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In this article we extend the ideas presented in Onofrei and Vernescu
[Asymptotic Anal. 54 (2007), pp. 103-123] and introduce suitable second-
order boundary layer correctors, to study the H'-norm error estimate for
the classical problem of homogenization, i.e.

{—v. (A(;)Vué(x)) —f inQ

u. =0 on 0.

Previous second-order boundary layer results assume either smooth enough
coefficients (which is equivalent to assuming smooth enough correctors y;,
Xij € Wl’of), or smooth homogenized solution u,, to obtain an estimate of
order O(e?). For this we use some ideas related to the periodic unfolding
method proposed by Cioranescu et al. [C. R. Acad. Sci. Paris, Ser. I 335
(2002), pp. 99-104]. We prove that in two dimensions, for non-smooth
coefficients and general data, one obtains an estimate of order O(e2). In three
dimensions the same estimate is obtained assuming x;, x; € W' with p > 3.

Keywords: homogenization; error estimates; nonsmooth coefficients

AMS Subject Classifications: 35J15; 35B27

1. Introduction

This article is dedicated to the study of error estimates for the classical problem in
homogenization using suitable boundary layer correctors.

Let Q € RY, denote a convex bounded domain with a sufficiently smooth
boundary. Consider also the unit cube Y =(0,1)". It is well-known that for
A e L)V, symmetric and Y-periodic with m|€|> < 4;(»)&£ < MIE°, for any
& € RY, the solutions of

{ _v. (Ae)VuE(x)) =/ inQ, (1)
Ue =0 on 92
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have the property that [1-4],
U — uy In H(l)(SZ),

where uq verifies

{ —V - (AMVup(x) = in @, )
uy =0 on 92,
with
hom an
AT = MY(Aii(y) + Ai(y) —> ®)

where My(:) = |17|fy-dy and  x; € Wyee(Y) = {x € H) . (Y)IMy(x) =0} are the
solutions of the local problem

=V, - (A(P)(Vx+¢)) =0. )

Here ¢; represent the canonical basis in RY. In this article, V and (V-) denote the full
gradient and divergence operators respectively, and V,, (V,-) and V,, (V,-) denote
the gradient and the divergence in the slow and fast variable respectively.

Remark 1 Throughout this article, we denote by & the continuous extension of a
given function ® € W”"(Q) with p, m € Z, to the space W”"(R"). With minimal
assumption on the smoothness of 2 a stable extension operator can be constructed
[5, Ch. VI, 3.1].

The formal asymptotic expansion corresponding to the above results can be
written as

ue(x) = up(x) + ewy (x, g) +---,

(s =)

We make the observation that the Einstein summation convention will be used and
that the letter C will denote a constant independent of any other parameter, unless
otherwise specified.

A classical result [1-3,6], states that with additional regularity assumptions on the
local problem solutions x; or on u, one has

u() — () — ewy ( E)

Without any additional assumptions a similar result has been recently proved by
Griso [7], using the Periodic Unfolding method developed in [8], i.e.

=0 = e ()0 (52)

where

” H (sz)S ce. ©

< Ce |l ey %

o
with
X€Qe. QD))= Y MYP)et + x|, .. Xy, &= H

= €
Il 5-5IN
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for ¢ € LA(Q), i=(i1,...,iy) € {0,1}" and
W o
=i €
Xpe= B xeeE+7),
PRk T A

where
1 .
M;(¢>)=E—N/§+ Y¢(y)dy and Q.= | J{et+eYi(et+en)nQ#0).
€sre gezZV

In order to improve the error estimates in (6), boundary layer terms have been
introduced as solutions to

—v.(Ae)veE):o in Q eézwl(x, g) on 9Q. (8)

Assuming 4 € C(Y), symmetric and Y-periodic matrix and a sufficiently smooth
homogenized solution u it has been proved in [4] (see also [6]) that

w) =) —an (- ) +eb0)| | < Ce )

< Cé.
L2(Q) ¢ (10)

() = uo() = ewi (- 2) + bl

Moskow and Vogelius [9] proved the above estimates assuming 4 € C*(Y),
Y-periodic matrix and uy € H*(Q) or uy € H(Q) for (9) or (10) respectively.
Inequality (9) is proved in [10] for the case when 4 € L°°(Y) and uy € W>™(Q).
Sarkis and Versieux [11] showed that the estimates (9) and respectively (10) still
holds in a more general setting, when one has u, € W>7(), x; € Wha(Y) for (9), and

per

i e W3(Q), X € Wllae‘fr(Y) for (10), where, in both cases, p > N and ¢ > N satisfy
1 + ¢ = ' . In [11] the constants in the right-hand side of (9) and (10) are proportional
to ||u0||Wz,,(Q), and |luo ||y respectively.

In order to improve the error estimate in (9) and (10), one needs to consider the

second-order boundary layer corrector, ¢, defined as the solution of,

: X 32140
o € -0 11
\Y% (A(6>V@e) 0 in Q, @(x)= X,,( )8x,8 n 0, (11)
where x; € W (Y) are solution of the following local problems:
Vy - (AVyxi) = by + A}lom, (12)

with A"™ defined by (2), My(by(y)) = —A}™, and by = — Ay — A 5% — 32 (Auxy).
For the case when uy, € W>*°(2) and X,] e wh °°(Y) Wlth the help of ¢, defined
in (11), Allaire and Amar [10] proved the following result:

32140

3
< Cellugllprmig).  (13)
H'(Q)

() = () = e (-, 2) + b — €5 )

0x;0x;

This result shows that with the help of the second-order correctors one can
essentially improve the order of the estimate (9). In the general case of non-smooth
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periodic coefficients, i.e. 4 € L>(Y) and u, € HX(S), inspired by Griso’s idea, we
proved in [12] that

) =) = ()0 (52) + .09
]

< Celluoll () (14)
H(R)

with B, defined by
_v. (A(f)Vﬁe) —0in Q ﬂezul(x, g) on 9, (15)

where u(x, )= ()0(G2).
When uy € W ”(Q) w1th p > N we also proved in [12] that

-\ ou
u) = () = ex(2) S2+ b ()| = Cluollyrnca (16)

0x;

1(%))

In this article, we present a refinement of (13) for the case of non-smooth coefficients
and general data. To do this, we start by describing the asymptotic behaviour of ¢,
defined at (11). The key difference between the case of smooth coefficients, and the
nonsmooth case discussed in this article is that in the former, by means of the
maximum principle or Avellaneda’s compactness results [13], it can be proved that
the second-order boundary layer corrector ¢, is bounded in L*(€2) and is of order
O(—= [) in H'($2), while in the latter one cannot use the aforementioned techniques to
describe the asymptotic behaviour of ¢, in L*(2) or H'(2). Thus, one needs to
carefully address the question of the asymptotic behaviour of ¢, with respect to e.
First, we can ecasily observe that €p, can be interpreted as the solution of an
elliptic problem with variable periodic coefficients and with weakly convergent data
in H~'(). For this class of problems a result of Tartar [14] (see also [15]) implies

©e S0 in H'(Q).

As a consequence of Proposition 2.2, we obtain that for wuy e H(Q) and
Xj» Xij € per(Y) for some p > N, we have

1
ll€@ell i@y < Celluoll () (17)

Using (17) we are able to prove that for uy, € H*(2) and Xj» Xij € ng; with p > N we
have

32 Ugp

3
—_— < Ce 3(Q)-
Do, e luoll ) (18)

H'(Q)

w0 =00 = (2) T2 4 et — ()

dxx;

Remark 2 states that in two dimensions due to a Meyer-type regularity for the
solutions of the cell problems, x;, x;» estimate (18) holds only assuming u, € H ().

2. A fundamental result

In this section we analyse the asymptotic behaviour with respect to € of the solutions
to a certain class of elliptic problems with highly oscillating coefficients and
boundary data. The main result is stated in Proposition 2.2, but we will first present a
technical Lemma which will be useful in what follows.
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LemmaA 2.1 Let @ be such that ® € Wég(Y) with p > N, and let € H'(Q). Then we
have

f Voo (O)[ e — M5 dx = CRUByniy 1oy (19)

where MY(9) = & [.escy 9(1)dy.

Proof Let Q. C R" be the smallest union of integer translates of € Y that covers Q, i.e.

Q= | Ge+em),

§€Z
where
Z=lEeZV, (te+€Y)NQ £ 0).

We start by recalling that there exists a linear and continuous extension operator
P: H(Q) — H'(Q.), with the continuity constant independent of e (see [7,16] for
details). In the rest of this section, without having to specify it every time, every
function in H'(2) will be extended trough P to H'(.). Next we proceed with the
proof of the lemma. We have

v () we - msracs [ [ve®) wem-mwwyd

: gXZ: /E€+€Y

<Y / 19, DL Ee +€7) — M () Ee + ) dy.

o (5] - M5y

Ee”Z,
(20)
Let y/(,e 4+ €y) = z¢(y). Using this in (20) we obtain,
[ <1>( ) ) - M5y
= Z [ mer(ao -y [ z;<s)ds) a
=SSR Y e |Y|/2E(s)ds oy Q1)

§eZe

Note that V,ze =€V (ée 4 €y). Next we will recall now a very important inequality
[17, Chap. 2] to be used for our estimates. For any p > N we have

191 2 < c(p)<||¢||m) + 191 e, ||¢”L’(s2)) (22)
for any ¢ € H'(Q) and where ¢(p) is a constant which depends only on ¢, N, €. Then,
(22) together with the Poincare-Wirtinger inequality, implies

1
Zg ——/ ze()ds|| 5, =< pllVyzell 2wy (23)
Y1)y

1)
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Substituting (23) in (21), we have

/g 'V«‘"‘I’(f) PW(x) = MyW)(x)) dx

2 2
< €115y D 1Vszel T,
§eZ.

=G 0l Y [ (et enrdy

feZ.

= CIJEZHCI)"%/VI/:()/) Z /g_;,_ v |Vx1/f|2dx
eé+e

SEZ(
< CEN@ 0 117110y (24)
where C depends on p only. So the statement of the lemma is proved. |

ProposITION 2.2 Let Q@ C RY be bounded convex and with smooth enough boundary.
Consider the following problem:

{ V. (A(E)Vys) =h in Q, ’ (25)
Ve =g, on 92

where h € LX), the coefficient matrix A satisfies the hypothesis of the first section,
an]d we have that there exists ¢, € WI‘)’C/’r(Y) with p > N, and z. a bounded sequence in
H () such that

ge(x) = €g, (g)ze(x) a.e. Q. (26)
Then there exists y, € H\(Q) such that
Ve = ye in H(RQ), 27
and y, satisfies

hom _ .
iV-(A Vy.)=h inQ, (28)

V«=0 on 9%,

where A™™ is the classical homogenized matrix defined in (3). Moreover we have

‘ Ye = Vs — €Xj (E)Qe (?;t)

where x; € Wpe(Y) are defined in (4), Q. is defined in (7) and C depends only on p.

< Ce(l+ 1 ulme)- (29)
H'(Q)

Proof To prove (27) and (28) Tartar’s result concerning problems with weakly
converging data in H~' could be used. We prefer to present here a different proof
based on the periodic unfolding method developed in [8], which will also imply (29).
First, observe that the solution of (25) satisfy,

ye=yM+ 3P+, (30)
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where y(V, 3,y satisfy, respectively,

v (AN D) =1 i
\Y (A(e)VyE ) =h in , 31
(3D
y =0 on 9%,
—v. (Ae)Vy(f)) =0 ingQ
) v (32)
y(g ) = €d, (Z>Q€(ZE) on 0<2,
V. (A(f)Vy@) —0  inQ
€ 33)
3) X (
19 =0, (3)z— Q) om o2
First, note that from Theorem 4.1 in [17], stated here in (7), we have
M No (2= !
Ve (X) = ya(x) — ex;( = Qe<_) ‘ < Ce|l yull (o) (34)
w-ae (L) =zcan

From [17] (see the two estimates before Theorem 4.1 there), by using an interpolation
inequality, we immediately arrive at,

1
152N @y < CENPLllmy Izel 20)- (35)

Next, we recall the following estimate from [17]:
[ i () (@au = 3|, < Cel@ullnyllulinar (36)
for any u € H'(Q). Then for y® we obtain,

1Y i) < C”“D*(S(Z‘ a QG(ZE))HHWQ)
- C“Eq)*(;)(ze ~ QD]

+ CHG(D* (g) Vi(ze — Oc(ze))

+0| v, . (5) e — 0uz0)

LA(Q)

< Ellzell g e | Pl oy

’LZ(Q)

+ ] ve. () e - 0|, +el i
< CHV}xD*(é)(Ze — M5z,

+C|v, @, (2)(Qeze - M5z
12(9) €

+ Cel|Pullpollzell @) < CellPullwomllzell a0 (37)
where C depends only on p and where we used triangle inequality in the fourth line
above and we used Lemma 2.1 and (36), respectively, to estimate the first and the
second terms in the fifth line. Substituting (34), (35), (37) in (30), we obtain the
statement of the proposition. [ |

L2(9)

3. Boundary layer error estimates

In this section, for the case of L coefficients, with the only assumptions that
Xj» Xij € Wr(Y) for some p > N and uy € H>(R), we show that the left-hand side of

per
(13) is of order e. Indeed, we have the following theorem.
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THeOREM 3.1 Let A € L°(Y) and uy € H(Q). If there exists p> N such that
Xjs Xij € lDer(Y) then we have
3214()

3
—_— < Cée|\u .
Bxox, luoll 1)

H'(Q)

) = () — e (- ) + eb.() — €xy()

Proof As we did before, for the sake of simplicity, we will assume N =3, the two-
dimensional case being similar. First, we will consider the problem with the
coefficients A replaced by their mollified version 4", described bellow (see also [18],
Corollary B.1), and then conclude with a limiting argument. The new coefficients 4"
are given as follows.

Let m, € C* be the standard mollifying sequence, i.e. 0 < m, <1, fRN m,dz=1,
sppt(m,) C B(0, %). Let A"(y)=(m,xA)(y), where A has been defined Section 1
(see (1)). We have:

1. A" is an Y periodic matrix
2. A" < |A|j~
3.A" - A in LP for any pe(l,00). (38)

Note that from (38) and the properties of 4 we have that c|&]*> < A &g <
C|&*> for all £ RY. Next, for any i, j € {1,2,3} let Xji € Wper(Y) be the solutlons of

v, - (A”Vyxij) = b;} — My(b:»}), (39)
where

I 9
Br= —An — At S gy,
ij ij ik ayk ayk ( z/ch

and M y(-) is the average on Y. We have that [18, Corollary B.8]
|VyX:1/|L2(Y) < C and XZ - Xl/ in Wpel‘(Y)a Vi,‘je{l,...,,N},

where

/YA(J’)VyXiijI// dy = (b — My(by), 1//)(Wpc,(Y),(Wpc,(Y))’)

for any ¥ € Wy (Y) and with

ax; 0
by =—Ay— A7t — —(Aix;)-
Y ! Wk dk ’

We define
82u0
n _on
u2(xvy) - Xy(y) 8xj3xi (X)a

X,, 32u0

. 40
dy; 0x;0x; (40)

Ve, ) = A1) X (y)

() + A()
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Following the same ideas as in [19], we can show that V, - M y(v’;) =0. Let
Xy
a1

R;;i=My< X+ A ); (C"(p)y = Aj(y) + A <y) . AT = My(C(p).

Consider o} € [LX(Y)]® defined by
Apxj + A R

113y, 1i>
oy = | Ag+ A58 — Ry, | + B (41)
A5 + Ay a)}(,/ ~ R,
with
=0, — ¢, %),
ﬂz, (@3,0, — i) for jefl,2,3), (42)
= (—(Pz,-, 1j° )

where 7T denotes the transpose The functions ¢ € Wher(Y) were defined in [12], as
solutions of

curl,¢] = B} and div,¢] =0, (43)

where B'(y) = C"(y) — A™™ and B} denotes the vector B} = (B}); €[L per(Y)]N It
was observed in [12] that for every 1 € {1, 2,..., N}

¢ = ¢ in [Wper( V)]V where curl,¢; = B; and div,¢; = 0. (44)

The conditions on yx;, x; and Remark 3.11 in [19] imply that [¢; [l y,y) < C. Next,

using the symmetry of the matrix 4, we observe that the vectors «; defined above are

dlvergence free with zero average over Y. This implies that there exists
[ per(Y)] (see Theorem 3.4, [19] adapted for the periodic case), so that

curl, ¥} = o

i and div 1//2’. =0 foranyije{l, 2,3} (45)

By using simple limiting arguments (see Corollary B.4 and Corollary B.8 in [18])
together with (44) in the definition of «f; above, we obtain

of =y in [LA(Y)], (46)

where the form of «;; is identical with that of oj; and can be obviously obtained
from (46). Using the above convergence result and Theorem 3.9 from [19] adapted to
the periodic case, we obtain

1; - szs in Wper(Y) for any isje {1929 3}3
and v satisfy
Curlylllg,‘ = and diVy}[Ig,‘ =0 for i,jG {1, 2, 3} (47)

The hypothesis on y; and x; implies that o;; defined at (46) belongs to the space
[L7(Y)]® and for all pairs (i, j) with 7, j € {1,2,3} we have

lersllzpcng < CUBilleny + 10l + Ixillwinn) < €. (48)
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Inequality (48) and Remark 3.11 in [19] imply that

Define p(x,y) = ¥;(») 3‘1 ‘(;‘i (x) and vy(x,y)=curlp(x,y). We can see that pe H'
(2, per( Y))and v, € L2(Q lw(Y)) Obviously, we have that V. - v, =0 in the sense of
distributions (see [9]). Next, using (40) we observe that V. - M y(v«) =0 where v« is such

that

vi — v, weakly in LA (2, Lper( Y)).

We have,
0u oxii Pu
(06 i = Ak (1) 5 e () + Aw() 32 (50)
0x;0. )y, 0x;0X;
Using this and the fact that
| meeadrdy= [, curlplr ) ecededy
QxY QxY
== [ curlplr et dedy
QxY
for any smooth function ® € D(2; D(Y)), one can immediately see that
V-1 = —Vy- vy, (51)

in the sense of distributions. Let p"(x, y) = ¥(») ﬁgil (x) and v§(x,y) = curl,p"(x, y).
Consider ¥/ and & defined as follows:

wi(x.y) = X! ()20 o, (), (52)

ro(x,y) = A"(»)Viug + A"(y)V,wi(x, p).

V(x) :ug(x)—uo(x)—ew'f(x ’E‘) e2ug(x g) (53)
El(x)y=4" (g) Vil — g (x, g) —ev) (x, E) — v (x g) (54)

Note that
e@e-gor-e(a(s o) 69

We have the following lemma

Lemma 3.2

O Wlwue <C and &g < C,
and there exists Y. € W"N Q) and &, € L\(Q) such that

n n n .
Y=, VYL =V, & —~&, weakly-* in the sense of measures.
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Also we have

Pel) = ) = uo(0) — ew (v, 5) = (v, %),

X X X X
E(x) = A(E) Vu, —ry (x, E) — €V, (x, E) — €y (x, Z)
(i) Moreover, &. € LX), . € H() and we have
X X X X
A 799 = 69 = (. 7) = Q) Ve, ) (56)
with
V-&(x)=0 (57)
in the sense of distributions.

Proof Using the fact that, forany i,j € {1,2,3}, X}, xj; € Wper(Y) and ¥} € [Wpexr( NP
are bounded functions in this spaces, from the definition one can immediately see that

||1/fZ||WH(Q) <C and ||§Z||L1(Q) <C.
Recall that
XK= X X = X 0 Woe(Y) and 9 — 9 in [Wper (V)]

Using the above convergence results and simple limiting arguments presented in the
Appendix in [18] the statement (i) in Lemma 3.2 follows immediately. Next, observe
that x;, xj € Wyh(Y), with p > 3 imply

Ve € H(Q). (58)

To prove (58) it is enough to see that

) 2
u (-, - <e¢ ill up || ;2
H 2( 6)HHI(Q) < € Xl =y luoll g2 (@)
+ €llxiillwrocn ol 3 @ Tt 62||X[/||L°°(Y)||“O||H3(Q)s

the rest of the necessary estimates being trivial. Similarly, from the definition of r(, v«
and v, and the hypothesis x;, x;; € WFI;C"F(Y), with p > 3, we see that £ € L*($2). Next
note that we immediately have

A" (g) vy! A A(g) V. weakly-* in the sense of measures. (59)

Relation (56) follows immediately from (55), (59), relations (38) and a limit argument
based on the convergence results obtained at (i). Recall that in the smooth case it is
known from [9] that

V-&=0.
This is equivalent to

/ EVP(x)dx =0 for any ® € D(Q2).
Q
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Using the fact that £ € L*(), and that we have

n .
& — &  weakly-* in the sense of measures,

we obtain (57). We make the remark that a different proof for (57) can be found

in [11]. n
We observe that x;, x; € WiA(Y), with p > 3, implies v; € W2(Y). Using this
we obtain
X Fuo
[V (x2)] = ||x,-,-||meH Vi
e/ 2@ 0x;0x; 12Q)
< Ixiillwrocnlluoll e
< Clluoll g (2)- (60)
X Fuo
[=(x2)] . = C||w;-,-||Lw(y>”vx—
e/l o) 0x;0x; 12Q)
< CY  Iillwn luoll e
ij
=< Clluoll g3 (61)

where, in (61) above we used (49). Similarly as in [9] substituting (60), (61) in (51), we
arrive at

X
[4C) Vo - 60| | = Celluollpia.
€ 12(Q)
Consider the second boundary layer ¢, defined as a solution of

v. (A (E)Vwe) —0inQ @ =u (x, g) on aQ. (62)

Using (58) and similar arguments as in [9], we obtain

() = w0(x) — ey (x, 5) + e00) — (v, %) + €
€ €

] < Cuollppy)-  (63)
)

0

Next we make the observation that without any further regularity assumption on
uy or on the matrix of coefficients 4, one cannot make use of neither Avellaneda
compactness result nor the maximum principle to obtain a L* or H' bound for ¢,. In
fact, in [13] it is presented an example where a solution of (62) would blow up in the
L? norm. By the unboundedness of ¢, in L?, we can still make the observation that
using a result due to Tartar [14] (see also [15, Section 8.5]) concerning the limit
analysis of the classical homogenization problem in the case of weakly convergent
data in H () together with a few elementary computations we can obtain

€pe—0 in H(Q).

_ Puo
T oox;ox;

Then applying Proposition 2.2 with h =0, y. = €@, ¢+(y) = x;(1), ze(x) = z(x)
we obtain that

1
ll€@ell i@y < Celluoll () (64)
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Substituting (64) in (63) we have

8% ug 3
< Cellupllppy  (65)
H'(Q)

u(x) — up(x) — 6W1( ) + €6.(x) — € x,,(x)

0x;0x;

and this concludes the proof of Theorem 3.1. |

Remark 1 It has been shown in [20] that the assumptions x;, x; € per(Y) for some
p > N are implied by the conditions that the BMO semi-norm norm of the
coefficients matrix « is small enough (see [20] for the precise statement). In a different
work by Lin and Vogelius [21], it has been shown that one can have yx;, x; € per *(Y)
in the case of piecewise discontinuous matrix of coefficients when the discontinuities
occur on certain smooth interfaces (see [21] for the precise statement). It is clear that
the lack of smoothness in the matrix 4 and the fact that we only assume uy € H>(Q)
would not allow one to use neither Avellaneda compactness principle nor the
maximum principle to obtain bounds for ¢, in L* or H'.

Remark 2 For N=2 we could use a Meyers-type regularity result and prove that
there exists p > 2 such that yx;, x; € Wllxpr(Y) Therefore Theorem 3.1 holds true in this

case in the very general conditions that u, € H(Q2) and 4 € L*(Y).

4. Conclusions and future work

In this article we studied the question of H' error estimates associated to the
problem (2). We proved in Theorem 3.1 an O(¢*?) estimate by assuming that the
homogenized solution u, belongs to H>($2) and that the cell problems solutions x;, Xij
belong to Wperl”’(Y) with some p > N. In Remark 2 we made the important
observation that in two dimensions there exists a p > 2 such that x; x; are in
W, er'”(Y) and thus the only assumption needed for the estimate of Theorem 3.1 to
be true will be uy € H>(Q). If we look at the term in the estimate 66 we can observe
that this condition, i.e. uy € H>(S), is the most natural hypothesis for Xi%) 63\ ‘3‘;{ to
exists in H' (Q) So in a sense we cannot expect a weaker assumption on u as long as
we desire an H' estimate of the form (65). On the other hand, if we assume €2 convex
with sufficiently smooth boundary, together with smooth enough data, say,
/€ H'(Q), by using the fact that u, solves a homogeneous Dirichlet problem with
constant coefficients in € classical elliptic regularity theory implies that uy € H().
Following the results in [22] we believe that in some special situations, our estimate
can be proved for more general Q (e.g. convex polyhedron) and we plan to explore
this in a forthcoming paper. With a different application in mind, in [18], we also
showed how our estimate can be used for the generalization of the results obtained in
[9] to the case of non-smooth coefficients.
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