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Abstract
Following the ideas proposed by Guevara-Vasquez et al (2009 Phys. Rev. Lett.
103; Opt. Express 17 14800–5) on active exterior cloaking, we present here
a systematic integral equation method to generate suitable quasistatic fields
for cloaking, illusions and energy focusing (with given accuracy) in multiple
regions of interest. In the quasistatic regime, the central issue is to design
appropriate source functions for the Laplace equation so that the resulting
solution will satisfy the required properties. We show the existence and non-
uniqueness of solutions to the problem and study the physically relevant unique
L2-minimal energy solution. We also provide some numerical evidence on the
feasibility of the proposed approach.

(Some figures may appear in colour only in the online journal)

1. Introduction

The technique of manipulating acoustic and electromagnetic fields in desired regions of space
has been greatly advanced in recent years, mainly due to its fascinating applications, such as
cloaking, the creation of illusions, secret remote communication, focusing energy and novel
imaging techniques. The development can be roughly classified into two categories.

The first type of technique attempts to passively control fields in the regions of interest
by changing the material properties of the medium in certain surrounding regions, while the
second type of scheme focuses on the active manipulation (active control) of fields with the
help of specially designed sources.

In [8] (see also [10]), the authors presented the first rigorous discussion of the passive
manipulation of fields in the context of quasistatics cloaking (see also [31, 32] and [33] where
the invariance to a change of variables is fully explained and the transformed material are
fully described) and was later extended in [25] to the general case of passive manipulation of
fields in the finite-frequency regime (see also the review [4] and references therein). These
passive strategies are now known as ‘transformation optics’. The similar strategy in the context
of acoustics was proposed in [9] (see also [6] and the review [3] and references therein).
The idea behind transformation optics/acoustics is the invariance of the corresponding Dirichlet
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to Neumann map (boundary measurements map) considered on some external boundary with
respect to a suitable change of variables which is an identity on the respective boundary.
This result implies that two different materials (the initial one and the one obtained after
the change of variables is applied) occupying some region of space �, will have the same
boundary measurements maps on ∂� and thus be equivalent from the point of view of an
external observer. This leads to a long list of important applications, such as cloaking, field
concentrators [38] or field rotators, illusion optics (see [4, 3, 7, 1, 51] and references therein),
cloaking sensors while maintaining the sensing capability [48, 49].

Recently, in an effort to improve accuracy and stability of the transformation
optics/acoustics, various regularizations of this scheme have been studied (see [16], and
references therein, [28, 27, 30, 34–36]). Positive results about generating broadband low-loss
metamaterial response have been obtained in [26, 37] and a new, more stable regularization
strategy was recently proposed in [29].

In a parallel direction, many researchers focused on other alternative field manipulation
strategies. They can be grouped into two main categories, passive designs based either on
artificial materials with extreme properties or on geometrical arguments and active designs
based on the active control of fields by only using antennas with no materials needed in the
scheme.

Among the alternative passive techniques proposed in the literature, we could mention
plasmonic designs (see [1] and references therein), strategies based on anomalous resonance
phenomena (see [22–24]), conformal mapping techniques (see [20, 19]) and complimentary
media strategies (see [18]).

Regarding the active designs for the manipulation of fields, we mention that this idea
appeared first in the context of low-frequency acoustics where various techniques for the
active control of low-frequency sound (or active noise cancellation) were proposed in the
literature, and we could mention here the pioneer works of Leug [46] (feedforward control of
sound) and Olson and May [47] (feedback control of sound). For a more detailed account of
very interesting recent developments of the idea in the context of acoustics, we mention the
reviews [40–42, 44, 45] and the references therein (see also [43]).

In the electromagnetic regime, several active designs have been recently proposed in the
literature and we could mention the interior active cloaking strategy proposed in [21] which
employs active boundaries and the exterior active cloaking scheme discussed in [11–14] (see
also [50]) which uses a discrete number of active sources (antennas) to manipulate the fields.
The active exterior strategy for 2D quasistatics cloaking was introduced in [12] were based on
a priori information about the incoming field, with the help of one active source (antenna),
we constructively described how one can create an almost zero-field external region, while
maintaining a very small scattering effect in the far field. The proposed strategy did not work
for objects close to the antennas; it cloaked large objects only when they are far enough to
the antenna (see [11]) and was not adaptable for three space dimensions. The finite-frequency
case was studied in the last section of [12] and in [14] (see also [11] for a recent review)
where three active sources (antennas) were needed to create a zero-field region in the interior
of their convex hull while creating a very small scattering effect in the far field. The broadband
character of the proposed scheme was numerically observed in [13]. We mention now that,
from the point of view of the possible applications, the constraint that the antennas surround
the region of interests is not desirable and one would like to find a solution for the active
manipulation of fields by using only one active source (antenna) as we proposed in [12].

In this paper, we address the problem formulated in question 1 for the particular case of
the quasistatic regime and a homogeneous environment. This problem is of course ill-posed
and this explains the multitude of possible approximate solutions proposed for it. Our aim
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is to provide a unified mathematical theory for the general problem of active manipulation
of electromagnetic or acoustic fields, which will work in a broadband regime and regardless
of dimension, will allow for robust computational simulations and for the approximation of
a stable optimal energy solution, and will be appropriate for the more general case of non-
homogeneous environments. In this work, we introduce the mathematical theory and analyze
the problem in the quasistatic regime (modeled by the Laplace operator) corresponding to a
homogeneous environment.

The rest of the paper is organized as follows. In section 2, we formulate mathematically the
problem of generating desired fields in certain regions of space using active sources. We then
study in section 3 the existence of solutions of the mathematical problem and in section 4 the
constructive approximation of a solution with minimum energy. We provide some numerical
simulations to support our theoretical results in section 5. Concluding and further remarks
are offered in section 6. Finally, for the sake of completeness, we added the proofs for two
technical results in the appendix.

2. Problem formulation

Let Dδ ⊂ R
d (d = 2, 3) be a small neighborhood of the origin 0, and D be a given smooth

domain containing Dδ . Let the regions of interest {Dk}N
k=1 be N subdomains of D (i.e. Dk ⊂⊂ D,

1 � k � N) that are disjoint in the sense that Dk ∩ Dk′ = ∅ ∀k �= k′. We also require that Dδ

be disjoint with Dk, Dδ ∩ Dk = ∅, for all k. We denote by u0 a smooth function on R
d\D, and

by uk a smooth function that is harmonic in a neighborhood of Dk, i.e. �uk = 0 in V ⊂ R
d

with Dk ⊂⊂ V . Then, the general mathematical question that we want to ask in the quasistatic
regime is the following.

Question 1. Can we design an exterior active source (antenna), modeled as a continuous
function h(x) supported on ∂Dδ , such that the harmonic field in R

d\Dδ generated by h(x), say
u, has the property that u ≈ u0 in R\D and u ≈ uk in Dk for all 1 � k � N, where by ≈ we
mean a good approximation in the uniform convergence norm?

This question appears naturally in many applications. For instance, if the answer to
question 1 is positive, then one can use the active source (antenna) on Dδ to generate a zero
field in

⋃N
k=1 Dk and a scattering field u0 corresponding to an arbitrary object in R

d\D to create
an illusion for an external (outside of D) observer. One can also program the active source
(antenna) to approximate N different desired fields in each of the regions Dk, 1 � k � N,
while creating a zero-field region in R

d\D, thus sending information to regions of interest
without being detected by an outside observer.

We now study question 1 in more detail. To simplify the presentation, but without loss of
generality, we assume that all regions involved in question 1 are balls in R

d . We denote by
Br(x) the d-dimensional open ball that centered at x ∈ R

d with the radius r > 0. Moreover,
we first present the case where only one region of interest is involved and then, in remark 4.1,
show how the general result (i.e. the case of N region of interest) follows as an immediate
consequence. Thus, let us consider question 1 with N = 1, Dδ = Bδ (0), D = BR(0) and
D1 = Ba(x0) and (for technical reasons to be discussed later) new parameters R′, and a′ such
that

a < a′, R′ < R, |x0| > a′ + δ and R′ > |x0| + a′. (2.1)

A schematic illustration of the problem setting and various geometrical parameters are
shown in figure 1. Then, in the case when u0 denotes a homogeneous quasistatic potential,
question 1 can be formulated mathematically as follows.
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Figure 1. The geometrical setting of formulation A.

Formulation A. Let 0 < ε 
 1 be fixed. Find a function h ∈ C(∂Bδ (0)) such that there
exists v ∈ C2(Rd \ Bδ (0)) ∩ C1(Rd \ Bδ (0)) a solution of⎧⎪⎪⎪⎨

⎪⎪⎪⎩

�v = 0 in R
d \ Bδ (0)

v = h on ∂Bδ (0)

‖v − u1‖C(B̄a(x0)) � ε

‖v − u0‖C(Rd\BR(0)) � ε,

(2.2)

where u1 is a given function harmonic in a set containing Ba(x0) and the norm ‖ · ‖C(X ) is the
usual uniform norm on continuous functions defined on X .

If we subtract u0 from v in formulation A and denote by u ≡ v − u0, g ≡ h − u0, we
obtain an equivalent formulation of the original problem.

Formulation A
′
. Let 0 < ε 
 1 be fixed. Find a function g ∈ C(∂Bδ (0)) such that there

exists u ∈ C2(Rd \ Bδ (0)) ∩ C1(Rd \ Bδ (0)) a solution of⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�u = 0 in R
d \ Bδ (0)

u = g on ∂Bδ (0)

‖u + u0 − u1‖C(B̄a(x0)) � ε

‖u‖C(Rd\BR(0)) � ε.

(2.3)

Thus, a solution of our problem is a function g ∈ C(∂Bδ ) (resp. h ∈ C(∂Bδ ) for (2.2)), such
that there exists at least a solution for problem (2.3) (resp. (2.2)). Such a solution will describe
the required potential to be generated at the active source (antenna) so that an approximation
of 0 (resp. −u0) in the region Ba(x0) with ε-accuracy will be possible with a very small
perturbation of the far field (resp. very small far field).

Let a′, R′, x0, δ be as before. We introduce the following space �:

� ≡ L2(∂Ba′ (x0)) × L2(∂BR′ (0)). (2.4)

Then, � is a Hilbert space with respect to the scalar product given by

(ϕ, ψ)� =
∫

∂Ba′ (x0 )

ϕ1(y)ψ1(y) dsy +
∫

∂BR′ (0)

ϕ2(y)ψ2(y) dsy, (2.5)

4
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for all ϕ ≡ (ϕ1, ϕ2) and ψ = (ψ1, ψ2) in �. The next lemma presents two technical regularity
results which, in order to make the paper self contained, will be proved in the appendix.

Lemma 2.1. Let 0 < R1 < R∗ < R2 be three constants and y0 ∈ R
d be an arbitrary

point. Let f , g ∈ C(∂BR∗ (y0)) and define vi ∈ C2(BR∗ (y0)) ∩ C1(BR∗ (y0)) and ve ∈
C2(Rd \ BR∗ (y0))∩C1(Rd \ BR∗ (y0)) to be the solutions of the following interior and exterior
Dirichlet problems, respectively,{

�vi = 0 in BR∗ (y0)

vi = f on ∂BR∗ (y0)
(2.6)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�ve = 0 in R
d \ B̄R∗ (y0)

ve = g on ∂BR∗ (y0)

ve =
{

O(1) for |x| → ∞, if d = 2

o(1) for |x| → ∞, if d = 3.

(2.7)

Then, we have

(i) ‖vi‖C(B̄R1 (y0 )) � R∗ + R1

|B1|R∗(R∗ − R1)d−1
‖ f ‖L1(∂BR∗ (y0 )),

(ii) ‖ve‖C(Rd\BR2 (y0)) � R2 + R∗
|B1|R∗(R2 − R∗)d−1

‖g‖L1(∂BR∗ (y0 )),

where |B1| denotes the volume of the unit ball B1(y0).

The Big O and little o notation in the radiation condition guaranteeing the uniqueness of
the solution for the exterior problem is the standard one.

3. Existence of solutions

We are now ready to present the main results. Let us introduce the integral operator,
K : L2(∂Bδ (0)) → �, defined as

Ku(x, z) = (K1u(x), K2u(z)), (3.1)

for any u(x) ∈ L2(∂Bδ (0)), where

K1u(x) =
∫

∂Bδ (0)

u(y)
∂
(x, y)

∂νy
dsy, for x ∈ ∂Ba′ (x0),

K2u(z) =
∫

∂Bδ (0)

u(y)
∂
(z, y)

∂νy
dsy, for z ∈ ∂BR′ (0),

(3.2)

where νy = y
|y| is the normal exterior to ∂Bδ (0) and where 
(x, y) represents the fundamental

solution of the Laplace operator:


(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

1

2π
ln

1

|x − y| , for d = 2

1

4π

1

|x − y| , for d = 3.

(3.3)

The next lemma given without proof is a simple consequence of classical results in potential
theory.

Lemma 3.1. The operator K defined in (3.1) is a compact linear operator from L2(∂Bδ (0))

to �.

5
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Let us introduce further the adjoint operator of K, i.e. the operator K∗ : � → L2(∂Bδ )

defined through the relation,

(Kv, u)� = (v, K∗u)L2(∂Bδ (0)) ∀u ∈ �, v ∈ L2(∂Bδ (0)), (3.4)

where (·, ·)� is the scalar product on � defined in (2.5) and (·, ·)L2(∂Bδ (0)) denotes the
usual scalar product in L2(∂Bδ (0)). We check, by simple change of variables and algebraic
manipulations, that the adjoint operator K∗ is given by

K∗u(x) =
∫

∂Ba′ (x0 )

u1(y)
∂
(x, y)

∂νx
dsy +

∫
∂BR′ (0)

u2(y)
∂
(x, y)

∂νx
dsy, (3.5)

for any u = (u1, u2) ∈ � and x ∈ ∂Bδ (0), with νx = x
|x| = x

δ
.

From the compactness and linearity of K as given in lemma 3.1, we conclude that the
adjoint operator K∗ is compact as well. Furthermore, let us denote by Ker(K∗) the kernel (i.e.
null space) of K∗. Then, we have the following result.

Proposition 3.1. If ψ = (ψ1, ψ2) ∈ Ker(K∗), then ψ ≡ (0, 0) in �.

Proof. Let ψ ∈ Ker(K∗) and define

w(x) =
∫

∂Ba′ (x0)

ψ1(y)
(x, y) dsy +
∫

∂BR′ (0)

ψ2(y)
(x, y) dsy, for x ∈ R
d, (3.6)

where the integrals exist as improper integrals for x ∈ ∂Ba′ (x0) ∪ ∂BR′ (0). From K∗ψ = 0
and (3.5) we have that w satisfies the Laplace equation⎧⎨

⎩
�w = 0, in Bδ (0)

∂w

∂νx
= 0, on ∂Bδ (0).

(3.7)

We then conclude that

w = constant in Bδ (0). (3.8)

We denote this constant by L, i.e. w = L in Bδ (0). Then, because by definition w is harmonic
in BR′ (0) \ B̄a′ (x0), from the unique continuation principle, we conclude that

w = L in BR′ (0) \ B̄a′ (x0). (3.9)

The next relations for w are in fact the classical jump conditions for the single-layer potentials
with L2 densities (see [5] and references therein). We have

lim
h→+0

∫
∂Ba′ (x0)

|w(x ± hνx) − w(x)|2 dsx = 0, (3.10)

lim
h→+0

∫
∂BR′ (0)

|w(x ± hνx) − w(x)|2 dsx = 0, (3.11)

lim
h→+0

∫
∂Ba′ (x0)

∣∣∣∣2 ∂w

∂νx
(x ± hνx) − 2

∂w

∂νx
(x) ± ψ1(x)

∣∣∣∣
2

dsx = 0, (3.12)

lim
h→+0

∫
∂BR′ (0)

∣∣∣∣2 ∂w

∂νx
(x ± hνx) − 2

∂w

∂νx
(x) ± ψ2(x)

∣∣∣∣
2

dsx = 0, (3.13)

where νx = ν(x) denotes the exterior normal to ∂BR′ (0) and ∂Ba′ (x0), respectively, and all
the integral of the normal derivatives of w exists as improper integrals. From (3.9)–(3.11), we
obtain that

w = L on ∂BR′ (0) ∪ ∂Ba′ (x0). (3.14)

6
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Next note that by definition w is harmonic in Ba′ (x0). Then, uniqueness of the interior Dirichlet
problem for w on Ba′ (x0) and (3.14) implies

w = L in B̄a′ (x0). (3.15)

From (3.9), (3.15) and the two jump relations (3.12), we obtain that

ψ1 = 0 on ∂Ba′ (x0). (3.16)

Equation (3.16) used in the definition of w given at (3.6) implies

w(x) =
∫

∂BR′ (0)

ψ2(y)
(x, y) dsy, for x ∈ R
d . (3.17)

Next, relations (3.9), (3.14) and (3.15) imply that

w = L in B̄R′ (0). (3.18)

Let us now observe that Green’s theorem applied to w in BR′ (0) gives∫
∂BR′ (0)

∂w

∂νx
dsx = 0. (3.19)

On the other hand, from the interior jump condition given in (3.13) together with (3.18), we
have that

∂w

∂νx
= −1

2
ψ2 a.e. on ∂BR′ (0). (3.20)

From (3.19) and (3.20), we deduce∫
∂BR′ (0)

ψ2(x) dsx = 0. (3.21)

Observe that (3.21) guarantees the bounded behavior of w at infinity in two dimensions, while
it is well known that w will decay to zero at infinity in three dimensions. Then, the classical
representation result for smooth functions, which are harmonic in the exterior of a given
smooth region and bounded at infinity (see [15]), implies

w(x) = w∞ +
∫

∂BR′ (0)

(
w(y)

∂
(x, y)

∂νy
− ∂w

∂νy
(y)
(x, y)

)
dsy, (3.22)

for all x ∈ R
d \BR′ (0) and for some constant w∞ which depends only on the dimension. Using

(3.14) and (3.20) in (3.22), we obtain

w(x) = w∞ + L
∫

∂BR′ (0)

∂
(x, y)

∂νy
dsy + 1

2

∫
∂BR′ (0)

ψ2(y)
(x, y) dsy

= w∞ + 1

2
w(x)

= 2w∞ for x ∈ R
d \ BR′ (0), (3.23)

where we used (3.6) for the last integral in the first line of (3.23). Finally, (3.18) and (3.23)
together with the pair of jump conditions given at (3.13) imply that

ψ2 = 0 a.e. on ∂BR′ (0). (3.24)

The statement of the proposition follows from (3.16) and (3.24). �
Before presenting the main result of this work, let us introduce the following space of

functions:

U ≡ K(C(∂Bδ (0)).

It is clear that U is a subspace of �. Moreover, we have the following.

7
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Lemma 3.2. The set U ⊂ � is dense in �.

Proof. We first observe that the subspace U ⊂ � satisfies

U = (U⊥)⊥, (3.25)

where here and further in the proof, for a given set M ⊂ �, M and M⊥ denote its closure and
orthogonal complement, respectively, in the L2 topology generated on � by the scalar product
defined at (2.5). Property (3.25) is classic for subspaces in a Hilbert space (see [2]). On the
other hand, we also have that

U⊥ = Ker(K∗). (3.26)

Indeed let ξ = (ξ1, ξ2) ∈ U⊥. Then, for all ϕ ∈ C(∂Bδ (0)), we have

0 = (Kϕ, ξ )� ⇔ (ϕ, K∗ξ )L2(∂Bδ (0)) = 0 ⇔
⇔ K∗ξ = 0 ⇔ ξ ∈ Ker(K∗). (3.27)

Properties (3.25) and (3.26) imply that

U = Ker(K∗)⊥. (3.28)

Proposition 3.1 together with (3.28) imply the density of U in �. �
We are now in the position to state and prove the main result of the paper.

Theorem 3.2. Let a, c, a′, R′, R be given as in (2.1). Let v = (v1, v2) ∈ C(B̄a′ (x0)) × C(Rd \
BR′ (0)) be such that v1 is harmonic in Ba′ (x0) and v2 is harmonic in R

d \ B̄R′ (0). Define the
double-layer potential D with the density ϕ ∈ L2(∂Bδ (0)) as

Dϕ(x) =
∫

∂Bδ (0)

ϕ(y)
∂
(x, y)

∂νy
dsy, for x ∈ R

d \ B̄δ (0).

Then, D : L2(∂Bδ (0)) → C(Rd \ Ba′−a+δ (0)) is a continuous operator between L2(∂Bδ (0))

and C(Rd \ Ba′−a+δ (0)) endowed with their natural topologies. Moreover, there exists a
sequence {vn} ⊂ C(∂Bδ (0)), such that

Dvn → v1 strongly in C(B̄a(x0)) and Dvn → v2 strongly in C(Rd \ BR(0)),

with respect to the uniform topology of C(B̄a(x0)) and C(Rd \ BR(0)).

Proof. We first observe that v ∈ �. Then, the definition of U and lemma 3.2 imply that there
exists a sequence {vn} ⊂ C(∂Bδ (0)), such that

K(vn) → v strongly in �. (3.29)

From the definition of the � topology and (3.29), we conclude that

‖K1vn − v1‖L2(∂Ba′ (x0 )) → 0,

‖K2vn − v2‖L2(∂BR′ (0)) → 0.
(3.30)

Observe that, by definition, K1vn (resp. K2vn) is the restriction to ∂Ba′ (x0) (resp. ∂BR′ (0)) of
Dvn (resp. Dvn), where D was defined in the statement of the theorem. From the properties
of D, the hypothesis on v1, v2 and the regularity results of lemma 2.1, we conclude that there
exists a constant C depending on a, a′, R, R′ such that

‖Dvn − v1‖C(B̄a(x0 )) � C‖K1vn − v1‖L2(∂Ba′ (x0 )),

‖Dvn − v2‖C(Rd\BR(0)) � C‖K2vn − v2‖L2(∂BR′ (0)),
(3.31)

where we have also used the properties of a, a′, R, R′ and x0 stated at (2.1). Finally, from (3.30)
and (3.31), we obtain the statement of the theorem. �

8



Inverse Problems 28 (2012) 105009 D Onofrei

4. The minimal energy solution

Theorem 3.2 implies that there exist infinitely many functions h ∈ C(∂Bδ (0)) (resp.
g ∈ C(∂Bδ (0))) as solutions to (2.2) in formulation A ((resp. (2.3)) in formulation A′).
Indeed, let 0 < ε 
 1 and v = (v1, v2) ∈ C(B̄a′ (x0)) × C(Rd \ BR′ (0)) such that v1 is
harmonic in Ba′ (x0) and v2 is harmonic in R

d \ B̄R′ (0). Then, using the regularity results of
lemma 2.1, we observe that any function h ∈ C(∂Bδ (0)) satisfying

‖Kh − v‖� � ε

C
, (4.1)

where the ‖ · ‖� is the natural norm induced by the inner product defined in (2.5), must be a
solution for the problem (2.2). This together with (3.31) provides a sequence of solutions for
problem (2.2).

Now, we will show that for any desired level of accuracy ε, among the solutions of (4.1),
there exists a unique solution with the minimal energy norm, i.e. with minimal L2(∂Bδ (0))

norm. We have the following result.

Corollary 4.1. Let 0 < ε 
 1 and v ∈ � be given. Then, there exists a unique h0 ∈ L2(∂Bδ (0))

solution of the following minimization problem:

‖h0‖L2(∂Bδ (0)) = min
‖Kh−v‖��ε

‖h‖L2(∂Bδ (0)). (4.2)

Proof. From proposition 3.1 and classical linear operator theory, we have that the linear
bounded operator K : L2(∂Bδ (0)) → � has a dense range. This together with the classical
theory of minimum norm solutions based on the Tikhonov regularization implies the statement
of the Corollary (see [17], theorem 16.12). In fact, the classical theory implies that the solution
h0 of (4.2) belongs C(∂Bδ (0)) and is the unique solution of

αhα + K∗Khα = K∗v with ‖Khα − v‖� = ε, (4.3)

as the regularization parameter α tends to 0. �
The next result is an immediate consequence of theorem 3.2. It proves the existence of a

class of solutions for the problem (2.3).

Corollary 4.2. Let u0 and u1 be as in (2.2) and consider v = (u1 − u0, 0). Then, there exist
infinitely many functions g ∈ C(∂Bδ (0)) such that Dg = u with u satisfying (2.3). Moreover,
there exists a unique function g ∈ C(∂Bδ (0)) the solution of (2.3) with the minimal L2(∂Bδ (0))

norm.

Proof. First observe that v = (u1 − u0, 0) satisfies the hypothesis of theorem 3.2 for a′ > a
satisfying (2.1) and small enough so that u1 remains harmonic on Ba′ (x0). Thus, we have that
there exists a sequence {gn} ⊂ C(∂Bδ (0)), such that we have

‖Dgn + u0‖C(B̄a(x0 )) → 0,

‖Dgn‖C(Rd\BR(0)) → 0,
(4.4)

where D is as in theorem 3.2. Then, for 0 < ε 
 1 as in (2.3), we can choose N such that for
all n � N we will have

‖Dgn + u0‖C(B̄a(x0 )) � ε,

‖Dgn‖C(Rd\BR(0)) � ε.
(4.5)

This implies that, there exists an index N such that for all n � N, functions of the form Dgn

will be solutions of the problem (2.3). Next, by using corollary 4.1, we obtain the existence of
a solution g ∈ C(∂Bδ (0)) with the minimal L2(∂Bδ (0)) norm. �
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Remark 4.1. We observe that one can easily adapt the proof of theorem 3.2 to the general
case stated in question 1, i.e. the case of finitely many mutually disjoint balls of interest. Thus,
following the same arguments as before, one will obtain a class of solutions for question 1 in
this general context. Moreover, by adapting the proof of corollary 4.1 to the general case of N
disjoint domains, we could obtain the existence of a minimal L2(∂Bδ )-norm solution for the
problem.

Remark 4.2. We also mention that all the results in this paper readily extend to general simple
connected domains with the C2 boundary, but for the clarity of the exposition we chose to
present the results only in the case of balls.

Remark 4.3. It is well known that both the interior and the exterior Dirichlet problems are
stable with respect to boundary data. This means that small perturbations on boundary data
h produce small perturbations in the solution u in formulation A. This further suggests that
the inverse problem that we consider in this work, however, is unstable. To find the source
function h that generate a desired field v, we need to invert a compact integral operator. Such
a problem is always an ill-posed problem [15, theorem 1.17] and this is the main reason for
the consideration of minimal energy solution.

5. Numerical simulations

We now present some numerical results to demonstrate the ideas that we have developed. We
consider both two-dimensional and three-dimensional cases. To simplify the visualization, we
only present results with regions of interest being balls, although the numerical algorithms
that we developed can deal with regions of arbitrary shape with boundaries regular enough.
The scattering problem (more precisely, the integral operator K) is discretized by the Nyström
method, following the presentation in [5].

In the two-dimensional case, we consider question 1 with N = 2, δ = 1, D1 = B2(x1),
D2 = B2(x2) and D = B15(0). The centers of D1 and D2 are x1 = (0, 12) and x2 = (10, 0),
respectively. The fields are u1 = log 1

|x| , u2 = x
|x|2 and u0 = 0. The accuracy parameter is

ε = 10−3(‖u1‖L2(D1 ) + ‖u2‖L2(D2 ) + ‖u0‖L2(∂D)). We show in the left plot of figure 2 the
minimal energy solution of the problem with the desired fields given as above. The source
function, supported on the unit circle, is parameterized using the azimuth angle ϕ ∈ [0, 2π).
The two middle plots of figure 2 show the relative differences of the field that is generated by
the minimal energy solution and the desired field in regions D1 and D2. It is clear from the plot
that the solution strategy works almost perfectly because the mismatch between the desired
field and the generated field is almost very small everywhere.

In the three-dimensional case, we observe very similar results. Given an arbitrary point
x1 = (10, 0, 0) we considered question 1 with N = 1, δ = 1, u0 = 0, u1 = 1

|x| , D1 = B2(x1)

and D = B15(0). The accuracy parameter is again ε = 10−3(‖u1‖L2(D1 ) + ‖u0‖L2(∂D)). The
results are shown in figure 3. In the left plot, we show the minimal energy source h(θ, ϕ)

where the unit ball is parametrized using the polar angle θ ∈ [−π/2, π/2] and the azimuth
angle ϕ ∈ [0, 2π). In the middle plot, we show the difference between the generated field and
the desired field on ∂B2(x1). The right plot shows the difference between the generated field
and the desired field on ∂B15(0). Due to the limitations of visualization, we are not able to
show the difference inside the balls which we observe to be small.

The numerical simulations support our proof that the strategy proposed in this work on
generating desired fields in different regions works well.

10
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Figure 2. Numerical results in the two-dimensional case. From top left to bottom right: the minimal
energy source function f (ϕ), the relative difference between generated and desired fields in the
neighborhoods of regions D1 and D2, and generated field on ∂D.

Figure 3. Numerical results in the three-dimensional case. (Left) Plot of the minimal energy
source function f (θ, ϕ). (Middle) Plot of the relative difference field on ∂B2(x1). (Right) Plot of
the difference field on ∂B15(0).

6. Concluding remarks

The idea of manipulating quasistatic fields (or in general acoustic and electromagnetic fields) to
generate desired scattering effects has been explored extensively in the engineering community
recently due to its practical importance. In this work, we present a systematic method to analyze
mathematically and numerically the feasibility of the active field manipulation strategy. In the
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quasistatic regime, we show that one can find source functions that are able to generate desired
quasistatic field in multiple regions of interests to any given accuracy. This enables us to
use the active source to create desired illusions or energy focusing without being detected
by observations performed outside of the domain of interest. In fact, we show that for any
given accuracy, there are infinitely many sources that can achieve the same effects. The source
function that has the minimal energy is probably the one that is physically relevant and is
weakly stable. Our numerical simulations confirm that the strategy can indeed be realized.

The formulation that we present is independent of the spatial dimension; it provides
a first step toward the development of field manipulation techniques in more complicated
settings, such as in low-to-medium frequency acoustic and TE or TM electromagnetic regimes
even though the analysis in those regimes need to be made carefully due to the change of
the integral kernels and the presence of resonances. The analysis for general acoustics and
for electromagnetics will soon appear in [53] and [54]. In addition, if the problem is posed
in a non-homogeneous medium, with a known medium property, the same formulation can
be constructed and the same type of minimal energy solution can be obtained through the
Euler–Lagrange equation (4.3).

Another essential discussion is about the stability and feasibility of the solution. Regarding
the feasibility study in [52], the authors provide a detailed analysis about the amplitude required
at the sources. Together with Dr Richard Albanese we are currently exploring different ways
to actively control the fields in a feasible manner.

Regarding the stability analysis, we mention that in general, as is well known, the problem
of inverting a compact operator is highly unstable and that is why we focus on the most physical
relevant solution, namely the unique minimum energy solution. By using the generalized
discrepancy principle for an injective restriction of the operator K, it can be shown that this
solution is L2 stable with respect to small errors at the antennas or in the measurements
of the right-hand side data. The L2 stability analysis together with the associated numerical
discussion for the minimal norm solution will be presented in [39].

There are many potential applications of the method as we mentioned in the introduction.
Formulation A with u1 = 0 corresponds to the problem of the quasistatic active exterior
cloaking as described in [12]. It has been shown in [12, 13] (see also [14, 11] for acoustics)
that with a few active point sources, one can generate similar effects as what we propose
here. This is not surprising because of the non-uniqueness nature of the problem. Indeed, we
believe that the cases in [12, 13] are the special cases of the current framework, if we are
allowed to use continuous functions to approximate the delta-function model of point sources.
Numerically, this can be done by searching for solutions with the minimal L1 norm instead
of the L2 norm (the energy norm). The numerical techniques of l1 minimization can then be
employed to solve the minimization problem.
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Appendix

Lemma A.1. Let 0 < R1 < R∗ < R2 be three constants and y0 ∈ R
d be an

arbitrary point. Let f , g ∈ C(∂BR∗ (y0)) and define vi ∈ C2(BR∗ (y0)) ∩ C1(BR∗ (y0)) and
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ve ∈ C2(Rd \ BR∗ (y0)) ∩ C1(Rd \ BR∗ (y0)) to be the solutions of the following interior and
exterior Dirichlet problems respectively:{

�vi = 0 in BR∗ (y0)

vi = f on ∂BR∗ (y0)
(A.1)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�ve = 0 in R
d \ B̄R∗ (y0)

ve = g on ∂BR∗ (y0)

ve =
{

O(1) for |x| → ∞, if d = 2

o(1) for |x| → ∞, if d = 3.

(A.2)

Then, we have

(i) ‖vi‖C(BR1 (y0 )) � R∗ + R1

|B1|R∗(R∗ − R1)d−1
‖ f ‖L1(∂BR∗ (y0 )),

(ii) ‖ve‖C(Rd\BR2 (y0)) � R2 + R∗
|B1|R∗(R2 − R∗)d−1

‖g‖L1(∂BR∗ (y0 )),

where |B1| denotes the volume of the unit ball B1(y0).

Proof. Without loss of generality, we assume that the three balls are centered in the origin, i.e.
y0 = 0. In this condition, from the Poisson formula, we have

vi(x) = 1

|B1|
∫

∂BR∗ (0)

f (y)
R2

∗ − |x|2
R∗|x − y|d dsy, for |x| < R∗, (A.3)

and

ve(x) = 1

|B1|
∫

∂BR∗ (0)

g(y)
|x|2 − R2

∗
R∗|x − y|d dsy, for |x| > R∗, (A.4)

where |B1| denotes the volume of the d-dimensional unit ball. Recall that the triangle inequality
states

|x − y| � ||x| − |y||, for all x, y ∈ R
d . (A.5)

From (A.3) and (A.5), we obtain

|vi(x)| � 1

|B1|
∫

∂BR∗ (0)

| f (y)| R∗ + |x|
R∗|R∗ − |x||d−1

dsy, for |x| < R∗.

Thus,

|vi(x)| � R∗ + R1

|B1|R∗(R∗ − R1)d−1

∫
∂BR∗ (0)

| f (y)| dsy, for |x| � R1. (A.6)

From (A.4) and (A.5), similarly, we obtain

|ve(x)| � 1

|B1|
∫

∂BR∗ (0)

|g(y)| R∗ + |x|
R∗||x| − R∗|d−1

dsy, for |x| > R∗,

and this implies

|ve(x)| � R∗ + |x|
|B1R∗||x| − R∗|d−1

∫
∂BR∗ (0)

|g(y)| dsy, for |x| > R∗.

By using simple algebra, the last inequality becomes

|ve(x)| � 1

|B1|R∗

(
1

(|x| − R∗)d−2
+ 2R∗

(|x| − R∗)d−1

) ∫
∂BR∗ (0)

|g(y)| dsy, for |x| > R∗,

and, similarly as for (A.6), this implies

|ve(x)| � 1

|B1|R∗

(
1

(R2 − R∗)d−2
+ 2R∗

(R2 − R∗)d−1

) ∫
∂BR∗ (0)

|g(y)| dsy, for |x| � R2. (A.7)

The statement of the lemma is implied by (A.6) and (A.7). �
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