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CrossMark
Abstract
In this article, we propose a strategy for the active manipulation of scalar
Helmboltz fields in bounded near-field regions of an active source while main-
taining desired radiation patterns in prescribed far-field directions. This control
problem is considered in two environments: free space and homogeneous ocean
of constant depth, respectively. In both media, we proved the existence of and
characterized the surface input, modeled as Neumann data (normal velocity)
or Dirichlet data (surface pressure) such that the radiated field satisfies the
control constraints. We also provide a numerical strategy to construct this pre-
dicted surface input by using a method of moments-approach with a Morozov
discrepancy principle-based Tikhonov regularization. Several numerical simu-
lations are presented to demonstrate the proposed scheme in scenarios relevant
to practical applications.
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1. Introduction

The active control of acoustic fields in various media has been a very active area of research
due to the multitude of possible practical applications. These include the creation of personal
audio systems or multizone sound synthesis and reproduction ([34, 38, 47, 50] and references
therein), acoustic imaging ([15, 16, 29] and references therein), active noise control ([5, 23,
24, 26, 36] and references therein) and acoustic shielding and cloaking ([4, 13, 14, 20, 35,
39] and references therein). In particular, the manipulation of Helmholtz fields in underwater
environments is widely-studied as it presents important applications such as in communica-
tions, ocean imaging and remote sensing, marine ecosystem monitoring [52] and military and
defense applications [28] (see also the monograph [22] for a detailed discussion of computa-
tional strategies for ocean acoustics). In [6, 46], comprehensive discussions of the development
of underwater acoustic networks and the challenges involved were provided. The complexity
of the make-up of the ocean environment requires substantial modification of control strate-
gies designed for free space (or other simple media). As such, existing free space strategies
are adapted to simpler marine environments like shallow water or a homogeneous finite-depth
ocean (see for example the reference monographs [2, 22]). For instance, in [32], the authors
proposed the use of acoustic contrast control strategies to focus sound in shallow water. In
the same environment, the works [3, 43] developed a single-mode excitation with a feedback
control algorithm to achieve both near- and far-field sound control.

The manipulation of the acoustic far field poses several challenges, such as loss of evanes-
cent fields and diffraction limits. In [33], the authors broached a method to overcome these
limits and attained effective far-field imaging using wave vector filtering. In [31] far-field time
reversal was used to overcome those challenges. Another approach is the smart design of trans-
ducers with adaptive structures such as classical rectangular panels in an infinite baffle [42],
foldable tessellated star transducers [53], Helmholtz resonators with computerized controls
[30] and modern metamaterials [49].

From the numerical point of view, finite-element methods (FEM) have been continually
refined to address some of the shortcomings of the classical FEM, such as those encountered
involving acoustic scattering in unbounded domains, numerical dispersion errors and heavy
computational requirements especially for adaptive methods. Some recent advances on this
front can be found in [19, 48]. Several numerical methods employing optimization frame-
works are also used especially in solving acoustic inverse problems for biomedical imaging
[45], subsurface imaging [7] and sound propagation in waveguides [27]. Other approaches
include wave-domain methods (as used in [17, 18]) and modal-domain approaches (for instance
[37, 51]). The approach employed in this paper (as well as previous works such as [11, 12, 21,
39, 40]) is the use of the Green’s function to represent the solution to the Helmholtz equation
in terms of a propagator operator and then employ a Tikhonov regulariation scheme with the
Morozov discrepancy principle to solve the resulting operatorial equation. For underwater
acoustic control problems, three strategies are commonly used in expressing the propagated
field (see [22, 25] for a discussion of each approach), namely normal modes, the Hankel
transform and the ray representation (or the multiple reflection representation for stratified
oceans).

In our previous works [11, 39, 40], we used global basis representation of the desired inputs
in the spirit of [10]. In this paper, we present new theoretical results and propose novel numer-
ical schemes on the active control of acoustic fields in free space and in a homogeneous ocean
of finite depth. These results enhance our previous works by allowing for additional constraints
on the fields’ radiated far-field pattern. Thus, in this work we are able to prove and numeri-
cally validate the possibility of characterizing active sources (represented as surface pressure

2



Inverse Problems 36 (2020) 095005 N J A Egarguin et al

or normal velocities) so that the field generated will approximate given patterns in prescribed
exterior regions while maintaining desired far-field radiation in fixed directions.

The main novelty of this paper is the simultaneous active control of near fields in prescribed
exterior bounded regions and various far-field directions with different prescribed far-field
patterns in two separate environments: free space and homogeneous finite-depth ocean envi-
ronment. In [11, 39, 40], only near region field control and the case of an almost nonradiating
source were considered. In the latter, a null field was prescribed in the entire far-field region
which is a far stronger condition than the one considered in the current study where we allow
different far-field radiation patterns to be prescribed in different fixed far-field directions. This
additional constraint gave rise to a new functional framework and additional layers in the
numerical scheme. Moreover, [40] only offered a brief discussion of the theoretical results for
the active acoustic control in homogeneous finite-depth ocean environment and did not provide
any numerical investigations. Last, but not least we propose here the use of local basis func-
tions to represent the unknown boundary input instead of global basis functions (e.g., spherical
harmonics) as used in the aforementioned works. This improved the computation time required
for the simulations, especially since the additional far-field constraints significantly increased
the problem’s complexity. This choice may also aid in the physical instantiation of the cal-
culated boundary input as fewer degrees of freedom are now needed to achieve good control
accuracy.

The rest of the paper is organized as follows. Section 2 formally states the mathematical
formulation of the general problem. Sections 3 and 4 present the analysis and numerical results
in free space and homogeneous finite-depth ocean environments, respectively. Both of these
sections includes subsections discussing the theoretical results and numerical simulations. We
end with concluding statements and future research directions in section 5.

2. Statement of the problem

We consider the problem of characterizing an active source (modeled as surface pressure or
surface normal velocity) to accurately approximate a priori given fields in several bounded
exterior regions while synthesizing different desired patterns in various prescribed far-field
directions. Let D, € R (where R denotes the environment space to be defined below and €
denotes a compact embedding) be the active source modeled as a compact region in space with
Lipschitz continuous boundary and {R;, R, ..., R} be a collection of m mutually disjoint
smooth domains exterior to D,. Moreover, we consider n distinct directions X;,Xa, . . ., X, rep-
resenting the far-field directions of interest. Mathematically, the problem is to find a boundary
input on the source, either a Neumann input data v € C(9D,) (normal velocity) or a Dirichlet
data p € C(0D,) (pressure) such that for any desired field f = (f},f, .- ..f,) on the control
regions (i.e., for each /, f; solves the homogeneous Helmholtz equations in some neighborhood
of R;) and prescribed far-field pattern values f., = (f. 1,/ - - - »fson)» the solution u of the
following exterior Helmholtz problem:

Au + kK*u = 0 in R\D,,
Vu-n=v,(oru= p)on dD,
(D

boundary conditions corresponding to the medium

suitable radiation condition in the medium

and its corresponding far-field pattern u, satisfies
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forl=1,m

2

flu— fl||c2(R,) S Hp
oo (X)) — fooj| S for j=1,n

for a desired small positive accuracy threshold p.. Here and throughout the rest of the paper n is
the outward unit normal to 9D, and X = ﬁ denotes the unit vector along the direction x. More-
over, the e “/-dependence of the fields, where w = kc and ¢ is the propagation speed of sound
in the respective media, is implicitly assumed and omitted. For the free space environment,

R = R3, the radiation condition is

1
(X, Vu(x)) —iku(x)=o <?> , as |x| — oo uniformly forall x 3)
and there are no additional boundary conditions. Meanwhile the underwater environment
is modeled as an homogeneous ocean with constant depth —4 > 0 (see [2]) and we have
R = {x = (x,y,2) € R3|z € [h,0]} with medium boundary conditions

u = (O atthe ocean surface z = 0 and
u “)
—— = Oattheoceanfloorz = h

0z
The radiation condition for this environment is given in section 4.1.

Classical results (for instance, [2, 9]) guarantee that for every set of given Dirichlet or
Neumann inputs on 9D, problem (1) has a unique continuous radiating solution u (with the
additional condition that the normal derivative exists in the sense of uniform convergence for
the Neumann problem). Building-up the strategy used in [11, 39, 40] we analyze a represen-
tation for the unique solution of the above exterior problem as a function of the inputs and
use this to characterize the boundary data that will ensure (2). We consider a fictitious source
D/, € D, and slightly larger mutually disjoint open regions Wy, Wa, ..., W,, with R, € W;. We
assume that for each /, f; solves the homogeneous Helmholtz equations in W; and also assume
that the larger regions and the source are well separated, i.e.,

W, NnD,=0, forl=1,m. 5)

Lastly, we let Y = [] L*(OW)) be the L? space of m-tuples of functions on the W;’s with the
=1
inner product

(. )y = Z (@1, 1) 2(OW)) (6)

=1

forall o = (21, -+ 9) a0d Y = (W1, Py, 1h,,) € .

In the next two sections, we shall present the theoretical formulation and proof of the exis-
tence with explicit characterization of a class of solutions to the above questions backed with
numerical simulations showing the feasibility of such a control scheme, for both the free space
and homogeneous finite-depth ocean environment.

3. Free space environment

In this section, we shall deal with the problem of controlling the near field in various bounded
exterior regions of space while creating prescribed far-field patterns in several directions in
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a free-space environment using a single active source. We begin with the establishment of a
proof of the existence of a solution for the active control problem (1)—(3). Then we propose
a strategy for its explicit characterization and building on the numerical scheme developed in
[11, 12, 40] we produce simulations supporting the current theoretical results.

3.1. Theoretical framework

It was shown in [39, 40] that if k is not a resonance wavenumber (see [8, 39, 40]), the normal
velocity v or pressure p on the surface 0D, of the active source needed to solve the control
problem (1)—(3) can be characterized by a density w € L2(8D’a) such that

i 9
v(y) = pckan/aDZlU(X)qs(X, y)dSyx and (7)
ny) = / W)X, y)dS,. ®)
D,

where p denotes the density of the surrounding environment, ¢ denotes the speed of sound in the
. . ikx—y| . . .
given media and ¢(x,y) = fﬂ‘xj is the fundamental solution of the 3D Helmholtz equation.

The motivations behind (7) and (8) are summarized in the following remarks.

Remark 3.1. The expressions in (7) and (8) provide an ansatz for solutions of (1), (3). This
ansatz is then used in a control argument to find a density w on a fictitious source D/, so that
the control constraints in (2) are satisfied.

Remark 3.2. The use of the fictitious source in the ansatz in (7) and (8) simplifies the anal-
ysis and calculations as D/, can be chosen to be a sphere compactly embedded in the physical
source. Recall that the physical source can assume any compact shape as long as it is well-
separated from the control regions and has a Lipschitz continuous boundary to ensure the
well-posedness of the exterior Helmholtz problem.

Remark 3.3. The boundary input obtained from the ansatz in (7) and (8) will be smooth.
From a theoretical standpoint, this is desirable when the present scalar control results are
extended to a vector Helmholtz or a Maxwell system (see [41]). From an applied perspective,
smooth boundary inputs are often more suitable for practical applications as they are easier to
approximate.

Although the expressions in (7) and (8) make use of the single layer potential operator, it
was noted in [40] (see also [11]) that these inputs can be written in terms of the double layer
potential operator and hence, also in terms of linear combinations of the two. Consequently, the
results to be presented can be adapted to the case when the propagator operators are expressed
in terms of a linear combination of the single and double layer potentials.

With this density w € LZ(BD’H), the field u satisfying (1) can be characterized on each control
region by the operator K : L*(0D/,) — Y, with

Kw(y i, ¥as - ¥m) = (Kiw(y)), Kow(y,), . . ., Knw(y,,)) )
where for each [ = 1,m, y, € OW, and

K;w(yl):/o w(X)P(X, y,)dSx. (10)
oD,

From [9], the solution u has the asymptotic (far-field) expression
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eik‘x()‘ 1
u(xg) = —— (uoo(f(o) +0 (—)) (1D
[Xo| %o

uniformly in the direction X¢ as |Xg| — oo and where the function u,, given by

. 1 ik
U (Xo) = s / w(y)e F¥ds, (12)
oD},

is called the far-field pattern of u.

Remark 3.4. The restriction that each f satisfies the Helmholtz equation in some neighbor-
hood of R; and the fact that R, € W, forall | <[/ < mensure, through uniqueness and regularity
results for the interior Helmholtz problems (in the spirit of [39]), that the field u, solution of
(1), (3), will satisfy the control constraint (2) if

{”“ - fl||L2(aW,)

SH
s (X)) = foojl < for j=1,n

Hence, from the remark 3.4 we deduce that the control problem (1)—(3) amounts to to
finding the density w € L2(8D’a) so that the corresponding solution u of (1), (3) and its
corresponding far-field pattern u., satisfy

(13)

[ — f||L2(U;”:1 owp S
lUoo(Xj) — foojl < pp for j=1,n
for any f= (fi,f, - --»f,,) € Y and fixed directions X, j = 1,n. The second constraint in (13)
is an added novelty to our work, as we consider the far-field pattern in certain prescribed and a

priori fixed far-field directions (X, X, . . . , X,,). We model the far-field pattern in these far-field
directions by using the far-field pattern operator Ko, : L2(0D/,) — C" defined as

Koo = (Puts Pusas - -» Pus)

where for each j = 1, n,

1 i
Puj = i HDZw(y)e 5y dSs,. (14)

Hence, the overall propagator operator D : L2(OD!,) — Y x C" is defined such that

Dw(Yp MR ] y;n) = (lclw(y]), MR lcmw(Ym)a P’m,l, 7)11,',2, MR ] Pu,‘,n) . (15)

where C” is endowed with the usual dot product and where Y x C” is described by the usual
graph metric,

(u,v)yxcen = (f, g)y + Zci -d;
i=1

foru = (f,c1,ca,...,ch),v =(g,dy,da,...,d,) € Y x C". Toshow the existence of a solution
to the control problem (1), (3), (13) we show that the linear compact propagator operator D
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has a dense range. This is established in the following theorem by showing that the adjoint
operator D* has a trivial kernel.

Theorem 3.1. Except a discrete set of values for k, the operator D defined in (15) has a
dense range.

Proof. We prove the equivalent assertion that the adjoint D* has a trivial kernel. We first note
that by simple algebraic manipulation one can obtain that the adjoint operator D* : ¥ x C"* —
L?*(OD)) is given by

(D*@.0) 1) = D Kjvay) + )

n Ci elkf(]y
J
=1 j=1

47

(16)

for any ¥ = (¥, %,,...,,,) €Y, c = (c1,¢2,...,c,) € C" and y € OD], where the operator
K« L2(OW)) — L*(OD.,) is given by

Kii(y) = Yi(x)(x, y)dSx, (17)
ow,
for I = 1, m. Suppose (¢, ¢) € ker D*, i.e.,
4

(D@, 0) ) =D _ Kium) + > =0 (18)
=1 j=1

_ - ikxjy
for any y € OD),. Define w(y) = Y )", |. aWlwl(x)gb(x, y)dSy + Z;;l %, where the inte-
grals exists as improper integrals on the OW,’s. Note that each term in w is a solution of the
Helmbholtz equation and so together with (18), we have
Aw+kKw=0 inD,
(19)

w=0 ondD),

Proceeding as in [39], by using analytic continuation, w = 0 in D/, and then by the continuity
of the single layer potential together with the uniqueness of the interior problem in each of
the regions { W}, we obtain that w = 0 on R>. Finally, classical interior and exterior jump
relations for the single layer potential on the OW,’s imply ¥, = 0 on OW,;, [ = 1, m. This,
when used in (18) gives

Dty =0 (20)
=1
for any y € R®. We seek to show that ¢; = 0 for j = 1,n. Fix a §o € R? and define Y, = PYo
for p=0,n — 1. Plugging-iny =y, in (20) yields the n x n system
ci+e+-+c, =0
Cl ey +c elk%2y 4+ +ey eyl —
(21)
i elf ki Yno1 c eikX2¥n1 +--HFoe, eifn¥n1 — ().
Let z; = ¢*%/¥. Then (21) can be written as a Vandermonde system
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1 1 1 C 0

2 22 Zn (653 0
=1 1. (22)

7t B! 27 e 0

This system admits a unique solution (the trivial solution ¢; = 0 for all j = T,n) unless the
coefficient matrix has determinant zero. Note that

1 1 o 1
Zl ZZ P Zn
det . = H (zj — z1)s
: 1< j<i<n
Z’f71 ngl . szl

which is zero if and only if there are indices ¢; and g, such that z,, = z,,, or equivalently, if
and only if

. R . 27
(Xg —Xg) " Yo = 7M (23)

for some integer M. By the triangle and the Cauchy—Schwarz inequalities we obtain

k k
M| = 2%, — %) - Yo| < = 24
| ‘ 27T‘(qu qu) y0| o (24)

Thus, choosing ¥, outside of the finite number of hyperplanes defined by the (Z) (2 L%J + 1)

equations of the form (23), will give rise to a set of ny-values (i.e., y, = pyo for p = 0,n — 1)

forcing the solution ¢ = (cy, 2, . . ., ¢,) of (20) to satisfy ¢; = 0 for all j = 1, n. Therefore, the
kernel of D* is trivial and so D has a dense range. (|

3.2. Numerical simulations

In this section we present several numerical simulations supporting the theoretical results pre-
sented above. We further develop the scheme proposed in [11, 39, 40] to accommodate the
added constraints on the radiated far-field pattern. For a given f = (f},/5,....f,,) € Y and far-
field pattern values ¢ = (¢, ¢, - .., c,) € C", the problem is to find w € LZ(BD;) such that

Dw =~ f xc. (25)

To solve (25), we employ a method of moments approach by discretizing the control regions
into a mesh of collocation points and writing the density w in terms of local basis functions as
in [12] (see also [10, 44]). Hence, the problem is reduced to a linear system of the form

Awg &~ b, (26)

where A is the coefficient matrix of dimensions N, x N, where N, is the total number of mesh
points in all near controls and far-field directions and N, is the number of local basis functions
used in representing w. The vector wq of the discrete unknown coefficients of w is computed
as the Tikhonov solution

wq = (ad + A"A)'A*D (27)
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X2

Dq

far field

Figure 1. Sketch of the top view (plane z = 0) of the problem geometry showing the
near control W, and the far-field directions x; and x;.

for some optimal regularization parameter 0 < o < 1 calculated using the Morozov discrep-
ancy principle, where A* denotes the complex conjugate transpose of A (see [40]).

In the following simulations the fictitious source domain D/, is a sphere of radius 0.01 m
centered at the origin while for simplicity, the physical source domain D, is chosen to be the
sphere of radius 0.015 m centered at the origin (though in general, it can be any Lipschitz
compact domain with D/, € D, which does not intersect the near-field control regions). We
consider the control problem in which the far-field direction X, is situated behind a near field.
We consider two cases: first, when we prescribe a null in the near field control region W,
hence mimicking communications through an obstacle and second, when the near field is the
outgoing plane wave f(x) = e* % withd = [—1, 0, 0], simulating covert communication. The
unknown density is defined on D/, by using 234 local basis functions. The near control is the
annular sector

T 37w 37 5w
W, = {(r,ﬁ,qﬁ) :r €]0.02,0.03],0 € {4, 4} ,0 € {4, 4]}

in spherical coordinates with respect to the origin where r is the radius, 6 € [0, 7] is the incli-
nation angle and ¢ € [0, 27) is the azimuthal angle. This sector is discretized into 4640 points.
The far-field directions in Cartesian coordinates are X; = [—1, 0, 0], directly behind the near

control and X, = B, - ?} . The problem geometry is shown in figure 1. To check the accu-

racy of the generated fields, we provide the plots of the prescribed and generated near fields
and when applicable the pointwise relative error. As a further numerical stability check, these
fields were plotted in a mesh of points slightly off the set of points used in the collocation
scheme. Then aside from stating the generated far-field pattern and the relative error, when-
ever applicable, on the directions X; and X, we also present the generated far-field pattern on a
small patch around the two directions. The computed normal velocity on the physical source
domain is characterized in two-dimensional #¢-plots of its magnitude and real and imaginary
parts. We also calculate the average radiated power by the source given by

1

Pae = —/ Re [@(Vu - n)]dS (28)
2 JoB, o)

9
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107

5]

&

Figure 2. Real part of the generated near field.

where 0B,(0) is the surface of any sphere containing the source and in our calculations we will
evaluate the power in dB relative to a reference level of 10712 W.

3.2.1. Anull near field. In this test, we simulate the case of communicating while avoiding an
obstacle and keeping a low signature in another far-field direction. We prescribe a null field in
W, and the pair of far-field pattern values 0.01 and O in the directions of X; and X, respectively.
Figure 2 shows the generated field on the near control. The field on the near control region has
maximum pointwise magnitude of about 8 x 10~%.

Figure 3 shows the generated far-field pattern values on the two directions. These plots
suggest a good approximation of the far-field values even on the patches around X; and X,. The
generated pattern value for X; is approximately 0.009 98 + 5.83 x 10~ 1, with arelative error of
only about 0.22%. Meanwhile the generated value on X; is —1.5711 x 107% —5.84 x 107°1.

The computed normal velocity on the physical source is characterized in figure 4. Here, we
see that these values has magnitudes values of order 1073, The average power radiated by the
source is approximately 5.80 x 10~* or around 87.63 dB.

3.2.2. A plane wave in the near field. In this experiment, we synthesize a plane wave on
the near control while keeping the direction behind it a quiet zone and projecting a pattern
in another far-field direction. We prescribe the left traveling plane wave f(x) = X% with
d = [—1,0,0] on the near control, a zero far-field pattern value in the direction X; behind it
and 0.01 in the direction X,. The results of the near-field approximation is shown in figure 5.
The near-field relative errors do not exceed 1.5%.

The results of the far-field pattern synthesis are shown in figure 6. The results on the patch
around X; are good, with generated values of order 10~*. In particular, the generated value at
Xp is around 2.6 x 107 — 1.02 x 10~* i. Meanwhile on the patch around X, there are points
where the relative error reach 22%. But this decreases to desirable values for points near X;.
In fact, the generated value at x; is 0.01004 4 2.78 x 1073 i with a relative error of just about
0.021%.

Lastly, we look at the calculated normal velocity. Figure 7 displays the pointwise magnitude
as well as the real and imaginary parts of the normal velocity on the physical source. The

10
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Figure 3. Results of the far-field pattern directional control.
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Figure 4. The computed normal velocity on the actual source.

average acoustic power radiated by the source is around 2.44 x 10~2 or about 103.87 dB which,
as expected is larger than in the previous simulations due to the extra work the source needs to
do now to create a plane wave in the near-field control region.

4. Homogeneous ocean environment

In this section, we prove the possibility of near-field active control while maintaining desired
radiation in prescribed far-field directions in a homogeneous ocean environment of constant
depth. The problem is similar to the one presented in section 3 except that the sources and the
control regions are submerged in a homogeneous ocean environment. The near-field control
problem was briefly discussed in [40] without numerical simulations. Aside from providing
numerical validation, this section adds the novelty of incorporating additional far-field pattern
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Figure 5. Results of the field synthesis on the near control.
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Figure 6. Results of the far-field pattern directional control.

constraints in the theoretical analysis which is an important feature from the point of view of
applications and theoretically nontrivial in this particular environment.

Assuming the same notations as in the theoretical set-up of section 3 the problem is modeled
by (1), (2) with the boundary conditions (4)

u = 0 at the ocean surface z = O and

(29)
? = 0 atthe ocean floor z = h.
Z

and the radiation condition described below at (33). A sketch of the geometry is shown in
figure 8. We continue with the presentation of the theoretical framework and results. Then we

12
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Figure 7. The computed normal velocity on the actual source.

D, w= grl“’l*“)
1= (ry,0,,2,) z:E
2

du _

5—0

Figure 8. A 3D sketch of the problem geometry for the homogeneous ocean showing
the near control and two far-field directions xy and x;.

perform some numerical simulations that illustrate the feasibility of the proposed theoretical
and numerical framework.

4.1. Theoretical framework

The mathematical and numerical framework from our previous works can be adapted for
the homogeneous ocean environment. In this section we will assume that the entire func-
tional framework (notations, geometrical conditions and functional assumptions) formulated
in section 2 remains the same for the case of homogeneous oceans of constant depth unless
otherwise specified. The major adjustment is the Green’s function for this new medium. The
corresponding Green’s function for this environment has the normal mode representation for
an evaluation point x = (r, #, z) and source pointy = (0, 6y, zo) in cylindrical coordinates

. 4o
G(x,y) = ﬁZ Gp(2)dp(20)Hy (kapr) (30)
p=0

13
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where H" is the Hankel function of order zero of the first kind, ¢, is the pth modal solution
with associated eigenvalue a,, (see [2, 22, 25]). These eigenpairs are given by

_@pt 1P
4k2h?

¢p(2) = sin (k, /1— af,z) = sin (Wa . (32)

As proved in [2], the function G can be expressed as a continuous perturbation of the Green’s
function in free space. We will assume that the physical source D, satisfy x - n > 0 for any
X € 0D, where n denotes the exterior normal to x € 9D,.

With these notations, the forward problem in the homogeneous finite-depth ocean environ-
ment R = {x = (r,0,2) € R3|z € [h,0]} can be formulated as follows: for a given boundary
input u;, on the surface of the source 9D, find u solution of the following exterior Helmholtz
problem

a,=1/1 and (31

Au+ kKu=0in R\D,,
u = up on 0D,

u = 0 atthe ocean surface z = 0 and

(33)
0
a_ 0 atthe oceanfloor z = h
0z 5
lim /2 ( au” - ikapup> =0, uniformlyforalld € [0,27),
r—00 r

where u), in the radiation condition above are normal modes appearing in the representation of
the solution u, i.e.,

u(x) = Z ¢p(2u,(r,0), forlargeenough r. (34)
p=0

Classical manipulations and the definition of the Green’s function introduced at (30) imply
that, for any density w € C(OD,), the following function

u(x) = / w(y)G(x,y)dSy (35)
oD,
is a solution to (33) with u, € C*(0D,) given by u, = f op, w(y)G(x,y)dSy. Note that, as
before, we make use of a fictitious spherical source domain D/, to ensure smoothness of our
boundary input u,. It was shown in [2] that for a given density w € 9D/, u defined above has
an asymptotic representation given by

N
1 - 1
u(x) = Z \/W elkdprgp(e, 2+ 0 (m) , asr—+oo (36)

p=0

where x = (r, 6, z) (in cylindrical coordinates) and for each p = 0, N andy = (,¢',7) € 9D,
in cylindrical coordinates,

2 = x
g,(0,2) = \/; /d w(y) Ze*“ﬁ%)mqp(z, 0,7,7,6") | dSy (37)
- <

14
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and

i€ .
aqp(za 0, 7‘,, Z,’ 9,) = 2_Z¢p(z) [COS(Qe)ﬁqp(Y) + Slﬂ(qe)%p()’)] (38)
where ¢g = 1, and ¢, = 2 for ¢ > 1 and where

Bop(y) = Jy(kapr')p,(2) cos g8 and (39)
Yap(y) = Jq(ka,,r’)d)p(z’) sin qﬁ/. (40)

In the last two equations above J, is the Bessel function of the first kind of order g. Then
following [2] we define the far-field pattern as the function u., given by

N
Uo(X) =Y 8,(0,2), (41)
p=0

where X = (1,6,z) and N > * — 1 5o that the terms g, removed from the sum are all
evanescent (non-propagating) modes.

Remark 4.1. The restriction that each f; satisfies the Helmholtz equation in some neighbor-
hood of R; and the fact that R; € W, forall 1 < [ < mensure, through uniqueness and regularity
results for the interior Helmholtz problems (in the spirit of [39]), that the field u, solution of
(33), will satisfy the control constraint (2) if

{nu — fillpowy <p forl=T,m
<

‘uoo(f(j) - foo,j| 1% for ] = 1?”

Hence, from the remark 4.1 we deduce that the control problem (33), (2) amounts to to find-
ing the density w € L*(0D,,) so that the corresponding solution « of (33) and its corresponding
far-field pattern u,, satisfy

”u - f||L2(U7":1 W) < 1z )
lUso(Xj) — foojl < pu for j=1,n

forany f= (fi.fs, .. ..f,) € Yandfixed directions X, j = 1,n.Sucha density will give us then
the necessary source presure characterization u;, = |, aD;,w(Y)G(X’ y)dSy on the physical source
D, so that its radiated field satisfies the required control conditions (2).

Because the control problem is again reduced to finding the density on the surface of the
fictitious source D/, we note that the same machinery developed in the previous section can be
employed after the making the appropriate modification of the Green’s function.

In parallel to the notations in the previous section, we define the near-field propagator
operator K : L*(OD’) — Y, by

Kw(y,. ¥ ¥) = (Kiw(y)), Kow(yy), . . .. Kuw(y,,)) (43)
where for each I = 1,m,y, € W,
Kiw(y)) = / w(x)G(x, y;)dSx. (44)
oD},
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and for each far-field direction with cylindrical coordinates X; = (1,6;,z;), j = 1,n with z; €
(h,0), 6; € [0,27) and 0}, # 0, for j; # j,, we define the far-field pattern propagator Co :
L*(OD.) — C" as

’Coow - (P'u,r,l 5 7)11:,2, cees Pw,n)

where
N
Pui =Y 8052 (45)
p=0

Finally, we define the operator D : L2(8D;) — Y x C" such that
Duw(yy, ..., ¥,) = (Kiw(y), . ... Knw @), Puts Puzs - s Pun) - (46)

To prove that the range of the linear compact operator D is dense in ¥ x C", i.e., any target in
Y x C" can be approximated by an image under D, we shall show in the next theorem that the
adjoint operator D* has a trivial kernel.

Theorem 4.1. Except a discrete set of values for k, the operator D defined in (46) has a
dense range.

Proof. Again, we prove the equivalent statement that D* has a trivial kernel. To do so, we
adapt the arguments used in the proof of theorem 3.1. Straightforward calculations will show
that the adjoint operator D* : Y x C" — L*(OD,,) is given by

(D@, N = Y Kituy) + D ey, (47)
=1 J=1
where K} : L2(OW,) — L*(OD.,) is given by

Kiviy) = | ixGx,y)dSy.

ow,

forany y € 0D/, and h; : 0D/, — C is defined as

N oo
2 i Iyo
hi(y) = \/;Z D e ITa, (2.0 y).

p=0¢=0

Consider (¢, c) € Y x C" with (D*(¢, ¢)) = 0. Let
w(y) = /a Dix)G(x, y)dSy + Zfﬁj()’), (48)
oW, -

j=

It is simple to observe that w defined in(48) is a solution of the interior Helmholtz equation
in D/, with zero Dirichlet data on the boundary (since by definition D*(1, ¢) = 0), and except
a finite set of values for k this implies that w = 0 in D,. Next, in the same spirit as we did
for the case of free space environments in the previous section, using analytic continuation
and the same continuity and jump relations for the single layer potential used in the proof of
theorem 3.1 (which still apply since G is a continuous perturbation of the Green’s function in
free space), we discern that w(y) = 0, for y € R. This, and the jump conditions for the single
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layer potential (which still apply since G is a continuous perturbation of the Green’s function
in free space) imply 1; = 0 on OW,, [ = 1, m. Thus, using this in w(y) = 0, fory € R recalling
(48) we obtain the following condition for ¢ = (¢, 2, ... ¢y):

n N

DD E e iay(,6,y) =0 forany y€R. (49)

J=1 p=0 ¢=0

To prove that the kernel of D* is trivial it remains to show that (49) implies that all ¢;’s are
zero. Let g, with 0 < g, < oo be arbitrarily fixed. Taking the inner product of both sides of
(49) against cos g,0', applying the orthogonality property of sines and cosines and algebraic
manipulations yields for any y = (v, 0',7) € R

n N
D0 Eibpaplakay)dp(d) cos(god) = 0. (50)
j=1 p=0
Note that
0, if [ iseven
d(l)
a7 PO = K- a)'’?, forl=1,5,9, ... .

—K(1—a)?,  forl=3,7,11, ...

Define A, = >, €jé,(z;)cos(qof;) and let B, =k(1—a})'/?. Taking the the order
[ = 1 4 4s derivative of both sides of (50) with respect to 7’ evaluated at 7/ = 0, one obtains

the system
N
> Aplyy(kap )BT = 0,5 =0, N. (51)
p=0

Letting \, = B}, system (51) can be viewed as an N 4+ 1 x N + 1 system with unknowns A,B,
with coefficient matrix

Jyo (kaor”) Joolkayr'y - Jy (kanr)
Jo(kagrH g T (kay )Ny - T (kayr' )\
D— q0 0 0 q0 1 1 . q0 N N (52)
JooCkagr )N Ty (kayHNY - T, (kayr )M

with det D = (T} Juy(kapr)) (TTipercnp = A ). Note that by definition X, — X, # 0

for p # 1. From [1], the smallest root of J,, is bounded below by go + 3|£[*/%, where & =
—0.36605 .. . is the smallest negative root of the Airy function. Since the a,’s are decreasing
then choosing # so that

Y o< qo0 + %\§|3/2
ka()

makes detD # 0. Hence, (51) only has the trivial solution A,B, = 0 for all p = 0, N implying

> iép(z)) cos(gol) = 0. (53)

J=1
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On the other hand, taking the inner product of both sides of (49) against sin g6’ and doing
analogous calculations as above yields

D Tidp(z) singof) = 0 (54)

=1

for all p = 0, N. In particular for p = 0, the last two equations imply

> oz’ = 0. (55)
=1
Since g, was arbitrarily chosen, by using the values g, =0, 1,...,n — 1 above we obtain the
following homogeneous linear system of equations in unknowns ¢; with coefficient matrix
QSO(ZI)(Q 450(22)‘(9 a ¢0(Zn)_€
Po(z1)e™ Po(z2)e™ - Polza)e™
E= ) . (56)
Pz D go(z)e ™ gy (g, e

Note that E is another Vandermonde-type matrix with determinant

det E =[] oz [T @ —e™

j=1 1<g<i<n

This will be zero if and only if there exists a z; such that ¢y(z;) = 0 or equivalently, z; = 2nd
for some integer 7. However, this cannot be the case since z; € (4, 0). Hence, (55) has a unique
solution, namely ¢; =0, j= 1, n. Therefore, ker D* is trivial and consequently, D has a
dense range. U

4.2. Numerical simulations

In this section we present numerical simulations illustrating the results obtained in section 4.1.
The numerical framework is an adaptation of the one discussed in section 3.2 where the cal-
culation of the matrix of moments is modified with the corresponding Green’s function and
far-field pattern for the homogeneous oceans environment. To our knowledge, this paper is the
first instantiation of numerical simulation support for control problems of the form (33), (42).
We again consider a near control region W; and far-field directions x; = (1, 6y, %) and X, =
(1,62, %). The control problem is to find the density on the fictitious source w € C(OD,) such
that for a prescribed field f; € L*(OW) and prescribed far-field patterns f, (X NeC, j=1.2
the following hold:

{u ~ fiin W, 5

uoo(f(j) ~ foo(f(])
where u and u., are defined at (35) and respectively (41). In the last simulation, we will
add another control W, where we will prescribe a null field. In all simulations, we consider

h=—-20m, k=10, n = 100 and m = 100. The unknown density w is expressed in terms
of 234 local basis functions. The fictitious source is a sphere of radius 0.01 m centered at
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Figure 9. A cross section of the simulation geometry.

(a) Using the default color scheme (b) Using a truncated color scheme highlighting
the reflections from the boundaries

Figure 10. Real part of the generated field on the vertical cross section y = 0.

(0,0, —10) while the actual source is the sphere of radius 0.015 m with the same center. The
near control is the annular sector

m 3w 3n 5w
W, = {(r,a,qs) 1 €10.02,0.03],0 € [Z’ T} b [T’ T] }

and for the last simulation, we have the null control region

W, = {(r,a,qs) 1 €10.15,0.2],0 € [Z ?ﬂ vel|-55] }

both discretized into 4640 collocation points. For simplicity of notations, W; and W, were
given in spherical coordinates (r, 8, ¢), where r is the radius, 6 € [0, 7] is the inclination angle
and ¢ € [0,27) is the azimuthal angle. On the other hand, for consistency with the theoreti-
cal framework from the previous section, the far-field directions will be given in cylindrical
coordinates (7, 0, z). In the simulations to follow, the far-field directions are x; = (1, 7w, —10)
directly behind the near control and X, = (1, T 10). A cross section along the middle plane
z= % of the simulation geometry is shown in figure 9.

As before, we present plots of the prescribed and generated fields on the control region/s
for a visual comparison of field pattern. The fields were plotted in a mesh of points slightly
off the original mesh used for the collocation scheme as a numerical stability test. Whenever
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Figure 11. Real part of the generated near field.

applicable, we also plot the pointwise relative errors. The computed normal velocity on the
actual source will be characterized by 2D plots of its magnitude, real and imaginary parts in a
O¢-mesh. We will further describe this surface input by calculating the actual source’s average
radiated power as defined in (28).

4.2.1. A null near field. In this test, we prescribe a null field on W, and the far-field pattern
values 0.01 at X; and O at X,. This is a simulation of obstacle-avoiding communication while
projecting a quiet zone in a far-field direction. The real part of the generated field on the vertical
cross section y = 0 is shown in figure 10. The left plot shows the field using the default color
bar capturing the entire range of field values. The radiating character of the field is noticeable
albeit the very low field values. The plot on the right uses a truncated color bar to reveal the
reflections due to the top and bottom ocean boundaries.

The generated near field in the control region W, is shown in figure 11. It can be observed
that indeed a low signature was generated in W as the field values’ magnitude do not exceed
1.96 x 1074,

The generated far-field pattern values on some patches around the two fixed directions are
shown in figure 12. Around X, the relative errors reach as high as 2.54%. At X, the generated
value is about 0.0102 —2.96 x 107 i with relative error of just 1.78%. Around X5, the values
has order 107, At X,, the generated value is about —1.44 x 107> +7.01 x 107°,

The average radiated power of the source is around 1.8071 x 10> or about 72.57 dB.
Figure 13 shows the corresponding normal velocity on the actual source. It can be observed
that the maximum magnitude is just about 6.60 x 1074,

4.2.2. A planewave in the near field. In this experiment, we prescribe the plane wave f(x) =
e* (9 with d = [—1,0, 0] on the near control. In the direction of X; we set a zero far-field
pattern value while in X, we prescribe a value of 0.05. This mimics near-field communication
with minimal spill-over behind the near control while projecting a different far-field signature
in another direction.

Figure 14 shows that the near field is approximated well with a pointwise relative error of
at most 2.05%.
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Figure 12. Results of the far-field pattern directional control.
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Figure 13. The computed normal velocity on the actual source.

Figure 15 shows the generated values on the patches around the directions X; and X,. The
values on the patch around X; are within order 10~*. In the exact direction X;, the generated
value has real part —1.38 x 1074+ 3.15 x 1077 i. Also, it can be noted that the relative errors
on the patch around X, reach as high as 11%. However, for points very near the exact direction
X, the approximation becomes better. In fact at the exact direction, the generated value is
0.0503 —1.2 x 10~* i with a relative error of just about 0.60%.

The normal velocity on the physical source for this simulation is shown in figure 16. The
average radiated power by the source is around 9.97 x 1072 or about 109.99 dB.

4.2.3. Two near controls and two far-field directions. In this simulation, we consider an addi-
tional near control. Now, we have two near controls (given in spherical coordinates with respect
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Figure 14. Results of the field synthesis on the near control.
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Figure 15. Results of the far-field pattern directional control.

to the source’s center and where 6 is the inclination while ¢ is the azimuthal angle)

m 3w 3n 5w
W, = {(r, 0,6): r €10.02,0.03],0 € [4, 4} b€ [4, 4] }

and

T 37 T
Wy = {(r,¢,0).re [0.15,0.2],60 € [Z’T} b€ [_Z’Z}}'

The far-field directions are still given by X; = (1,7, —10) and X, = (1, Z, —10) in cylindrical

coordinates. A cross section of this problem geometry is shown in figure 17.
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For this simulation we prescribe the outgoing planewave f(x) = e withd = [—1,0, 0]
on Wi and a null field on W,. Then at the direction X;, we prescribe a zero far-field pattern
value and at X, we try to generate 0.05. This test simulates near-field communication on W,
with minimal spill-over in the direction behind it while keeping W, a quiet zone and projecting

a decoy pattern in the far-field direction X;.

The results on W, are shown in figure 18. The first two plots show a visual comparison
between the real parts of the prescribed and generated fields. The third plot shows the pointwise
relative error. It can be observed that the relative errors are less than 2.33% all throughout W, .
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Figure 20. Results of the far-field pattern directional control.

Good results were likewise obtained for W,. Figure 19 shows that the generated field on the
second near control is of order 1074,

In figure 20, the generated far-field pattern values on small patches around the directions
%, and X, are shown. The values around X; are all of order 10>. At the exact direction, the
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Figure 21. The computed normal velocity on the actual source.

generated value is an order smaller at4.3 x 10~% —1.28 x 10~*i. The decoy pattern is matched
well in a smaller subset of the patch around X,. Nevertheless, in the exact direction, the
generated value is 0.05061 —1.2 x 10~* i with relative error of only 1.22%.

The computed normal velocity on the actual source is described in figure 21. The average
power radiated by the source is about 3.62 x 1072 or roughly 105.58 dB, a bit lower than the
one obtained in the previous simulation.

5. Conclusion and future works

In this paper, we extended the theoretical results and the numerical schemes developed in our
previous works on the active control of acoustic fields. We proved the possibility of controlling
the acoustic field in the near field of an active source while doing a far-field pattern control in
multiple directions in both the free space and a homogeneous finite-depth ocean environment.
This was done by showing that for any set of prescribed fields in multiple bounded control
regions in the near field and prescribed far-field patterns in distinct directions, one can always
find a boundary input on the source, for instance the acoustic pressure on the surface of the
source, that will approximate these prescribed fields.

Several numerical simulations in both environments were presented to illustrate the fea-
sibility of the proposed framework. These simulations mimic scenarios in the development
of enhanced communication strategies with focus on signal protection and interference avoid-
ance. The results show a good approximation of the desired effects. In all these tests, the source
seems to radiate a low average acoustic power.

Our current numerical tests suggest that the solution is stable with respect to various geo-
metric parameters as long as these parameters are within certain problem dependent ranges.
In a forthcoming article, we shall provide a sensitivity analysis of our scheme with respect to
variations in the frequency and changes in the problem geometry such as the size of the con-
trol regions, their distances from the source as well as the number of far-field directions and
regions of control and their relative positions. Another future research direction is the use of
an array of coupling sources (with fixed or optimized locations) instead of one single source
to mitigate possible high amplitudes needed on the boundary input on a single source. The
authors are also working on the extension of the results presented for the homogeneous ocean
environment to a multi-layered ocean environment. A feasibility study on the possibility of
physically instantiating the boundary inputs computed using the strategy proposed here is also
forthcoming. These research directions may be aligned with interesting applications such as
enhanced communications in free space and underwater environments.
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