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Abstract. In this paper, we consider the question of actively manipulating

scalar Helmholtz fields radiated by a given source that is supported on a com-

pact domain. We claim that the field radiated by the source approximates
given scalar fields in prescribed exterior regions while maintaining desired far

field patterns in prescribed directions in the presence of exterior known im-
penetrable obstacles. For simplicity of the exposition, we consider a simplified

geometry with only one obstacle, one region of control, and a finite num-

ber of far field directions and present a theoretical argument for our claim
stated above. Afterwards, we also show how it can be elementarily extended

to the general case. Further, we construct a numerical scheme to compute

these boundary inputs using the method of moments, the addition theorem,
Tikhonov regularization, and Laplace spherical functions.

1. Introduction

1.1. General Background. The study of active control problems for fields
modeled by the scalar Helmholtz equation is a very active area of research not only
due to its intrinsic importance to acoustic wave phenomena but also because in
many situations scalar problems can be used as an approximation to electromag-
netic phenomena since they often preserve many important aspects of the problem
while avoiding excessive mathematical complexities. In fact, for two-dimensional
models, vector electromagnetic problems can be reduced to scalar formulations.
Thus, there already exists a rich body of literature concerning the problem of ac-
tive manipulation of vector and scalar fields in desired regions of space. The active
(partial) nulling of acoustic fields was first studied in [34] (feed-forward control of
sound) and in [49] (feedback control of sound). The works [59], [25], [36], [39],
[38], [37], [56], [23], [55], [63], [22], [3] discuss methods and source optimization
strategies for the active control of scalar fields modeled by the Helmholtz equa-
tion. Common applications include active noise cancellation ([48], [24], [11], [32],
[42]), sound synthesis and reproduction ([3], [30], [50],[68],[62], [17]), and active
control of acoustic scattered fields with application to cloaking and shielding ([6],
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[67], [65],[66],[35], [20], [52], [41]). A more comprehensive discussion and analy-
sis of some of the methods employed in these applications is also given in [10] for
scattered field control and in [21] and [1] for sound field synthesis.

There is an extensive literature on the active control of Helmholtz fields. In
[36] and [39], active scalar Helmholtz controls were constructed through generalized
Calderon potentials and boundary projection operators while in [47] and [67], the
authors employed the Green representation theorem to characterize active controls
for the scalar Helmholtz equation. Multizone field synthesis and reproduction were
studied using wave-domain methods (such as in [26], [27]) or modal-domain ap-
proaches (see [46], [69]). An algorithm for the reduction of scattering interference
to the overall multizone scalar field synthesis effect was presented in [68]. In [51]
and [52] the author made use of boundary integral operators to produce a stable
unified control strategy in the case of a single active surface source proving the
active control of radiated scalar fields in prescribed exterior region of space. These
theoretical results were later applied for the 2D and 3D numerical study in [28],
[53], [17], [18]. Other ideas that are used in the context of Helmholtz field control
are discussed and analyzed in [4], [21], [58] and [70]. The monographs [29], [31],
[9] and [7] discuss at length the problem of scalar fields propagation in oceans and
layered media.

The problem of far field synthesis requires the construction of necessary bound-
ary inputs on the active sources for the approximation of a given far field pat-
tern [5],[2] (“the far field synthesis”) (see also the monograph of [16] where gen-
eral radiation theory and source synthesis techniques are discussed). The works
[33, 14, 8, 15] discuss the problem of pattern synthesis with prescribed exterior
nulls in specified parts of the near field region. In [61, 40] the authors assume
physical optics approximations (i.e., small wavelengths relative to the size of the
obstacles) and consider obstacles positioned in specified subregions of the near field
(see also the review [12], for a genetic optimization algorithm based on the far-
field to near field mapping for a solution). In our formulation below, the active
field control problem is formulated in homogeneous media in the presence of known
impenetrable obstacles and it requires the characterization of optimal boundary in-
puts on the active sources for the approximation of various prescribed scalar fields
in given exterior regions and specified far field directions.

Computational and analytical methods for scalar scattering and radiation are
presented in many excellent monograph in the literature and we mention here just
several major monographs, [57, 64, 44].

In this paper, we build up on our previous work and produce a theoretical result
concerning the active control of radiated fields showing that we can approximate
given scalar fields in prescribed exterior regions and given far field directions in the
presence of known impenetrable obstacles. The paper is organized as follows: In the
first part of Section 2 we introduce our main question and present the mathematical
formulation of the main problem we solve. Then , in the second part of the section
we present the argument leading to our main result. In Section 3 we show several
numerical results to support our theoretical findings. The last Section presents our
conclusions and remarks about future works.
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Figure 1. Sketch of the problem geometry

2. Statement of the Problem

The main question we plan to address concerns the characterization of phys-
ical boundary inputs on a given source support so that the radiated scalar field
approximates desired behaviors in prescribed mutually disjoint exterior regions of
space and desired far-field patterns in prescribed far-field directions in the presence
of known exterior impenetrable obstacles.

For the simplicity of exposition while preserving the generality of the argument
(see Remarks 2.2, 2.3, 2.4, 2.5), we will next consider the case where only one
sound-soft obstacle is present with only one exterior control region and N far-field
directions. See Figure 1 for a sketch of the geometry where only four far-field
directions are drawn.

For the mathematical formulation of the problem, we need to introduce sev-
eral notations. Let Da be a compact smooth domain representing the physical
source support. Consider D a compact control region and O be the open smooth
set representing the sound-soft obstacle. Also, let x̂1, x̂2, . . . , x̂N be unit vectors
designating the N given far-field directions. As in one of the previous works, see
[52, 51, 53, 17, 54, 18], we assume a fictitious source domain D′

a ⊂⊂ Da and a
fictitious control domain W ⊃⊃ D so that

Da ∩W = ∅,
(
Da ∪W

)
∩O = ∅,

where ⊂⊂ denotes compact embedding. Without restricting the generality, we also
assume that the non-physical fictitious domains D′

a and W are smooth. Mathe-
matically, the problem can be formulated as follows. Consider the incident field
uinc(x) =

∫
∂D′

a
w(y)Φ(x,y) dSy and assume there is no coupling between the ob-

stacle O and the source Da, e.g., the obstacle is in the far-field of the source. Let
0 < µ ≪ 1, u1 be a Helmholtz potential in W , f1, f2, . . . , fN be given complex
numbers. The problem is to determine the density w such that the total field u
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obtained (radiated and scattered), i.e., u = uinc + us where us solves

(2.1)


∆us + k2us = 0, in R3 \O
⟨ x
|x| ,∇us(x)⟩ − ikus(x) = o

(
1
|x|

)
, uniformly for all x

|x| as x → ∞
us = −uinc, on ∂O.

satisfies

(2.2)

{
∥u− u1∥L2(∂W ) < µ

|u∞(x̂i)− fi| < µ, for i = 1, . . . , N

where u∞(x̂i) denotes the far-field pattern of u in the direction of the unit vector
x̂i, i = 1, . . . , N .

Classical results [13, 43, 45] imply the existence of a unique solution. For
simplicity, assuming k is not a Helmholtz Dirichlet eigenvalues for the interior
problem in W , O, and D′

a. We look for us in the form of a double-layer potential

(2.3) us(z) =

∫
∂O

v(y)
∂Φ

∂νy
(z,y) dSy, for z ∈ R3 \ ∂O,

where Φ(x,y) = eik|x−y|

4π|x−y| is the fundamental solution of the 3D Helmholtz equation.

Imposing the boundary condition on ∂O and using the jump of the double-layer
potential operator, we get that v satisfies(

KO +
1

2
I

)
v = −POw, on ∂O,

where KO : L2(∂O) → L2(∂O) and PO : L2(∂D′
a) → L2(∂O) are given by

KOv(x) =

∫
∂O

v(x)
∂Φ

∂νy
(x,y) dSy, x ∈ ∂O,

and

POw(z) =

∫
∂D′

a

w(y)Φ(x,y) dSy, z ∈ ∂O,

respectively. Then, since k is not a resonance, we get

v = −
(
KO +

1

2
I

)−1

POw

and

us(z) = −
∫
∂O

(
KO +

1

2
I

)−1

POw(y)
∂Φ

∂νy
(z,y) dSy.

Then the total field in W is given by

u(z) = uinc(z) + us(z)

= PWw(z)−DO,W

(
KO +

1

2
I

)−1

POw(z),

where PW : L2(∂D′
a) → L2(∂W ) and DO,W : L2(∂O) → L2(∂W ) are defined by

PWw(z) =

∫
∂D′

a

w(y)Φ(z,y) dSy, z ∈ ∂W,

DO,W g(z) =

∫
∂O

g(y)
∂Φ

∂νy
(z,y) dSy, z ∈ ∂W, for g ∈ L2(∂O).

(2.4)
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Moreover, the total field in the far-field direction x̂i is given by
(2.5)

u∞(x̂i) =
1

4π

∫
∂D′

a

w(y)e−ikx̂i·y dSy−
1

4π

∫
∂O

(
KO +

1

2
I

)−1

POw(y)
∂e−ikx̂i·y

∂νy
dSy

for i = 1, . . . N . Hence, we can now introduce the total propagator operator T :
L2(∂D′

a) → L2(∂W )× CN by

(2.6) T w =

(
PWw(z)−DO,W

(
KO +

1

2
I

)−1

POw(z), u∞(x̂1), . . . , u∞(x̂N )

)
where PW and DO,W are defined in (2.4) and u∞ is defined in (2.5).

Theorem 2.1. The operator T defined above has a dense range.

Proof. To show this, since T is linear and compact, it suffices to show that
ker T ∗ = {0} where ker T ∗ denotes the kernel of the adjoint operator T ∗. The
adjoint operator T ∗ : L2(∂W )× CN → L2(∂D′

a) is given by

⟨T w, ψ̃⟩L2(∂W )×CN = ⟨w, T ∗ψ̃⟩L2(∂D′
a)

where ψ̃ = (ψ, c1, . . . , cN ),

⟨ψ1, ψ2⟩L2(∂W ) =

∫
∂W

ψ1ψ2

and

⟨(c1, c2, . . . , cN ), (d1, d2, . . . , dN )⟩CN =

N∑
i=1

cid̄i

for every ψ1, ψ2 ∈ L2(∂W ) and (c1, c2, . . . , cN ), (d1, d2, . . . , dN ) ∈ CN . With these,
we get

⟨Tw, ψ̃⟩L2(∂)×CN =

〈
PWw(z)−DO,W

(
KO +

1

2
I

)−1

POw,ψ

〉
L2(∂W )

(2.7)

+

N∑
i=1

u∞(x̂i) · c̄i

=

〈
w,P∗

Wψ − P∗
O

(
K′

O +
1

2
I

)−1

D∗
O,Wψ

〉
L2(∂D′

a)

+

N∑
i=1

1

4π

[∫
∂D′

a

w(y)e−ikx̂i·y dSy

−
∫
∂O

(
KO +

1

2
I

)−1

POw(z)
∂e−ikx̂i·z

∂νz
dSz

]
· c̄i

where P∗
W : L2(∂W ) → L2(∂D′

a) is the adjoint of PW given by

P∗
Wψ(y) =

∫
∂W

ψ(z)Φ(z,y) dSz, y ∈ ∂D′
a,

P∗
O : L2(∂O) → L2(∂D′

a) is the adjoint of PO defined by

P∗
Oξ(y) =

∫
∂O

ξ(z)Φ(z,y) dSz, y ∈ ∂D′
a,
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K′
O : L2(∂O) → L2(∂O) is the adjoint of KO given in [13],

K′
Oξ(x) =

∫
∂O

ξ(y)
∂Φ

∂νy
(x,y) dSy, y ∈ ∂O,

and lastly, D∗
O,W : L2(∂W ) → L2(∂O) is the adjoint of DO,W given by

D∗
O,Wψ(y) =

∫
∂W

ψ(z)
∂Φ

∂νy
(z,y) dSy, z ∈ ∂O.

So, algebraic manipulation of (2.7) gives

⟨Tw, ψ̃⟩L2(∂)×CN =

〈
w,

(
P∗
W − P∗

O

(
K′

O +
1

2
I

)−1

D∗
O,W

)
ψ

〉
L2(∂D′

a)

(2.8)

+

∫
∂D′

a

w(y)
N∑
i=1

1

4π

(
eikx̂i·y − P∗

O

(
K′

O +
1

2
I

)−1
∂eikx̂i·z

∂νz
dSz

)
· ci,

where ∂eikx̂i·z

∂νz
is considered defined for z ∈ ∂O. Consequently, from (2.8), we obtain

T ∗ψ̃(y) =

((
P∗
W − P∗

O

(
K′

O +
1

2
I

)−1

D∗
O,W

)
ψ

)
(y)

+
1

4π

N∑
i=1

(
eikx̂i·y − P∗

O

(
K′

O +
1

2
I

)−1(
∂eikx̂i·z

∂νz

)
(y)

)
· ci,

(2.9)

for y ∈ ∂D′
a Now, we define

f(x) =

∫
∂W

ψ(y)Φ̄(x,y) dSy −
∫
∂O

(
K′

O +
1

2
I

)−1

D∗
O,Wψ(z)Φ̄(x, z) dSz

+
1

4π

N∑
i=1

(
eikx̂i·x −

∫
∂O

(
K′

O +
1

2
I

)−1
∂eikx̂i·z

∂νz
Φ̄(x, z) dSz

)
· ci,

(2.10)

for x ∈ D′
a. For ψ̃ = (ψ, c1, . . . , cN ) ∈ ker T ∗, from (2.9) and (2.10),

f(y) = T ∗ψ̃(y), y ∈ ∂D′
a

and thus, f solves the homogeneous Dirichlet problem in D′
a. Therefore, since k is

not an interior Helmholtz Dirichlet eigenvalue for D′
a, using uniqueness, we have

that

f = 0 on D′
a,

and analytic continuation implies

(2.11) f = 0 in R3 \
(
W ∪O

)
.

Continuity of the single-layer implies f = 0 on ∂W ∪ ∂O. Since f satisfies the
Helmholtz homogeneous equation inW and k is not an interior Helmholtz Dirichlet
eigenvalue in W , from (2.11) and uniqueness of the interior Dirichlet problem in
W , we get

(2.12) f = 0 in W.
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Using the jump relation of the normal derivatives of the single-layer operator on
∂W , we obtain

(2.13) ψ = 0 on ∂W.

Using (2.13) in (2.10), we get

(2.14) f(x) =
1

4π

N∑
i=1

(
eikx̂i·x −

∫
∂O

(
K′

O +
1

2
I

)−1
∂eikx̂i·z

∂νz
Φ̄(x, z) dSz

)
· ci.

From (2.11) and (2.12), we derive

(2.15) f = 0 in R3 \O.
Continuity of the single-layer potential on ∂O gives

(2.16) f = 0 on ∂O.

Since f satisfies the homogeneous Helmholtz equation in O and k is not an interior
Helmholtz Dirichlet eigenvalue in O, relation (2.16) and uniqueness of the interior
Dirichlet problem in O implies

(2.17) f = 0 in O.

Using again the jump relations of the normal derivatives of the single-layer potential
on ∂O, we obtain from (2.15) and (2.17),

(2.18)

N∑
i=1

(
K′

O +
1

2
I

)−1
∂eikx̂i·z

∂νz
· ci = 0 on ∂O.

With (2.18) in (2.14), (2.15), (2.16), (2.17), we have

(2.19) f(y) =
1

4π

N∑
i=1

eikx̂i·yci = 0 in R3, for all y ∈ R3.

Proceeding as in [19], we first fix a unit vector y ∈ R3 and define yp = py for
p = 0, . . . , N − 1 so that from (2.19), we obtain the Vandermonde system

(2.20)


1 1 · · · 1
z1 z2 · · · zN
...

...
. . .

...

zN−1
1 zN−1

2 · · · zN−1
N


︸ ︷︷ ︸

:=Z


c1
c2
...
cN

 =


0
0
...
0


where zi = eikx̂i·y. The unique solution of (2.20) is the trivial solution where
ci = 0 for all i = 1, . . . , N whenever the coefficient matrix Z is nonsingular. The
determinant of the Vandermonde matrix above is given by

(2.21) det(Z) =
∏

1≤j≤1≤N

(zj − zi)

which is zero if and only if at least one of the differences in the product is zero, i.e.,
there are indices j1, j2 such that zj1 = zj2 , equivalently this means that

(2.22) (x̂j1 − x̂j2) · y =
2π

k
M

for some integer M . Hence, we get |M | = k
2π |(x̂j1 − x̂j2) · y| ≤ k

π by triangle
inequality and Cauchy-Schwarz inequality. This means that choosing y on the
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exterior of the hyperplanes defined by

(
N
2

)(
2⌊ k

π ⌋+ 1
)
equations of the form

(2.22), we observe that this gives a set of N y values, which are the yp vectors,
that results to (2.19) having the solution ci = 0 for all i = 1, . . . , N and thus, T
has a dense range. □

Remark 2.2. Note that the physical source input on ∂Da is obtained from
uinc introduced above either as pressure

(2.23) p(x) =

∫
∂D′

a

w(y)Φ(x,y) dSy

for x ∈ ∂Da or normal velocity

(2.24) v(x) =
−i
ρck

∂

∂νx

∫
∂D′

a

w(y)Φ(x,y) dSy

for x ∈ ∂Da where ρ denotes the density of the surrounding medium and c denotes
the speed of propagation of sound in the respective media.

Remark 2.3. It can be immediately seen that by using a single layer repre-
sentation of the scattered field, the arguments presented in Theorem 2.1 can be
adapted to the case when a sound-hard obstacle is used.

Remark 2.4. We use a smooth fictitious source D′
a ⊂⊂ Da which simplifies the

computation (we assume D′
a is a spherical domain) and ensures that, the boundary

inputs given in Remark 2.2 will be smooth.

Remark 2.5. By employing interior stability estimates, it was shown in [52]
that L2−control in ∂W is enough to show smooth interior control. Thus, we have
that ∥u− u1∥L2(D) < ϵ for some 0 < ϵ≪ 1.

Remark 2.6. If coupling between the obstacle is neglected then the theoretical
argument presented in Theorem 2.1 extend immediately to the case of more impen-
etrable obstacles of the same type and also to the case where one has sound-soft
and sound-hard obstacles (in this case, the well-posedness is implied by [60]).

Remark 2.7. The arguments of Theorem 2.1 can be extended to all possible
values of k which are made by considering a modified Green’s function on a modified
layer potential approach in the spirit of [45] and [60].

3. Numerical Implementation

In this section, we demonstrate a numerical scheme to support the theoretical
concepts presented in the previous section. We consider problem (2.1), without
far-field constraints, which may be summarized by finding a function w ∈ L2(D′

a)
such that

(3.1) T w = f

for a prescribed field f = (f1, . . . , fm) ∈ Y , where T is defined in (2.6), with no
far-field direction. In this numerical scheme, we will be using N point sources yj ,
j = 1, . . . , N , which may be viewed as a discretization of the compact source D′

a

described in the previous section or in their own as suggested by the following
numerical results, a spherical sound-soft obstacle O, and a control region W . Note
that we set the center of the obstacle as the center of the reference 3D system in
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this implementation. We solve (3.1) by discretizing the control region into a mesh
of M collocation points zp, p = 1, . . . ,M and using far-field approximation and
spherical harmonics to represent the density w. Hence, we transform (3.1) into a
linear system

(3.2) Adwd ≈ b

where Ad is the M ×N coefficient matrix of moments, M is the number of control
points and N is the number of point sources we consider. We compute wd as the
Tikhonov solution

(3.3) wd = (αI +A∗
dAd)

−1A∗
db,

where 0 < α ≪ 1 is computed using Morozov discrepancy principle, which is a
method to find an optimal parameter α > 0 such that

∥Adwd − b∥ℓ2 = δ,

for some accuracy criterion 0 < δ ≪ 1 and A∗
d is the conjugate transpose of Ad.

3.1. Point sources are placed at least 10 wavelengths from the obsta-
cle and are close to the control region. In this simulation, we assume that the
obstacle is a sphere of radius R centered at the origin which is in the far field of the
point sources. Thus, as developed in [13], where using the far-field approximation,
i.e., |yj | ≫ 1

(3.4) uinc(x) =

N∑
j=1

wj
eik|x−yj |

4π|x− yj |
≈

N∑
j=1

wj
eik|yj |

|yj |︸ ︷︷ ︸
:=dj

e−kŷj ·x̂·R, for x = R · x̂ ∈ ∂O

where wj are scalar entries of the (acoustic) density vector representing each point
source yj and R is the radius of the sound-soft obstacle O. By using (3.4) and
the addition theorem for the spherical harmonic representation of plane waves, see
[13], we obtain
(3.5)

uinc(x) =

N∑
j=1

wj
eik|x−yj |

4π|x− yj |
≈

N∑
j=1

4πwjdj

∞∑
n=0

n∑
m=−n

injn(kR)Y
m
n (x̂)Y m

n (−ŷj)

where jn is the regular spherical Bessel function of order n and Y m
n are the spherical

harmonics. On the other hand, it is know that

(3.6) us(z) =

∞∑
n=0

n∑
m=−n

amnh
(1)
n (k|z|)Y m

n (ẑ), z ∈ R3 \O

where h
(1)
n is the spherical Hankel function of order n. Using (3.4)− (3.6), the fact

that uinc(x) = −us(x) on ∂O, and orthogonality of the spherical harmonics, we get
that the coefficients amn are computed by

(3.7) amn = −4πin
jn(kR)

∑N
j=1 djY

m
n (−ŷj)wj

h
(1)
n (kR)

.

Now, we know that the total field u is given by u(z) = uinc(z) + us(z), where uinc
is the exact expression of the incident field, i,.e, the first equality, given in (3.5) and
us is given by (3.6), (3.7).
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In all the following simulations, we use the wave number k = 10 with direction

of propagation k̂ = [1, 0, 0], and a spherical obstacle with radius R = 1. We also
approximate the acoustic field using 30 harmonic orders, for a total of 961 spherical
harmonics, and N = 150 point sources, and in this section, we set the point sources
as points around a sphere of radius 0.7 centered at [4,-4,-4] so that we set the point
sources at least 10 wavelengths away from the obstacle and we define the control
region as

(3.8) W =

{
(r, θ, ϕ) ∈ R3 : r ∈ [1, 1.5], θ ∈

[
−π
8
,
π

10

]
, ϕ ∈

[
49π

128
,
79π

128

]}
.

shifted to [4.25,−4,−4] so that the region is one wavelength away from the sources,
and represent it with 580 control points. Figure 2 shows the geometry of the
problem (where a 2D sketch of the 3D geometry is rendered).

Figure 2. Geometry of the numerical scheme

We prescribe a field on W using a plane wave f(z) = ek·k̂·z, for z ∈ W . Since
we represent W a set of 580 control points, we let z = zp for p = 1, . . . , 580. Figure
3 shows the real parts of the generated field and the prescribed field on a mesh ofW
(which is different than the computational mesh of W ), and the pointwise relative
error on each point zp. We further note that in this particular simulation, maximum
relative error on W is 0.39%. We further reiterate that the figures concerning W
are on a slightly shifted mesh of W .

We then indicate the ℓ2 norm of wd, which is an indication of the power radiated
by the point sources. In this simulation is ∥wd∥ℓ2 = 8.6021. Figure 4 shows the
contribution, in magnitude, of each point source yj for the source strength. In
Figure 5, we exhibit the interpolated prescribed and generated fields on the x = 5.40
cross section of the control region W .
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Figure 3. Real parts of the (A) generated and (B) desired fields
on a shifted mesh of W , and (C) the pointwise relative error on W

Figure 4. Power radiated by each point source yj (magnitude)

Figure 5. (A) Desired and (B) generated fields on a cross
section of W
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Next, moving the control region to two wavelengths away from the source by
setting its center to [5,−4,−4], the numerical simulation shows that the maximum
relative error is on the same order, which is 0.32%. On the other hand, ∥wd∥ℓ2 =
12.5796, which shows 46% increase from the previous case. However, if we raise the
number of point sources to 300, the radiating effort and relative error both remain
in the same order as in the first experiment indicating that more sources ease up
the total radiating effort. Further, positioning the center of the control region to
[7,−4,−4], so that the distance between the point sources and the region is about
five wavelengths, we observe that the relative error is kept at the same order, which
is 0.29%, and the radiating effort of the point sources rises to ∥wd∥ℓ2 = 27.4611.
Hence, the simulation suggests that the control points may be placed further away
from the sources, however, this may increase the power required to be radiated by
the sources.

3.2. Point sources are placed at least 10 wavelengths from the obsta-
cle and the control region is behind the obstacle, i.e., Let yj , j = 1, . . . , N
be the point sources and if we have |yj | ≫ |z| for every j = 1, . . . , N , z ∈ W , we
can use the far-field approximation to see that

(3.9)
eik|z−yj |

4π|z− yj |
≈ eik|yj |

|yj |
· e−ikz·ŷj

and with the plane wave representation, Laplace spherical functions, and addition
theorem, we get

(3.10) e−ikz·ŷj = 4π

∞∑
n=0

n∑
m=−n

injn(k|z|)Y m
n (ẑ)Y m

n (−ŷj).

Hence, we see that with these configurations, the incident field may be expressed
as
(3.11)

uinc(z) =

N∑
j=1

4π
eik|z−yj |

4π|z− yj |
≈

N∑
j=1

eik|yj |

|yj |
·

∞∑
n=0

n∑
m=−n

injn(k|z|)Y m
n (ẑ)Y m

n (−ŷj),

and the scattered field us is obtained as before given by (3.6) and (3.7). In this
section, we place the center of the 150 point sources to [4, 0,−5] with radius of
support 0.7 so that the sources are at least 10 wavelengths away from the obstacle
and define the control region by

(3.12) W =

{
(r, θ, ϕ) ∈ R3 : r ∈ [1, 1.5], θ ∈

[
7π

8
,
11π

10

]
, ϕ ∈

[
17π

64
,
63π

128

]}
,

and move its center to [−0.75, 0, 0.75] so that the region is about one wavelength
behind the obstacle, and represent this again using 580 collocation points. This ge-
ometry is conveyed in Figure 6 (where a 2D sketch of the 3D geometry is rendered).

In Figure 7, we can see the generated and prescribed field on a shifted mesh of
W with the maximum relative error of 0.33% on W while ∥wd∥ℓ2 = 1172.4. Figure
8 shows the radiating effort contribution of each point source. Meanwhile, in Figure
9, we show the interpolated values for the prescribed and generated acoustic field
on the cross section x = −1.90 of the control region W . If we take the control
region closer to the obstacle, we see that we may be able to keep the pointwise
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Figure 6. Geometry of the numerical scheme

relative error on the same order, however, one needs to increase the radiated effort
of the point sources.

Figure 7. Real parts of the (A) generated and (B) prescribed
fields on a shifted mesh of W , and (C) the pointwise relative

error on W if the control region is one wavelength away behind
the obstacle

In fact, if we move the region to about half a wavelength behind the obstacle,
we observe that we can keep the error to a maximum of order 10−2 but ∥wd∥ℓ2 =
1.1153 × 106, which is about 950% increase compared to the previous case and
placing it as close as a quarter of a wavelength from the obstacle, we observe that
the maximum relative error is 4.47% while the radiating effort increased by more
than 200% to ∥wd∥ℓ2 = 3.7357× 106.

In Table 1, we note that we can keep the maximum pointwise relative error of
the simulation and lower the total power required to be radiated if we increase the
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Figure 8. Power radiated by each point source yj (magnitude)

Figure 9. (A) Desired and (B) generated fields on a cross section
of W

number of point sources. In fact, if we enlarge the control region in the azimuthal
direction to θ ∈

[
3π
4 ,

4π
5

]
, we see that there is a significant increase in radiating

effort but maybe reduced if we increase the number of point sources radiating the
acoustic field. If we further expand the size of the control region, with θ ∈

[
3π
4 ,

4π
5

]
and ϕ

[
5π
32 ,

39π
64

]
, we may observe that the power demand grow to order of 106 and

the maximum relative error also rose to an order of 10−2 from 10−3 when computed
for a smaller control region.

Thus, we take note that a constructing a larger control region requires greater
power or more point sources to sustain the maximum pointwise relative error in the
same order.
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Table 1. Increase in the size of control region, associated power,
point sources, and maximum pointwise relative error

θ ϕ No. of point sources ∥wd∥ℓ2 Max. rel. error[
7π
8 ,

11π
10

] [
17π
64 ,

63π
128

] 150 1.1724× 103 0.33%
250 7.5120× 102 0.33%
300 6.4987× 102 0.33%[

3π
4 ,

4π
5

] [
17π
64 ,

63π
128

] 150 5.9566× 103 0.32%
250 3.9716× 103 0.31%
300 3.3282× 103 0.31%[

3π
4 ,

4π
5

] [
5π
32 ,

39π
64

] 150 8.2482× 106 6.87%
250 3.5576× 106 2.17%
300 5.2951× 106 3.46%

Remark 3.1. We note that for all the simulations above, we use a sound-soft
obstacle O, however, sound-hard obstacles may be treated similarly.

4. Conclusion

In this report, we presented a first theoretical argument and numerical support
to characterize a given source such that its radiated field approximates desired
patterns in prescribed exterior regions and given far field directions in environments
with known impenetrable obstacles.

Our current numerical simulations suggest that in an environment with known
obstacles it is possible to build an active scheme for the localization of acoustic en-
ergy while preserving desired far field behavior in given directions with applications
to covert communications in the presence of obstacles, energy localization behind an
obstacles with applications to imaging and interference or localized communication
with dynamic quiet regions.

Our next work will be focused on considering a detailed theoretical and general
sensitivity analysis for the case where general sound soft, sound hard, and pene-
trable obstacles are considered together with mutual coupling between obstacles as
well as coupling with the antenna.
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