 x Q2}) (54)
and for any ¢ = (g1, ¢2) in D(Q1) x D(Q2) and ¥ € L*(0, T),

Tim (u Y0) 120,75 510} x H-1(02)).L20.T: B (00 x H (02))

= (' V) 120,711 Q1) x H1 (02, L20.T: HL (1) x HY ()" >
Furthermore, if ¢ is given in W(()) and {@.} is the corresponding sequence given by Lemma 1 and if
y+xk—1>0, (56)
then for every ¥ € L*(0, T), one has u € W° and
(es Wed 20,72 we ) L20.1:wg) —> (U V@) 120.7: W0y L20.T; W0)- (57)

Remark 5 Inthe case y +« — 1 < 0, we are unable to prove that ||u|lyys < C and thus cannot prove the limit
result (57). Nevertheless, the above compactness result (53), (54) and (55) still holds true for our solution u,.
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5 Homogenization results

In this section, we describe the limit behavior of problem (28) as ¢ — 0. To do so, first we recall the
homogenized tensor A9 (see [3]) defined by

A% = my(AVw,) (58)
with w; € H'(Y) the unique solution, for any A € RV, of

—div (AVw,) =0 inY,
wy —A-y Y -periodic, (59)
my(w—»Xx-y)=0.

A crucial step in our aim of homogenizing (28) is to deal with the term in the boundary I"¢. We will separate
the results according to the value of k¥ and y as follow:

) (k=>=1landy =0) or O<k<landy =1—«);
@)k >1landy <0) or O<k<landy <1—k); (60)
(i) (k >landy >0) or O<kx <landy > 1—«).

Our main result of this section is given in the following theorem:

Theorem 5 Under assumptions (7)—(9) and (27) let u® be the solution of problem (28) and A° be given by
(58) and (59). Also, suppose that the initial condition ug satisfies:

u —~ 40 weakly in L2(Q), i=1,2. 61)

&

For every y € R, there exists a function u € Wy such that the following convergences hold true:

(i) ug — u,  stronglyin L>(0, T; L*(Q)),
(ii) X, Vite = xo Vu,  weaklyin L*(0, T: (L*(Q)M), (62)
and
XA Vie = X, A" Vi, weakly in L*(0, T3 (LX(Q)"), (63)

fori =1,2. Moreover, in the following, we identify the limit u.

— Suppose that (60) (i) holds. Then, the function u is the unique solution of the problem

u' —div(A°Vu) = f in Qox10, TI,
(A°Vu), -n = (A°Vu), - n on Tpx]0, TI,
(A°Vu); -n=H(g, h)(uy —us) on Iyx]0, T, (64)
u=0 on 00,
u(0) = u° in Q,

where H (g, h) is given by

my (h(1+(Vgl)'2) i k=1 andy =0,
H(g, h) = myr(h) if k>1andy =0, (65)
my (h|Vg]) if O<k<l1landy =1—«k,

— Suppose now that (60) (ii) holds. Then, the function u belongs to L%, T; H(}(Q)) with u' €
L0, T; H~Y(Q)) and is the unique solution of the problem

W —div(A°Vu) = in Ox]0, T,
u=20 on 90, (66)
u(0) = u° in Q.
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— Finally, suppose that (60) (iii) holds. Then, uy and u; are the unique solution of the following two (inde-
pendent) Neumann problems:

wy —div(A°Vu)) = f in Q1x]0, TI,
Au-n=0 on IHx]0,TI, 67)
uy =0 on 901\ Iy,
u@© =u’ in Q,
why — div(A°Vup) = fin Qax]0, T1,
AOVMQ -n=0 on Iyx]0,T], (68)
ur =0 on 002\ I,
u@=u" in Qs

Before giving the proof of this theorem, we prove the following result:

Proposition 3 Under the assumptions of Theorem 2, let u, be the solution of problem (28) and consider the
(sub)-sequence given by Corollary 1 which verifies convergences (53). If ¢ is given in W(g) and {¢.} is the
corresponding sequence given by Lemma 1, then for every ¥ € D(0, T) we have

T T
lim / / ASVu Vo, dxdr = / / AV uy Vo dx dr. (69)
0 e 0 JQo

e—0

Moreover,
(i) X, A°Vute = x5 A®Vu  weakly in L*(0, T; (L*(Q)™),

70
(i) xp A" Vite = XQZAOVu weakly in L*>(0, T; (L>(Q)N). (70

where A° is given by (58).

Proof For fixed § > 0, let Q‘f and [I1s be defined by (32) and (35), respectively. This implies that for &
sufficiently small, we have (up a subsequence)

A*Vu, — & weaklyin L0, T; L*(Q%)). (71)

Then, the classical homogenization methods used with test functions in D( Q?) give the following convergence
of the flux, as ¢ — 0,
AVu, — A'Vu weakly in  L2(0, T; L3(Q9)). (72)

Hence, for any ¢ € W(()) if {¢,} is the corresponding sequence given by Lemma 1 we have

T T
/ / A*Vu, Ve, dx dt — / / AVu Ve dx dr, (73)
0 Jo? 0 JoS

as ¢ — 0. Now, on the region 75, from (7), Theorem 2 and convergence (34) (iii) from Lemma 1, we have

T
lim‘// A5Vu8¢V<pgdxdt‘
e—01Jo s\ T,

< SIE)I}) ||A€Vug ||L2(0,T;L2(175\Fs)) [V, ”LZ(O,T;L?(I'I(;\I"E))
< gli_I)I%),BC”Ma||L2(O,T;Wé)”V(p5”LZ(HB\FE)

< Cgli_r)% IV@ell 2\

= ClIVell L2\ ry)-

Since the right-hand side of this inequality goes to zero as § — 0, this together with (73) implies that

T T
lim / / A*Vu Ve, dxdr = / / AVuve, dx dr. (74)
0 O¢1 0 ]

e—0
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In a similar manner using Q> instead of Q‘f in (71)—(73) we obtain

e—0

T T
lim / / A*Vu YV dx dr = / / A'VuVyrg, dx dr.
0 (%) 0 02

This together with (74) gives (69).
Now, the sequence {XQ 1A*’"Vue} is weakly compact in L2(0, T; L?>(Q)) because of (7) and (30) (iii).

Using (72) and the arguments to show (37) (ii), convergence (70) (i) is proved. In a similar manner, one can
show (70) (ii). O

We present below a technical result which concerns passing to the limit in the boundary term and it will
prove very useful in what follows. The result was proved for the static case in [15] (see also [16]) and the
time-domain version we present here follows immediately by integrating in time.

Proposition 4 [15] Let {w.} be a sequence such that we, € W? for every ¢ and
_r
||ws||L2(o,T;W§ <c¢, |lwer —weallp2 7220y <€ 2, (75)
where c is a constant independent on ¢. Suppose that for some w € L*(0, T; Wg) one has

(i) we — w, stronglyin L*0,T;L*(Q)),
(ii) xo.Vwe = xo,Vw, weaklyin L2(0, T; (L2(Q)M).

— If (60) (ii) holds, then
w belong to L2(O, T; H(} (Q)).
Suppose now that {y.} is another sequence verifying the same estimates (75) such that for some €
L*(0, T: Wp)
(i) X0, V¥e = x0;VV¥. weaklyin L*(0,T: (Ly(Q)).
— If (60) (i) holds, then

{(i) Ve — ¥, stronglyin LZ(O, T; LZ(Q)),

e—0

t
lim &” / / h® (we1 — we2) (Ye1 — Ve2) do ds
0 JrIy
t
= H(g, h)/ / (w1 — w2)(Y1 — V¥2) do ds, (76)
0 JIy

foreveryt € [0, T], where H(g, h) is given by (65).
— If (60) (iii) holds, then

t
lim SV/O /F h® (we1 — wea) (Ye1 — Ye2) do ds = 0, (77)

e—>0

foreveryt € [0, T].

Proof of Theorem 5 Convergences (62) and (63) follow, for a subsequence, from (53) and (70), respectively.
We need to identify the limit . To this aim, welet ¢ € D(0, T) and ¢ in W(()), denoting by {¢;} the corresponding
sequence given by Lemma 1.

In the variational formulation (28), take (¢¢1Y, @s21) as test function so that

(g @t we,yowe, + (eas 9e2V0) (weyy Wi, +/ A*Vu Vo yr dx
Qs
(78)
+ 8Vf he (ug — ue2)(@e1 — @e2)¥ do = f S dx.
Iy 0
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Integrating both sides with respect to # and by Remark 3, we get

T T
—/ / ue@e v dx dt +/ / AfVu Vo dx dt
0 Qs 0 £

T T
e f / B (o1 — 10:2) (@o1 — ge2) ¥ dor = / / Foey dr. (79)
0 I 0 (9]

Using (34) (i) and (53) (i),

T T
lim/ / U@ dx dt = / / upy’ dx dr. (80)
e~ Jo Jo. 0 Jo

On the other hand, by Proposition 3,

T T
lim/ / ASVu Vo dxdt:/ / AVuvVey dx dr. (81)
e—0 0 R 0 0o

For the limit involving the boundary term, that is, the third term on the left-hand side of (79), we distinguish
the values of y and «x according to (60).
First, suppose that (60) (i) holds. Then by Proposition 4, we have (76), that is,

T
lim &¥ / / hs(l/lgl — ue2)(@e1 — @e2) ¥ do dt
0 3

e—0
T
= H(g, h)/ / (1 —u2)(@1 — 2)¥ do dr, (82)
0 Iy

where H (g, h) is given by (65).
Hence, letting ¢ — 0 in (79) and combining (80)—(82) together with (34) (i), we have

T T
—/ [utplﬁ’dxdt—i—/ f A'VuvVey dx dr
0 Jo 0 JQo

T T
+H<g,h>/ f<u1—u2)(<p1—¢z>w dodt=/ /fwﬁ dx dr.
0 Iy 0 0

Next, assume that (60) (ii) is true. By Proposition 4, u belongs to L0, T; HO1 (Q)).Lety € D(O, T) and
¢ € D(Q). Choosing ¢ as test function in the variational formulation (28), as ¢ — 0, no boundary terms
appear and we deduce that

u' = div(A°Vu) + f € L>(0, T; H'(Q)).

Thus, u belongs to L0, T; Hol(Q)) with u’ € L2(0, T; H~'(Q)) and is solution of the equation in problem
(66).
Finally, if (60) (iii) is satisfied then by Proposition 4,

e—0

T
lim &” [) / h®(ugr — ue2)(@e1 — @e2)¥ do dt = 0.
Te

Arguing as above, this implies together with (80) and (81) that u;,i = 1,2 is a solution of the Neumann
problem (66)
u, —div(A°Vu) = f in Q;x]0, T,
AVu; -n=0  on TIyx]0,T],
u=>0 on dQ;\ Ip.
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It remains to check that in the three cases, u satisfies the initial condition. Let ¢ = (g1, ¢2) in D(Q1) X
D(Q>) and ¢ € C*°([0, T]) with ¥ (T) = 0 and ¥ (0) = 1. For & small enough and using (@11, ¢21) as test
function in (28), we have

T
/ (g1, 19) (we, v we, dt+/ (eas @20 ) (wey we, dt

/fAEVu8V¢wdxdt //fgmpdxdt. (83)
o Jo

Since 1 (0) = 1, using the initial condition in problem (28), we get

T T
‘£W@%W%mmm=—éZ&WW—A(LLMQWMW
el el
T T
/ (gas 20 ) (wey we, dt = —f U2 dx — / f 22y’ dx dt
0 Q2 0 Q2

Substituting these identities in (83) gives

T T
—/ ule dx—/ / us oy’ dxdt-l—/ / A*Vu Vo dx dr
Q 0 Qel 0 3
T
=/ / for dx dt.
0 Jo

In view of (61), (62) (i) and Proposition 3 we can pass to the limit as ¢ — 0 in this identity to obtain

T T
—/ u’p dx—/ / upy’ dxdt—i—/ / AVuVey dxdr
o 0 Jo 0 JQo
T
- / / foyr dx dt. (84)
0 Jo

On the other hand, using again ¢ as test function in (78) with ¥/ (0) = 1 and ¢ (T') = 0 and passing now
to the limit in the duality pairing, thanks to (16) and (54), (55), after integrating with respect to ¢ we obtain

/
U V@) 120,75 H-1(01) x H-1(02)), 120, T; HL (01 x H (02))

T T (83)
+/ / AVuvey dxdt:/ / foy dx dr.
0 Joo 0o Jo

Integrating by parts in (85) we have

T T
—/ u(O)ngx—/ f upy’ dxdt—i—/ f A'VuvVey dx dr
0 0 Jo 0 JQo

T (86)
= / f foy dxdt.
0 Jo
From (84) and (86), we conclude that
[ @~ ax =0
0
for every ¢1 = (¢1, ¢2) in D(Q1) x D(Q2), which implies that
u () = u®. (87)

To conclude the proof, observe that limit problems (64), (66), (67) and (68) have unique solutions since
AV is positive definite. Hence, all the convergences involved for the three cases hold for the whole sequences.
O
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6 Corrector results

We complete here the convergences for the sequence of solutions {u} of problem (28) proved in Sect. 5. The
following proposition provides the main tool for the corrector analysis, and it will be proved at the end of this
section.

Let us first introduce C¢ = (ij)lf,-,jSN, the classical corrector matrix (see for instance [3], [11]), given
by

Cii(x) =Cyj (£> , ae.onQ
dw; (88)
C;j(y)zw(y), i,j=1,...,N ae.onY.
i

where {e; }?’:] denotes the canonical basis of RV and w j is the solution of problem (59), written for A = e;.

Proposition 5 Assume the same hypothesis as in Theorem 5. Let ¢ = (@1, ¢2) with ¢; € C*(0, T; D(Q;))
and let @ = (@1, @) with @; = (Dj1, Pi2, ..., Din) € C*(0, T, (D(Q,-))N)fori =1,2. Let Fg, Fy be
defined by

1 t
F.(t) = §||u8(t) _ <p(t)||iz(Q€) +[0 /Q A8 (Vu, — CE®)(Vu, — C*d)dxds
, ,
+ &7 / / he (g1 — ugn)’do ds (89)
0 JrIy

and

1 t
Fo(t) = 5 lu®) = 972, +/0 fQ A*(Vu — @)(Vu — @) dx ds
0

13
+f / B(ul—u2)2dods
0 JIy

fort €10, T], with

o {gl E 60 ahor 60 i o
and where H (g, h) is defined at (65). Then, if
u® — u® strongly in L*(Q), 1)
we have
tim [|F; = Follcojo, 7y = 0. (92)

Remark 6 Assuming the same hypothesis as in Proposition 5 and consider E;, E( defined by,

1 t t
E:(t) = EH”s(t)”%z(Q) +/ / A*VueVuedx ds + Ey/ / h® (uey — “eZ)sz ds
0 Qs 0 I

1 t t
Eo(t) = §||u(t)||ig(Q)+/O / A'VuvVu dxds—i—/o f B(uy — uz)*do ds
Qo Io

with B defined as in (90). Then, Proposition 5 for ¢ = 0 and @ = 0 in R" implies the following convergence
of the energies:

lim [|E¢ — Eollcopo. 7y = 0.

e—0

Before providing the proof of Proposition 5, we will present its main consequence, which is the corrector
result stated in Theorem 6. Its proof makes use of the following technical lemma, which is well known in real
analysis as Dini’s Theorem:

Lemma 2 [24] Let {g.} be a sequence of non-decreasing real functions defined on a compact interval I of R,
which pointwise converges to a continuous function g on I. Then, g, converges to g uniformly on I.
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Theorem 6 Let u, be the solution of problem (28). Under the assumptions of Theorem 5, we have the following
convergences:

(i) ue —u inC0, T1; L*(Q)),
(@) im [|Vue — C*Vull 120,711 (go) = 0

where C¢ = (ij) I<i,j<n is the classical corrector matrix described in (88).

Proof By density, for every § > 0 there exist ¢® € C®(0, T; D(Q)) and a vector function ¢° = (®?, 453)
with @9 = (@2, ..., ®%)in C®(0, T; D(Q)"), i = 1,2 satisfying

1

@) llu=@°llcoqo.r2200)) <9 (93)
i) IVu — ¢5||(L2(0,T,L2(Q0)))N =34.
Define

t
Ge(t) = Fult) — &7 / f B (et — ue)?dor ds,
faiat (94)
Go(t) = Fo(1) —/ / B(ui — uz)*do ds,
0 JIy

for ¢ € [0, T1, where Fy, Fy are defined in (89) for ¢ = ¢°, ®; = ®? fori = 1, 2.
Let us prove that (92) and Proposition 4 imply

lim sup | Gellcogo, 77 < 1Gollcopo, 71 < €8>, 95)

e—0

To do that, suppose first that (60) (i) or respectively (60) (iii) hold true. We apply Lemma 2 to the functions

t
g = eV/ f he (g1 — ugn)*do ds, (96)
0 JrIy

which are non-decreasing on [0, 7] to deduce that convergences (76) or (77) are uniform in [0, T']. This
together with (92) and the definition of B at (90) imply (95).
On the other hand, if (60) (ii) holds true, then by using

Ge(t) < Fe(t), fort € [0, T],

and taking the supremum with respect to ¢ € [0, T'] above and in view of (90) and (92) we obtain (95) in this
case as well. Next, the triangle inequality and (93) (i), give

2 82 ) 2
lue = ulicoqo,ri:200)) =2 (””8 ~ ¥ leoqo ey T~ ””coao,ﬂ;H(Q»)

7)
= 2lue =@ llgogo 7y.12(0)) + 28
The ellipticity of A® implies

lte = ¢ 120011200y < 21Gellcopo 7. (98)

From (95), (97) and (98) it follows that
lim sup e = ullgogo,ry,12(gy < €8 (99)

On the other hand, by the triangle inequality and Holder inequality,
T T s

/0 Ve — C*Vullp1g v dt < 2/0 Ve — C*®° |11,y dt 100

T
+20C M 2 gp2 /O 19° = Vullzag, ) dr.
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The boundedness of C?, (93), (94) and the ellipticity of A® imply that

T
f ||Vl/tg — CEVM||[L1(Q€)]N dt < C”GSHCO[O,TJ (10])
0
Thus by using (95), (100), (101) we obtain
lim sup ||vl/ig — CEVM”LZ(O,T;[LI(Q,;)]N) < C82 (102)
e—0 '
The arbitrariness of § in (99) and (102) implies the result. O

Remark 7 Note that the sequence {g.} defined by (96) is equibounded but not equicontinuous, so that we
cannot apply the classical Ascoli—Arzela theorem to prove its uniform convergence in [0, T']. Nevertheless,
we are able to overcome this difficulty by making use of Lemma 2.

Proof of Proposition 5 Observe that (89) can be written as

1 t
Fg(t)z§||u8(t)—g0(t)||i2(Q)+/0 / A (Vu, — C*®)(Vu, — C*®)dxds
Qe

t
+£V//hs~(u81 — ug)*do ds
0JI,
1 2 1 2 ! &
1 t
+8V//h8~(u31—u32)2dods—/ / A°CE®Vu, dx ds
0JI% 0 &
t '
—/ / AVu ,C°® dxds—l—/ / A°CPPCP P dx ds
0 e 0 e

= i (6) — n2(0) + 12 (1)

where
1 _l 2 ! & e &
ne (1) = ||<P(l‘)||Lz(Q) + A C°PdC°PD dxds (103)
ns(t) —/ ue (1)o(t) dx—l—/ / A C* D Vu, dx ds
/ / A VU, C5® dx ds (104)
77.3(1) = 5”“3(0”%2(@ +/0 /Qs A*VugVu, dxds

t
+8y/(;/hs-(u51 — Ugr)?do ds (105)
Iy

Let us study the limit of né(t) ase — Oforeachi € {1, 2, 3}.
Step 1 The term n; (t) defined in (103) is equal to

1 t t
—||¢(t)||iz(Q)+/ f ASCED | CE dxds+/ f AECED,CE Dy dux ds.
2 0 Joxlesgll 0 Jo,

Observe that
3 g0 such that supp @; C wx]eyg, I, Vi=1,...,N. (106)

This implies that

t t
lim / / AC @ CP P dx ds = lim / / AC D CP Py dx ds,
e—0Jo wx1e g1l e—0Jo 01
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so that by (59) and standard computations,
1 1 2 ! 0
lim 1k (0) = 5100130, + [ fQO A% dx ds.
To show the strong convergence of n; (¢) in CY[0, T, we first observe that from (7) we have

1 1 2
||773||c0[o,T] S EH(pHCO[O,T]

2 2 &2
+’3(||¢1”CO(O,T,CO(Q]))—H|¢2||C0(0,T,C0(Q2)))||C ||L2(Q) S C

Next consider 7 << 1. By using the same ideas in (108) we obtain
i { ) t+h
Ikt + ) = 0] < 1el2og 1, +/t / ACEPC P dx ds

2 2 &2
S hﬁ <||®1||C0(0,T,C0(Q1)) + ||¢2||C0(0’T,C0(Q2))) ||C ||L2(Q)
< Ch.

By Ascoli—Arzela theorem, (107) and estimates (108) and (109) imply
1 1
e () = =72, + / f A’®@® dxds uniformly for 7 € [0, T].
2 (Q) 0 Joo

Step 2 Next we proceed to study the term nf (t) defined in (104). In this regard, we rewrite nf(t) as

n2(t) = kL () + K2 @) + k2 (1),

where

g (1) = / s (e (1) dx,
0o
t

@(r):/ / ACEDVu, dx ds,
0 e

t
xﬁ(r)zfof A®Vu,C*® dx ds.

(107)

(108)

(109)

(110)

(111)

(112)

(113)

e We perform now the limit analysis of Ksl defined in (111). Using integration by parts, taking ¢ as a test

function in (28) and integrating in time we obtain

t

t
Klt) = | ue(0)(0) dx + | (b, @) wey.we + [ (e, @) wey we
Q 0 0 0 0 0 0

t t
:/ug(p(())dx—// ASVM,SV(pdxds—i-//f(pdxds
0 0 e 0 JQ
13
+/ /uega/dxdt
0 Jo

From (61), (63), (62) (i) and (87) for every ¢ € [0, T'] we obtain

t t t
,kl (1) —>/ u(0)g(0) dx—/ / A'Vuve dxds—l—/ / fo dxds—i—/ / ug'dx dt.
o 0 JQo 0 Jo 0 Jo

Using ¢ as a test function in the limit problem for u (described in Theorem 5) and integration by parts with

respect to time, we obtain

K;(z)—>/ u(t)p dx forevery e [0, T].
0

(114)
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Next, from (7), (29), (30) (iii) and Holder inequality we obtain

e} ()] < C <||u2||L2(Q) + BlIVuell 20, 7.wg) + 1 1220.7.1200)) + ||“s||L2(0,T,W§))
< C independent of ¢. (115)

For h << 1, by using the same ideas in (115) we deduce

t+h
/ / A*Vu Ve dxds
1 e
t+h
/ / ue@'dx dt
t )

1
<h2 (ﬂ||VMe||L2(0,T,W5) + 201,020 + ||Ms||L2(o,T,W(§))

ekt +h) — il ()] < +

t+h
/ fo dxds
! o

+

D=

< Ch3. (116)
As above, (114)—(116) imply
1 . 0
Kk (1) — /Qu(t)<p dx stronglyin C”[0, T]. (117)
e For the second term K€2 (t) defined in (112), we write,
t t
K2 (1) = / f A°CE®Vu,; dxds +/ / A°CE DV, dx ds.
0 JO, 0 J0O»
From (58), if w; is given for A = ¢; and w{ = ew; (3) a.e. in RY then
wf — x; weakly in H'(Q),
wi — X; strongly in  L%(Q), (118)
A*Vw? — Al¢; weakly in (L?(Q)N.
By a change of scale,
t
/ / A*VwiVu deds =0 Yo e L0, T, HJ(2)), (119)
0 JR
for every open set 2 C RV It follows from (118), (119) and (62) (i) that
t t
/ f A C?®P1Vug dx ds =/ / A*VwiV(Pyiug) dx ds
0 JO 0 J0O
t
— f / A*VwiV®iug dxds
0 S0 (120)

t
:—f[ A*Vw!V®iiug dxds
0 JOu

t
—>—// AOechDh-uldxds,
0 JOi

where Einstein index summation was used in the above. In a similar manner,
t t
/ f ASC Py Vu,, dxds — —/ / A%e; V@o;uy dx ds. (121)
0 JO» 0 JO»

Therefore, applying again integration by parts in the limit integrals in (120) and (121) we obtain

t
lim Kf(z)=f / A@Vu dx ds. (122)
e—0 0 00
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Now, it follows from (30) (i) and the properties of @, A® and C? that Kf (1) is bounded in H'(0, T'). Hence,
by using this and the compactness of the injection H 10, T) c €0, T) in (122) we obtain

t
lim «2(r) = / / A’@Vy dx ds, strongly in C°[0, T7. (123)
e—0 0 Joo

e To handle /cg (¢) introduced in (113), we choose the test function v = @;w! in the variational formulation
(28). Observe that

t
@(z):f/ A*Vue®; V' dx ds
0 Jo.

t t
=/ / A*Vu V(Q;w!) dxds —/ / A*Vu Vo;w? dx ds
0 e 0 e
t t t
:/0 / fPiw; dxds —/0 (g, ®iw?)ds _/0 (Uly, Diw?)ds
t
- / / h® (ue1 — ue2)((Pw;) — (@wy)2) do ds
0 JrIy
t
—/ / A*Vu Vo;w? dx ds.
0 e
Now, since (106) holds and for ¢ < &g, supp(®P2) C Q2, we have
t
o [ [ e~ ua @ - @) dads 0, (124)
I

as ¢ — 0. On the other hand, by Remark 3 and considering (55) (extended to L%(0, T, H(} (Qo) by aclassical
density argument), using (118) we get

t t t
i ([ ety as [tz 00005 ) = i [ @) as

t
=/ (', d;x;)ds.
0

Using (124) and (125) and together with (118) and (63), we have

t t t
lim «2 () :/ / fPix; dxds—/ (', @ixi)ds—/ / A'Vuve,x; dxds
e—0 0 Qo
/ /f@x,dxds—f (', CDx,)ds—/ / A° VuV(®;x;) dx ds (126)
Qo

/ / A'Vud dx ds.
Qo

Using the fact that (106) holds and supp(®;) C Q;,i = 1,2, considering the limit problems satisfied by u
(see Theorem 5), we obtain

t t t
/ / A'Vuv(®;x;) dx ds =/ / fbix; dxds—/ W', Dix;)ds. (127)
0 JQo 0 JQ 0

Combining (126) and (127), it follows that

(125)

t
lim @(z):/ / A'Vud dx ds.
e—0 0 00
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Now, observe that by (63), the definition of C?, assumption on @ and the Holder’s inequality,
|K3(f)| = ||A8VM8||L2(0,T;[L2(Q)]R||C8||[L2(Q)]n2 1Pl L@, 7120 = €

where c is independent of ¢. Moreover, for any 4 > 0 small enough,

1
e (¢ 4 h) = il O < 1A°Vuel 20, 7:12200)0 1€l 2y B 1@l Lo 0,722 001

< ch% — 0, ash — 0, uniformly in €.

Thus, by Ascoli—Arzela theorem,
t
K2 (1) — / / A’Vu® dxds stronglyin  C°([0, T]). (128)
0 JQo
Combining (117), (123) and (128), we have,

t t
lim n?(1) = / u(t)ep dx +/ f A®Vu dx ds +/ / A'Vud dx ds (129)
£—>0 0 0 JQo 0 JQo

strongly in C°([0, T']).
Step 3 Finally we discuss the limit behavior of ng’ (#) introduced in (105). Thus, taking u, as test function in
(28) and integrating with respect to time we obtain

t
1
3 0,2
ng(t)ZA /quadds+§|lug||L2(Q)
Using (91) and (62) (i) we obtain that
P ! Lo
slgrbns(t) — /0 /.qu dxds + §||u ||L2(Q)’ forall r € [0, T]. (130)

Next, it easy to observe that (27) and the fact thatu € C 000, 7, L2(Q)) imply that the sequence of functions
’72 is equibounded and equicontinuous in C°[0, T']. Then (130) and Ascoli—Arzela theorem imply,

t
1
ng(z)—>/ / fu dxds+§||uo||iz(Q), strongly in C°[0, T']. (131)
0 Jo

Finally, using u as a test function in the limit problem (see Theorem 5) and integrating with respect to time,
convergence (131) becomes

1 t
HORE IO R +/ / A"VuVu dx ds
0 J0Qo

t
—I—/ / B(ul—uz)zdads
0 JIy

strongly in 10, 71. Finally, from (110), (129) and (132) we obtain (92). O

(132)
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7 Physical interpretation of results and applications

In this section, we will first offer a discussion on the physical interpretation of the homogenization and corrector
results presented in Theorems 5 and 6 followed by a brief account of possible applications of our study and
future work.

Let us assume a three-dimensional space. The main question addressed in the paper is mathematically
described in (26) (see also Fig. 1), and it is our aim to characterize a computationally feasible macroscale
model to describe the multiscale problem of heat flow through two different microstructures (of characteristic
length ¢ << 1) separated by a rough interface, the geometry of which depends in a prescribed fashion when
& << 1. For simplicity, we will further assume # = 1 in (26) and |w| = 1 in (11) where here and in what
follows | S| denotes the area of the set S C R2.

First, we note that in the formulation of our main problem (26), the condition on the interface I'; relating
the fluxes and the jump of the temperature is written per unit area. Hence, the actual microscale physical heat
transfer coefficient (the proportionality constant), K., between the heat flux through I'; and the temperature
over [ is given by

Ke = e7|I). (133)

Next, recall that the area of a surface S described by z = f(§') = f (&1, &) for § € X and some arbitrary
smooth function f is given by

5= [ i+ 2@+ e (134)

where f denotes the partial derivative of the function f with respect to its ith variable. Assuming that the
function g introduced in (2) is smooth enough, from (134) and the definition of I'; in (5), we have

x/ x/
T =[\/1+82K—2g§1 (z)ﬂ“—zgﬁz <?>dx’. (135)
w

From (135) it easily follows that:

K
—8—>1,if/c>1
134

8y+5,1 — my(|Vg]), if0 <k <1

K
—;—>my/ (,/1+|vg|2>, ifk =1, (136)
&

where my/(f) denotes the average on Y’ (the surface reference cell) of the function f.
The results in (136) explain then the behavior obtained in Theorem 5. Indeed,

I.If (« >1and y =0)or (0 <« < 1 and y = 1 — k), then the heat transfer coefficient on the interface
K approaches a constant for ¢ << 1 (¢ infinitely small) and thus the homogenous macroscale problem
is modeled by a parabolic PDE over a domain separated by a hyperplane I with the continuous flux
proportional to the temperature jump across it with proportionality constant given by the constant limit of
K..

2. If (¢« > 1 and y < 0), then the heat transfer coefficient on the interface satisfies K, ~ ¢¥ for e << 1.
Similarly, if (0 < k < 1 and ¥ < 1 — k) then K, ~ 7%~ for ¢ << 1. In both of these situations, the
heat transfer coefficient on the interface, i.e., K, becomes infinitely large for ¢ — 0 and so, a realistic finite
flux across the interface implicitly implies that the temperature becomes continuous across the interface in
the limit when ¢ — 0. Hence, as a consequence, the contribution of the microscale transmission interface
disappears in the homogenized limit and the macroscale model is governed by a parabolic PDE in the
whole domain with homogeneous Dirichlet boundary conditions.

3. As above, if (k > 1 and y > 0) or respectively (0 < k < 1 and y > 1 — k), the heat transfer coefficient
on the interface satisfies K, ~ ¢¥ and respectively K, ~ " 7*~! for ¢ << 1. In both of these situations,
the heat transfer coefficient on the interface, i.e., K., approaches zero as ¢ — 0 and so the microscale
transmission interface has a very strong effect in the limit and the macroscale problem is modeled by a
parabolic homogenized PDE on two disjoint domains with identical initial conditions and homogeneous
mixed boundary conditions, zero flux on the flat part of the boundary and zero temperature otherwise.
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In Sect. 6, we present the corrector analysis for our homogenization result. First, the result of Remark 6
states the fact that the energy associated with the multiscale model (26) approaches (as ¢ — 0) the energy
of the limit problem presented in Theorem 5. Thus, as expected from the physical point of view, for a given
microscale &, the energy of the proposed macroscale model will be close to the energy of the multiscale
problem. Then, the corrector results of Theorem 6 show that the macroscale problem given in Theorem 5 can
indeed be used for an approximation for the evolution of both the microscale temperature and its gradient.

A direct application of our results could be their use as part of alternative strategies for the design of efficient
material interfaces between given microstructures with the purpose of controlling the overall heat transfer.
Another important application of our results will be for the associated multiscale approximate controllability
problem where prescribed controls described as interior heat sources [mathematically appearing as additional
additive terms in the right-hand side of the PDE (26)] will be employed to satisfy certain global optimality
constraints. Because these controls will also depend on the microscale ¢ << 1, the overall multiscale solution
will be very difficult to compute and so a homogenized macroscale model (PDE + control) will be desired
instead. This problem will be studied, and the results will be reported in a forthcoming paper.
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