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Error estimates for periodic homogenization
with non-smooth coefficients
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Abstract. In this paper we present new results regarding the H& -norm error estimate for the classical problem in homogeniza-
tion using suitable boundary layer correctors. Compared with all the existing results on the subject, which assume either smooth
enough coefficients or smooth data, we use the periodic unfolding method and propose a new asymptotic series to approximate
the solution ue with an error estimate which holds true for nonsmooth coefficients and general data.

1. Introduction

This paper is dedicated to the study of the error estimates for the classical problem in homogenization
using suitable boundary layer correctors.

Let £2 € RY, denote a bounded convex polyhedron or a convex bounded domain with a sufficiently

smooth boundary. Consider also the unit cube Y = (0, ™. It is well known that for A € LO(Y)N*N,
Y -periodic with m|€|? < Aij(9)&:&; < MIEP, V€ € RY the solutions of

{ -V (A(E)Vug(x)) =f in{2, (1.1)

u: =0 on 942

have the property that (see [18,12,3,4]),
Ue — Ug iN H(;(.Q),
where ug verifies

{ -Vv- (AhomVuo(x)) = f in 12, (1.2)

ug =10 on 042

with .A;“;’"‘ = ]VIy(Aij(y)+Aik(y)%;—<ki), My () = |—.}',[ Jy -dy and where x; € We(Y) = {x € H;e,(Y) |
My (x) = 0} are the solutions of the local problem

—Vy - (A@)X(Vx; +e) =0 (1.3)
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and where e; denote the vectors of the canonical basis in RV

We mention that, throughout this paper, V and (V) will denote the full gradient and divergence
operators respectively, and with V, (V) and Vy. (Vy-) we will denote the gradient and the divergence
in the slow and fast variable respectively.

We will also denote, throughout the paper, by & the continuous extension of any arbitrary function
P € WP™(£2) with p, m € Z, to the space WP™(RY), With minimal assumption on the smoothness of
{2 a stable extension operator can be constructed (see [20], Ch. VI, 3.1.

The formal asymptotic expansion corresponding to the above results can be written as

Ue(T) = up(x) + ew, (z g) + e,

where

w, <x2> - (E)%_ (1.4)
€ £/ 0zx;

We make the observation that the summation convention over repeated indices will be used in the
remaining of the chapter and that the letter C' will denote a constant independent of any other parameter,
otherwise specified.

A classical result (see [18,12,15,3]), states that with additional regularity assumption on Xj the solu-
tions of the local problems, one has

Nl—

ue(-) — up(+) — ew, < 4)

£

< Cer. (1.5)

‘HI(Q)

Without any additional assumptions a similar result has been recently proved by G. Griso in [10],
using the Periodic Unfolding method developed in [7], i.e.,

. G |
ue(-) — ug() — ex; <g>Q5<azé> < Cez|luoll g (1.6)
J

'H'(Q)

with

TE€De Q@)= Y MH(@)et +ei)zh R ., €= [EJ

. . 9
Lol NV

for¢ € L2(12),i = (i1,...,in) € {0,1}" and

Tk ek if i = 1,
ik £
‘L‘k.f - _ TE E(€ + Y)’
| Ik~ €k if iy =0,
3

where M{(6)(@) = i [epey $(y)dy and 02, = Ug (€€ + €Y, with (e€ +eY) N 2 £ 0).
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In order to improve the error estimates in (1.5) boundary layer terms have been introduced as solutions

to
T T
-v- (A(E> VGE) =0 in{2, 0. = w (.’E, E) on 0f2. (L.7)

With the assumptions that A € C*°(Y) and is a Y -periodic matrix and that the homogenized solution
g is sufficiently smooth, it has been proved in [4] (see also [15]) that

ue(s) — up(*) — ew (" E) + e0:()

< Cg, (1.8)
Hy()

N

Ce?. (1.9)

ue(r) — uo(:) — ewy ( ;> +€0(-)
3 L)

Moskow and Vogelius [16], proved the above estimates assuming A € C®(Y), Y -periodic matrix
and ug € H*(£2) orug € H3(£2) for (1.8) or (1.9) respectively. Inequality (1.8) is proved in Allaire and
Amar (1] for the case when A € L>®(Y) and up € W2((2). 1. Casado-Diaz proved in [5] that (1.8)
holds true for 2 € C'! and f € LV+7(£2) for some 7 > 0.

In [21], Sarkis and Versieux showed that estimates (1.8) and (1.9) respectively still hold in a more
general setting, when one has ug € W2P(£2), xj € Wped(Y) for (1.8), and uo € W3P(£2), xj € Wped(Y)
for (1.9), where, in both cases, p > N and g > N satisfy % + é < 1. In [21] the constants in the right
hand side of (1.8) and (1.9) are proportional to ||uol|w2r(g) and lluollwar ) respectively.

In order to improve the error estimate in (1.9) one needs to consider the second order boundary layer
corrector . defined as the solution of,

_Vv- (A(g)VgoE) —0 inf2, @)= Xij(f) U oo, (1.10)

€/ 0x;0x;

where x;; € Wier(Y') are solution of the following local problems,
V, - (AVyxij) = bij + Af" (1.11)

with Ahom defined by (1.2), ]\/fy(bij(y)) = —.A?;m, and bij = —Aij — Aik%ﬁ' - E%I(Aika)'

In this paper, we answer the open question about error estimates for (1.1) in general convex domains
and coefficients 4 € L°°(Y). Inspired by an idea of Griso presented in [10], we use the periodic unfold-
ing method developed by Cioranescu, Damlamian and Griso [7] and a general smoothing argument to

replace in (1.8) and (1.9) wi(z, ) defined in (1.4), by

ul(m, f) =X <5)Q6<a—“—°_). (1.12)
€ 3 0T

For ug € H?*({2) we prove that

Buo

we() — up(+) — €X; (E) Qe<——) +eB:(5)

o < CEHUOHHZ(Q), (1.13)

Hy(92)
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where £, is defined by

—V-(A<§>Vﬁe)=0 in 12, ﬂ5=ul<x,§) on 942, (1.14)

Assuming uy € W3P(2) with p > N we obtain

< Ce2[luo|yingg)- (1.15)

\ 2
ue(:) — up(") — ex; (g) a—z" + £0:(.) o
J

to our smoothing argument.

As an application of (1.14) we mention that one can follow similar arguments as in [11] to prove the
convergence of the Multiscale Finite Element method proposed by T. Hou and X. Wu for the general
case of nonsmooth coefficients.

For a complete asymptotic analysis of the second order boundary layer corrector e defined in (1.10),
together with new second order error estimates and their applications, we refer the reader to [17].
2. First order error estimates

The main result of thjs section is

Theorem 2.1. Let Ue, Uo, U1, and B¢ be defined as in Section 1. Then we have

. If .
U() = wp(:) — ey (-, = ) + €06:(+) < Cellug| g2,
€ ||H0'(.Q)

The proof of the theorem wil] be done in several steps:

Step 1. The first step is to consider the mollified coefficient matrix (A{;){'Vj__l, defined in the Appendix,

with the properties ”A?jHLoo < |[A4ij] oo, (A7) is a Y-periodic matrix, and
Al — Aij in LP(Y) for 1 < p < oo. @0

For these coefficients the corresponding functions u?, X5 ul, and A7 defined similarly as in Section 1,

(1.1), (1.3), (1.12), and (1.14), respectively, satisfy (see Appendix):

Xj =X in HL(Y),
u® By in Hl(),
ul = in H'($),

B3 in HY).

(2.2)

Step 2. Next we define

(T ) = ANYQe(Vug) + APV ul(z, y) (2.3)
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or equivalently

n n n axn 0
(,UO (x, y))l = (Au(y) + Alk(y)a_y];) Qs <—ﬂ)-) .

oz, 2.4)

By using the definition of X we have V, - v} = 0. Let us denote by

n

(C™MW)y; = Ay + z‘l?k(y)aa—xi
Yk

and AM™ = My(C™(y)). It can be seen that

Yy - (0 — AR Qe(Vuo) = 0. 2.5)
Lemma 2.2. There exists ¢"(z,) € [Wpe,(Y)]N such that curlyq™ = vy — Arom Q) (Vgug).
Proof. Let B™(y) = C™(y) — Al°™. We then have

0 — AMQ(Vup) = BT (4)Qe(Vato)- (2.6)

We look for g™ of the form
q*(z,y) = ¢"HQ:(Vzuo),

where ¢™(y) = (¢%(y))y; With ¢75(y) € Woer(Y).
If we denote by B[* the vector Bl = (B} € [L:;er(Y)]N we observe that V,, - Bf* = 0. Hence

from the Theorem 3.4 in Girault and Raviart [9] adapted to the periodic case, the vectors o = ()i €
[LVpe,(Y)]N are determined as the solutions to

curl, ¢ = Bf* and divy ¢ = 0. Q.7
Obviously we have
curly ¢"(z,y) = v§ — Ap"Qe(Vzuo). O (2.8)

Remark 2.3. From (2.2) it can be immediately seen that B™ is bounded independently of n in
[L2(Y)]V* and using the Appendix we have

| B = B in [LAV))VV,

‘ where B has an identical form as B™ and it can be easily determined from the above limit. This together

with (2.7) and Theorem 3.9 in [9] adapted for the periodic case implies that ¢™ is bounded independently
of nin (1Vpe,(Y))NXN and we have

]N, where

qb? - ¢l in ["Vper(y)

curly ¢ = B and divy¢; = 0; for everyl € {I,...,N}. (2.9)
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Step 3. Next we define

vz, y) = curly ¢™(z, y)

and using Lemma 2.2 we have

Vy- ot = -v, . curly ¢" = —V, . 47 — fZ,

(2.10)
where
f: = '“vz : (Agosz(vzuO))-
We define
n n n z
2 (z) = u(z) — up(z) — eul( z, - ) (2.1
p(z) = A" (£> Vul(z) — vl (:1: E) —ev} (:1:, E) (2.12)
€ € €
From the above definitions, similarly as in [16] we obtain
A" (E) Ve (z) — u™Mz) =¢ (v,” (x, E) — A" (E> Veul (m E))
€ € € €
x
+ A" (E) (Qe(Vgug) — Veug). (2.13)
Next, we will prove that the L2 norm of (2.13)isof order €. In order to do this we will show that v]¥(z, ?—)
and A"(f)vzul(z, ) are bounded in .2 independently of n and ¢, We have the following estimate
Lemma24. Let 2 ¢ RV as before. For any v e LXY), Y -periodic, we have
Odug T
V2 Qe Pl < C”“Ollf{l(n)lWllLl(Y)-
:EJ 2 LZ(_Q)
Proof. We recall the definition of Q,
i i x
QD)= 3 Myo)et +engl - aly,, 6= { EJ
Treennly
forany z € (2., with . defined in the Appendix, and any ¢ € Lz(!_?E,p_) with f?e,g = {z €
£2;dist(z, 2) < 2¢}, where 7 = (e 5in) € {0, 1)V and
Tk — €k if iy = 1,
=ik _ £ -
Ife = m-eg, TECe(E+Y).

if i, =0,
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Note that, on each cube €€ + €Y the first order derivative Q. takes the form

0
axl

NI}E’(¢)(E€ + E(lv 7:29 R 7'71)) - NI?’((b)(Eé‘ + E(O’ i21 ey ,Ln))
€

Q)@= >

12,..0iN
—iz ----- _’iN
X 172'5 :EN,E’

where £ = [£]. Therefore we have

2, T
»/Ef-f-EY W](E)
< 2N—l Z NI}E’(¢)(E€ + E(lv i2, DIRRCIY zn)) - NI}E’(¢)(E€ + E(Ov 7:21 ceey zn))

, ! £
12,0-lN

I
x /EE+5Y w(g>
_ -1 Z M ()€ +e(l, %2, - i) — My ()(Ee€ + (0,72, .. -+%n)

. ! £
12, 0IN

2

0
dz

6:1:1

Qe(P)(z)

2

2
dz

2
ENH"p”iZ(Y)-

(2.14)

Using the Schwartz inequality in (2.14) together with the definition of the mean M¢ we obtain

Jever W(3)

<Clvlm X [
i20eein U E

2
a.’El

2
dz

Q@)

b + (1,2, ..., in)) — H& +e(0,i2,...,in))|2dx
3

E+eY

2

¢($ + E(l’i27 LR 17:71)) - ¢($)

€

2
) dz.

After summing the above inequalities over Eelte ZN: (e€+€eY)N L2 # B}, and using the inequality
between the differential quotients and the gradient we obtain

¢(33 + E(O’ 7:21 BN | 7'77.)) - ¢(:E)

€

+

2

/er 2 Q.4)@) w(f)‘z<annizmHW”im.z)'

a(ZI]

This yields

/Q',szsw)lz\w (i—)

2

<Ol

qu”ZLZ(_(}EZ)




o

110 D. Onofrei and B. Vernescu / Error estimates for periodic homogenization with non-smooth coefficients

Recall that, uy denotes the stable extension of Ug to the whole space. Therefore, choosing ¢ to be the
partial derivative of v the conclusion of the lemma follows,

Proof of Theorem 2.1. By applying Lemma 2.4 we can see that

A" (£> Vzul (:1:, E)
€ €

and using Remark 2.3 we obtain

T
vz, =
€

Using (2.15), (2.16) and the properties of (). we obtain the following estimate for the left hand side
of (2.13):

< CJJX?lli2(Y)||iu0'lH2(Q) < C'fUOIIHZ(Q) (2.15)
L)

il(Y)) l[woll 2y < Clluoll 2y (2.16)

L2(§) < C<§“¢l]’

< Celluoll g2, (2.17)
L 2)

an ( g) V(@) — ula)

For g € L?(£2) we define wg' € HJ(£2) solution of the following problem
-V (A"(;) Vw?) =g in{2, wr =0 on df2. (2.18)
Obviously we have
”wg”yg(n) < ”9”11—'(9)- (2.19)
Using 2I* + ePT as a test function in (2.18), with 4. defined by (1.14) we obtain
/ (28 +ef)gdz = / Am (E> Vzl - Vwldz. (2.20)
7} n €
The right hand side can be estimated as follows
/ A" (f> Vzl - Vuwldz =/ (A” (f> vzl — u?) Vg de — / (V- u)w? dz
n € (9] € 2

< A"(g) Val —pf

)”wg”u(;(m + HV : /'LSHH—I(Q)”wg”H(;(Q)'

(2.21)

LA
We note here that V - kg € LA(£2); indeed:
[

0= (1()Pt0) 52 4(a2) - 5y )



D. Onofrei and B. Vernescu / Error estimates for periodic homogenization with non-smooth coefficients I

T T
—Vm-v?(m‘,g) —Vy-v?(:v,g)

=—f(z) = V- (A?loer(Vzuo))-

To estimate the H ™' norm of V - u* we consider ¢ € Hy({2) and

/ (V- uM)(z)dz = / (A°™Q,(Vug) — A" Vug) Vo dz + / (Alem — AP™ Q) (Vug)V e dx
2 2 2
< C||Vuo = Qe(Vuo)|| iy 181l 1132

+ ||¢”H3(Q)”(Arlom - Ahom)QE(VUO)”LZ(Q)
< Celluol s llél 3y + Knll$l sy 1ol ey (2.22)

where we used the properties of Q. and K, = |A™™ — Alom|,
Therefore we proved that

IV - 2l =12y < Celluoll 22y + Enllvoll - (2.23)

Thus (2.17) and (2.23) used in (2.22) imply

I/Q(Z? +efg)gdz) < CEHUOHHZ(Q)HW?”H(;(Q) + C‘K"Hw?”f{(;(.())
< Celluoll 2 llgll -1 + CKallgllz-10),
where we used (2.19). From the above inequality we have
|22 + Eﬂgnﬂr}(ﬂ) < Cellugll g2y + CKn. (2.24)

From (2.1) and (2.2) we have that K,, — 0 as n — oo. Using the Appendix we can pass to the limit
when n — oo in (2.24) and from (2.2) we get

l|ze + EﬁE“H(;(Q) < Celluoll o)

which is exactly what needs to be proved. O

3. The error estimate in the L norm
In this section we will look for minimal assumptions on g needed to prove the classical error estimates

(1.9) in the case of non-smooth coefficients.
The L*-norm of

U () — wp(-) — ew <-, E) + e6:(") 3.1
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with w (-, ) as defined in (1.4), can be estimated with additional assumptions. In [16], Moscow and
Vogelius proved the estimate (1.9) assuming that uy € H3(2) and A ¢ C*(Y). In [21], Sarkis and
Versieux prove an estimate of order £2, under the assumptions that ug € W3?(42) and x;, x:; € WLI(Y)

per
for p,q > N where 1—', +$ <4

We extend in this section the previous results, by only requiring that uy € W3P(£2) forp > N, to
prove (1.9) in the case of nonsmooth coefficients. In order to do this we need to introduce the second

order cell problems. Therefore, let Xi; € Wpe(Y) denote the solutions of

Vy - (AMVyx3;) = b — My (83), (3.2)
where
ox7 9
bij = —Aj - A&a—yz - @(A?kx?)

and My () is the average on Y. From Corollary A.9, in the Appendix
IVyx%| 2qr) < € and Xi5 = Xig InWoe(Y), ¥i,5€{l,...,N},

where
/Y AWy Vi dy = (b = My (i) %) gy, oyravracryy
forany ¢ € Woer(Y) and with

0x 0
bij = —Aij — Apd — L (Ao,
J J ka']/k ayk( ka)

Next, we will only assume that uy € W3P(£2) with N < p < oo to prove the estimate of order €2 for
(3.1). Indeed we have,

Theorem 3.1. Let u,, ug, uy and 0. defined as in Section 2. Ifug € W3(), N < p < oo we have

< Ce?|luglyanc- (3.3)
LX)

Ue(+) — up(-) — ew ( ) +eb(")

£

Proof. For the sake of simplicity we will consider only the case when N = 3, the two dimensional case
being similar. As in the previous section we can assume the smooth coefficients A" (see (A.2)), and
follow the same ideas as in [16] to define

n 92wy
uy(z,y) = xij(y)a_mja—xi(m)'

For p > N we have that
I‘ Y ' 9%y
1A% u”(-,—) 2 Ver——

=2\"z) L‘E’p—-(ml‘ “0z;0z;

% ()

<
LX) Le(£2)
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and using a change in variables and the inequality (A.11) in the Appendix, we obtain

2 2 2
. GRETH

Vu"(-,—) LC ‘V < Cllugllyan on- 34

. T ) e/l 12]: “’az]-a:ci Lo ” OHW‘P(Q) G.4)
As in [16] we will define
0%ug Xy 9%y

n — AT n n ]

(v, 1)), = ALW)X] (y)—amj 50+ Au(y)—ay[ 3u;00 (3.5)

Following similar arguments we can observe that Vz - My (v}) = 0. By introducing

J n.n n aX?j
Rki = My (Ak‘LX] + Akl ay[ .

Consider of%; € [L*(Y)]? defined by,

ax™ ;
AT + ATt — R,

13y,
ot = | Ann + An ax?j _ Rj + A%
ij 2 X5 2 3y, 2 i

Ix™ :
n.n n ij _ nJ
ATXG + AF, T

with
; T
i = (0. =035, %)
, n\T .
P = (45,0, —¢T;) ", forj e (1,2,3),
T
B35 = (=35, 61;,0) ",

where T' denotes the transpose and ¢;; are defined at (2.7). Using the symmetry of the matrix A we

observe that the vectors ay; defined above are divergence free with zero average over Y. This implies

that there exists 1/;{1]- € [Wper(Y)P, (see Theorem 3.4, [9] adapted to the periodic case) so that

curly ¢ = a; and V. ¢i; =0 foranyi,j € {1,2,3). (3.6)
From Corollaries A.5 and A.9 in Appendix and we observe that
By in [LA), 3.7)

«

where the form of «; is identical with that of a% and can be obviously obtain from (3.7). Using the
above convergence result and Theorem 3.9 from [9] adapted to the periodic case, we obtain that

Vs = iy, in Weer(Y) foranyi,j € {1,2,3)
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and 1);; satisfy

curly¥;j = aj; and Vg -4 =0 fori,j € {1,2,3]}. 3.8)
Next define p™(x,y) = 'tp{‘j(y)%ﬂa(:c) and v}(z,y) = curly p"(z,y). Obviously we have that
Ve - vy = 0.1t is also easy to check, that V, - v} = —V - v}, (see [16] for example). We set

a’u,o
wi(z,y) = X5 W) =—(2),
! J a:E]'
iz, y) = ANY)Vu + AM(y)Vywliz,y),

Y2 () = ul(z) — up(z) — ewy (z, g) — e*uf (:c, g), (3.9

& z) = A”(E) Vul —ry (:c, E) — evy (1:, E) — %} (a:, E). (3.10)
€ € € €

As in [16] we can write

A" (5> VT (z) — £Mz) = €2 (v2" (:c 5) — A" <E> Vaul (:c f)) G3.11)
€ € [3) €

We use next, as in (3.4), the inequality (A.11) to obtain

i(+2)

Using (3.4), (3.11) and (3.12) we get

Similarly as in [16] we have that V - £2(z) = 0. Let us define 7 as solution of

v

)

< Clluollwas ) (3.12)
L(£2)

< Ce||luol|war)- (3.13)
L2(£)

A" (f) VYR (z) — E%(z)

V- (A" (g)Vgo?) =0 in{2, oy = uy (a: S) on 9f2. (3.14)

Using again Corollary A.11 in Appendix, we have that ¢* — . in H'({2) where ¢, is the solution
of

V- (A(g)VgoE) =0 in/{?, Ve = U2 (‘EE) on 042. (3.15)

Then,

()

< ClixijllLeonlluollwregay < Clluol | wire), (3.16)
Lo(d0)

el 2y < C



D. Onofrei and B. Vernescu / Error estimales for periodic homogenization with non-smooth coefficients 115

where we used [13] for the L bound on Xij- Next, similarly as in [16] we have

< CE2||UOHW3~11(Q)
L2(2)

3 €

ug () — up(r) — ew? (-, ) + el () — f;‘2u§1 (-, ) -+ 62(,0?

and passing to the limit when n — oo using triangle inequality, (3.4) and (3.16) we get (3.3). O

Remark that the assumption that ug € W3?, with p > N was necessary for the estimate (3.16).

Appendix A

In this section we will present the proofs for some of the results used in the previous sections and
which were not included in the main body of the chapter for the sake of clarity of the exposition.

A.1. Definition and properties of the unfolding operator
Let =, ={£ € ZV; (e€ + €Y) N 2 # B} and define

2= U (€ + €Y). (A.1)

ez

Let us also consider H,,(Y) to be the closure of Cpa(Y) inthe H' norm, where Cpa(Y) is the subset
of C*°(RY) of Y -periodic functions, and

1
Wper(y) = {’U S leer(Y)/R’ I? /Y ’Udy = O}

(see [6] for properties).
Next we present several very useful technical inequalities obtained in [10].

Proposition A.1. We have:
O Jo(2)| [T (D)] | <Cetlvlim, soreveryy e B
€/ 1L €/ 1125

2) ”‘]V[}E'(U)“LZ(Q) < “’U”Lz((‘h) forany v € L*(£2,).

[ = ME)|| 22y < Ce| V| 22w
(3) I = Te@) p2eyy < Cell Vol
[Qe(v) — M (v)|

o S CellVolli gy forany ve H'(12).

@ |

Qe(v)w(;)”L o S Ol ¥l forany v € L3(2e0) and § € L3Y).
2(02) -
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A.2. Convergence results and the smoothing argument
Let m, € C* be the standard mollifying sequence, i.e., 0 < mn < 1, fgzy mpdz = 1, sppt(my) C

B(0, %). Define A™(y) = (m, * A)(y), where a has been defined in the Introduction (see (1.1)). We
have:

(1) A™ — Y -periodic matrix,
(2) [A™| Lo < |A|Leo,
(3) A" - A inLP foranyp € (1,00). (A2)

From (A.2) we have that c|é|* < A% (y)&:€; < Clé|* V€ € RY. Define
hom n n ax.?
(An )ij = My (Aij(y) + Aik(y)—aa), (A.3)

where My (-) = T}ITf fY -dy and x? € Wpe(Y) are the solutions of the local problem
—Vy - (AW(VX] +¢5)) = 0. (A.4)

Next we present a few important convergence results needed in the smoothing argument developed in
the previous sections.

Lemma A.2. Let f,, f € H™'(2) with f, = f in H™'(2) and let b™,b € L>®({2), with

clé? < by(m&ig; < ClER,
clél® < bij()&i&; < ClEP

forall ¢ € RN and
* > b in L*(£).

Consider (, € H{(§2) the solution of
/ V™(2)V(, Vi dr = / frpdx
2 0

for any ¢ € H{(§2). Then we have
G — ¢ in HY(92)

and C verifies

/b(m)VCV&/zdm:/ fudx foranyibEHé(.Q).
0 0]
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Proof. Immediately can be observed that

”CTL“H(;(Q) <C
and therefore there exists ¢ such that for a subsequence still denoted by n we have
G — ¢ in Hy(£2). (A.5)

For any smooth 1/ € H}(2) easily it can be seen that

/ () Ve Vipda — / @) VY dr
2 2

and this implies the statement of the lemma. Due to the uniqueness of ¢ one can see that the limit (A.5)
holds on the entire sequence. O

Remark A.3. Using similar arguments it can be proved that the results of Lemma A.2 hold true if we
replace the Dirichlet boundary conditions with periodic boundary conditions.

Corollary A.4. Let u? € H}(£2) be the solution of
V. (A" (g)Vu?> -/ o,
ug =0 on 0f2.
We then have
ul B in HY(2),

where u. verifies

{—v. (A(S)Vus) =f inf

ue =0 on 0{2.

Proof. Using (A.2) we have that

A"@) o, A(g) in L2(02)

and the statement follows immediately from Remark A.3. O

Corollary A.5. Forj e {1,...,N}, let X; € Wye(Y') be the solution of

=Vy - (A"W(VX] +¢5)) =0, (A.6)
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where {e;}; denotes the canonical basis of RN, Then we have
X7 = Xj inWpe(Y),
where xj € Wy (Y') verifies
—Vy - (A)(Vx;+ej)) =0
Proof. From (A.2) we obtain

0

a . '
ay J(y) du; U(y) m (Wper(Y))-

The statement of the remark follows then immediately from Remark A.3. O

Proposition A.6. Let v € [H'({D]V be arbitrarily fixed and for every j € {1,...,N}, let Xj €
Wie(Y) be defined as in (A.4), and x}‘ € Woer(Y), for j € {1,..., N}, to be the solutions of (A.6).
Define

k3 T n
hi(z)=h (:c, E) =X (g)vj, he(z) = h(z, g) = Xj (:)v],
gi(z) = g" (m f) - x}‘(:)Qe(vg) ge(z) = g(x, f) =X (E)Qs(vj).

We have that

(1) g¢ Bge in H(A).
) Ifve WD)V, p> N, then h* = he in H'(2).

Proof. First note that applying Corollary A.S to the sequence {X} }n we have
X7 2 x5 in WeY). (A.7)

Next we have

D= L (Do) e 5 [(eri(EJan)

o (3(2) =) *9

el 5 ,
| — n E ; ) _1_ n E . -
11'(9)_/Q<Xj(e)v]> dz+ 2 Q<Vij(E>UJ) dz
n z -
+/ (Yj (---)Vzvj) dz. (A.9)
i) €

and
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For the first convergence in Theorem A.6 we use that

X (f) Qe(v;)

Next we can see that (A.8) imply that

(= 2)=a(= )], = ((2) (%)) @

and using (A.10) we obtain the desired result.

For the second convergence result in Proposition A.6 we will recall now a very important inequality
(see [13], Chp. 2) to be used for our estimates.

For any p > N we have

< CHX?”WW(Y)' (A.10)

HY(2)

N |- &
II¢“LF25(9) < @18l + 1Vl fry 181l 2 2y) (A.11)

for any ¢ € H'(£2) and where c(p) is a constant which depends only on g, N, £2.
Forv e [W!'2({)]N withp > N, using (A.7), the Sobolev embedding W 'P(£2) C L°°(2) and (A.11)
in (A.9) we obtain

h™ (2:, E)
€

where the constant C above does not depend on n.
Next we can easily observe that

() o) L) 1(2)

and in either of the above cases, (A.7) and a few simple manipulations imply that
A" (:c, E) Soh (:c E) in L*(02).
£ €

This together with the bound on the sequence {A™(z, £)}n implies the statement of the proposition. [

2

<C,
HY()

The two convergence results in the next corollary will follow immediately from Proposition A.S.
Corollary A.7. Let wi(z) = wi(z, 5= Y?(f)g—;f and uf, = uj(z,%) = X?(f)Qa(g—;‘g). Then we
have

(1) Ifug € W) forp > N,

wit 5wy in H'(90).
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() Ifuo € H¥(2),
n N : 1
ul, = u; in H (2),
where w\ and v were defined in (1.4) and (1.12) respectively.

Corollary A.8. Let 67 be the solution of
x x
-V. (A" (E)VG?> =0 inf2, 07 = wi (:c, E) on 0f?2 (A.12)
and (37 be the solution of

~V. (A” (g)Vﬂg> =0 inR, fr=ul (:c g) on 952, (A.13)
We have that
(i) ifug € W3P(£2), p > N, then
6 = 0. in H'(2).
(ii) if up € H*({2), then
Br B in H'(R2),

where 0. and (3. satisfies

-V - (A(E)VGJ =0 inlf2, 8. = w (.’1:, g) on 012 (A.14)
and
T . T
-V (A(E> Vﬁs) =0 in/f2, Be = u, (2:, E) on 0f2. (A.15)

Proof. Using Corollary A.7 and a few simple arguments one can simply show that

o () 2 ((e(c2) e
~V. (A(g)vu;‘?(z,g» oy, (A(g)Vw,(m, g)) in H'(£2).

Homogenizing the data in the problems (A.12) and (A.13) and using Corollary A.7 and Lemma A.2
the statement follows immediately. O

and
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Corollary A.9. Foranyi,j {1,...,N} let Xi; € Wie(Y) be the solutions of :

Vy - (AMy) = b — My (b3),

where

ox; 0
by = —Aj; A?ka—yk - a—yk(A?/cX”)

and My (-) is the average on Y.
Then we have

Xi; = Xij  in Wee(Y) forany i, j € {1,...,N},
where x;; satisfies
/Y AWNVyxi;Vyp dy = (bi; — My (biz), %) (Wper(Y) . Wper(Y))

Jor any 1 € W (Y) and with

Proof. Forany ¢ € Woer(Y), we have that,

(0 n n n axn hom
/Y (b5 — My (b)) dy = / <_Aij - AikaT/Z) Y dy + (A7)

Y

where we used My (b,) = —(Afem), (see [16]).
Using (A.2), (A.7), and simple manipulations we can prove that

ox% Ox s
e RN s S N Y
* “oge " L
and
ALXF = Aux;  in L(Y).
From (A.19), (A.2) and (A.3) we have that

(Asom); — A

(A.16)

(A.17)

(A.19)

(A.20)

(A.21)

Finally using (A.2), (A.7), (A.19) and (A.20) in (A.18) we obtain that

bij — A[Y(b%) = bij — My(by;) in (I/VPer(Y))/.

This and Remark A.3 complete the proof of the statement. O
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Remark A.10. We can easily observe that we have

Al — Aij Xijs A% weakly in Wpe (Y).

Corollary A.11. Let ug € H?(f2) be the solution of the homogenized problem (1.2) and Xij» Xij €
Wioee(Y) be defined by (A. 16) and (A.17). Suppose that there exists p > N such that vy € W3P(£2).

Define u}(z,y) = X”(y) 5a; 52 (2) and us(z,y) = Xij(Y) g az; 2. (x). Consider o the solution of

v. (A" (g) chg) =0 inR, = (ac g) on 02, (A.22)

Then we have that
uy (:c g) Sow (:c, g) and o7 LN we in H'(2),

where @, satisfies

V. (A(f)ws) =0 in?, pe=u (z g) on 852. (A.23)

Proof. Following similar arguments as those used in Corollary A.6 we can prove that
T az )
uy (:c E) Xt W) g (@) inH'(9).

Using the above convergence result and similar ideas as in Corollary A.8 we complete the proof of the
statement. O
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