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 

Abstract—This letter extends the analysis of wave propagation 

in transmission lines with LC-parameters varying in space and 

time and the related effect of energy accumulation emerging 

from the concept of dynamic materials. We consider a practically 

important scenario of functionally graded checkerboard in space 

and time, i.e., the assembly combined of two dielectrics with 

material property transition zones applied instead of sharp 

interfaces. It is shown that the energy accumulation in traveling 

waves is preserved for certain ranges of material and geometric 

parameters.  

 
Index Terms—Capacitance, energy accumulation, inductance, 

spatial-temporal laminate, transmission line.  

 

I. INTRODUCTION 

elected effects that arise in wave propagation through 

spatial non-uniformities along with temporal variations 

have been considered, e.g., in [1]-[4]. These and other special 

phenomena emerging from space-time property variability 

have shaped a special concept of the so-called dynamic 

materials (DM) [5]-[7]. One of the DM effects is the energy 

accumulation in electromagnetic waves propagating in space- 

and time-varying transmission lines. An analysis and numeri-

cal simulation of this phenomenon were given in [5] and [8]. 

More specifically, in these papers, we studied wave 

propagation along the material structure that may be perceived 

in 1D space and time as a double periodic checkerboard. Such 

formation may be viewed as a periodic array assembled in 

space from two dielectrics differing in their properties [8]. 

This material arrangement also switches properties 

periodically in time. The interfaces between the two materials 

are therefore spatial and temporal; in [5] and [8], it has been 

assumed that spatial interfaces are sharp and temporal 

transitions are instantaneous.  

In the present letter, we focus on some problems that should 

be addressed to facilitate material implementation of a DM 

checkerboard in practical transmission lines. In such lines, the 

lumped parameters (i.e., the inductance and capacitance) 

always change with certain degree of inertia. We consider a  
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Fig. 1. Checkerboard with material property transitions zones (one spatial-

temporal period). 

 

modified material arrangement that preserves all features of an 

ideal checkerboard [5], [8], but allows for non-sharp interfaces 

both in space and time, and releases the requirement of 

matching wave impedances. We introduce layers in which 

material properties exhibit a gradual linear transition between 

the values related to different uniform materials that occupy 

interiors of material cells, as shown in Fig. 1. Attention is 

mostly focused on the gradient in the wave velocity, while the 

impedance mismatch is illustrated only numerically. This 

work is specifically aimed to show that, despite such changes 

in the interfaces, the energy accumulation in traveling waves 

is still preserved; we particularly specify conditions necessary 

for such preservation. 

II. THEORETICAL BACKGROUND 

In what follows, we use the concept of variable property 

materials in the context of wave propagation along 

transmission lines with variable parameters. In Fig. 1, the 

spatial period is , the spatial volume fraction is m, the 

temporal period is , and the temporal volume fraction is n; 

the wave velocity is shown to be in the range on the right. The 

width of each spatial transition region is 2p, and the width of 

temporal transition region is 2q. We term this formation a 

functionally graded (FG) checkerboard.  

Following [5] and [8], we study energy transformation that 

accompanies waves traveling through such a transmission line. 

The wave u(z, t) is governed by the following wave equation: 
 

(Cut)t – ((1/L)uz)z = 0, (z, t)  [a, b]  [0, T],           (1) 
 

u(z, 0) = u0(z), ut(z, 0) = u1(z) .                    (2) 
 

where C(z, t) and L(z, t) are, respectively, linear capacitance 

and inductance taking values C1, L1 in material 1, and C2, L2 in 

material 2. For simplicity, we disregard the boundary condi-

tions and assume that the line is infinite. For our purposes it is 
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Fig. 2. Specific type of limit cycle studied. 

 

convenient to consider, instead of C and L, the phase velocity 

 = 1/√LC and wave impedance  = √L/C as material 

parameters; they take values 1, 1 and 2, 2 in materials 1 

and 2, and it is assumed that 2 > 1. 

We benefit from this choice because the phase velocity 

alone defines the pattern of wave routes in space-time. The 

paths of waves are given by solutions z = z(t) of  
 

zt = (z(t), t),  z(t0) = z0.                          (3) 
 

Wave impedance is responsible for the assignment of energy 

to waves traveling in different directions prescribed by the 

wave routes. This means that such routes and energy 

distribution may be controlled independently by the phase 

velocity and wave impedance, respectively.  

In [5] and [8], a checkerboard with sharp interfaces and 

matching wave impedances 1 = 2 =  was discussed. Two 

key effects observed in [5]-[7] were confirmed:  

A. Energy accumulation occurs within some extended 

ranges of parameters m, n, 1 and 2, regardless the value of 

. These parameters are purposefully chosen to belong with 

certain domain; with such a choice, the wave routes enter the 

slow material 1 across the spatial interfaces, and leave them 

across the temporal ones. These wave trajectories are 

accompanied by energy accumulation at temporal transients 

and energy preservation at spatial crossings. This performance 

of wave trajectories guarantees the energy accumulation, and 

evades the energy loss.  
B. Accumulated energy is concentrated within a series of 

dense groups of wave routes (one group per period). Each 

group converges to a selected wave route – a limit cycle, i.e., 

to a pulse that exhibits sharpening and carries progressively 

increasing power. There are two families of such cycles 

(pulses), one family traveling forward, and another backward; 

when 1 = 2, there is no energy exchange between them. A 

checkerboard demonstrating these properties is termed ideal. 
The range of energy accumulation in pulses is given by the 

following set of inequalities [7], [8]: 
 

,    (4) 

 
 

Fig. 3. FD checkerboard structure in space-time with wave routes for  = 1.0, 

 = 1.0, m = 0.4, n = 0.5, 1 = 0.55, 2 = 1.1, p = 0.075, and q = 0.075.  

 

with  = /. Notice that  does not appear in (4). These 

inequalities are critical in a sense that violation of one of them 

may slow down the formation of pulses, but the energy 

accumulation may still be preserved, though probably not 

within well-developed pulses. Inequalities (4) secure the 

special performance of the wave routes indicated above in A. 

Particularly, they imply that inequalities  
 

1 <  < 2                                   (5) 
 

are necessary for energy accumulation.  

III. WAVE PROPAGATION AND LIMIT CYCLES IN FG 

CHECKERBOARD 

We now consider conditions for limit cycles for FG 

checkerboards, assuming for ease of analysis, that 1 = 2 = . 

Expressing C and L in (1) through  and  and introducing the 

potential v, we replace (1) by the system  
 

ut – vz = 0,                                   (6) 
 

vt – (/)uz = 0.                                 (7) 
 

We will produce inequalities similar to (3) taking into account 

the gradual transitions in properties illustrated in Fig. 1.  

Fig. 2 shows a specific type of limit cycle considered in this 

paper; the class of routes is described earlier in A. We 

introduce a transition zone in which the phase velocity linearly 

changes (in space or time) from 1 to 2, and vice versa. As 

long as the limit cycle does not originate on a corner, we can 

choose parameters p and q that characterize the transitions 

widths small enough to guarantee that the wave routes do not 

go too close to the rectangular regions around the corners 

where both spatial and temporal variation occur. 

In Fig. 3, we show a pattern of right going wave routes 

associated with a doubly periodic linear FG checkerboard. The 

paths are calculated by numerically solving (3) via the 4th 

order Runge-Kutta method. The figure shows that the focusing 

effect (the existence of limit cycles) can still be found in the 

linear FG case.  

The first condition we place on the transition zones is that 

both spatial and temporal widths must be smaller than the 

minimum width in the checkerboard cells:  
 

.           (8) 
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TABLE I 

COEFFICIENTS IN INEQUALITIES (13) 
 

 
 

Based on these constraints, we define  = (1/2) min{m, (1 – 

m), n, (1 – n)}, and assume that the limit cycle starts in the 

first spatial period at (z, t) = (z1, 0): 
 

p < w1 < z1.                                   (9) 
 

The wave then travels through the linear region to point (z1, 

t1), as shown in Fig. 2. The location of this point is given by 

integration of the equation of the wave route as  
 

;                    (10) 
 

it must obey w1 < z1 < m – p. The limit cycle then travels 

through pure material 2 to (z2, t2) and then through a spatially 

linear region to the next intersection point (z3, t3). We have  
 

,                  (11) 
 

and 
 

,                  (12) 
 

along with the requirement qt < t2 < t3 < n – q as seen in Fig. 

2. Continuing this procedure, we reach the point (z9, t9) and 

end up, after some algebraic manipulations, with four basic 

inequalities in m, n, p, and q: 
 

n <i bim + cip +diq + ei, i = 1, 2, 3, 4,              (13) 
 

with the coefficients given by Table 1, where  = 2/1.  

These inequalities constitute the necessary and sufficient 

conditions for the formation of a limit cycle and therefore 

specify the admissible range of parameters. When p = q = 0 in 

(8), they reduce to (4). To make a limit cycle, we require that 

the value z1 generates w1 = w3. As for an ideal checkerboard 

[8], there are two values of z1, demonstrating this property: 

one value for a stable, another for unstable limit cycle. The 

cycles alternate; they begin on the z-axis in the fast (slow) 

materials for stable (unstable) limit cycles. The above analysis 

is for stable cycles.  

Fig. 4 illustrates the (m, n) region that is satisfied by the 

inequalities (13). It also shows the basic restrictions on the 

property transition zones (namely, p < , q < ). Each line 

labelled in the legend as li relates to the corresponding ith 

inequality (13). We see that the region is indeed bounded 

really by only the lines l1, l2, l3, l4 coming from the first four 

inequalities. 

 

 

Fig. 4. The shaded region in the mn-space shows where the inequalities are 

satisfied for 2 = 1.65,  = 3.0, p = 0.06, q = 0.04; the pairs of vertical and 

horizontal lines represent inequalities (8).  

 
If p and q are small enough, e.g., 1 – 4p > 0, 1 – 4q > 0, and 

> (1-p)/(1-2p), then inequalities (5) are replaced by 
 

.  (14) 
 

This follows from inequalities 1-4 in Table I after some 

algebraic manipulations. When p = q = 0, inequalities (14) 

reduce to (5). 
When we allow for 1 to be different from 2, the overall 

pattern of wave routes nevertheless remains the same. 

However, the energy carried by each wave is affected for two 

reasons. Firstly, this is the exchange of energy between 

families of right and left going waves, and, secondly, possibly 

because of the loss of energy to the external agent caused by 

waves entering the slower materials via the temporal interface 

[5]. We now consider energy accumulation in a linear FG 

checkerboard structure. 

IV. ENERGY ACCUMULATION IN FG CHECKERBOARD 

We numerically calculate the energy accumulated in a FG 

checkerboard with C and L treated as material parameters. The 

total energy at time t of a wave located within a segment      

z (a, b) can be expressed, following [9], as:  
 

              (15) 
 

In order to evaluate the evolution of energy over time the 

integral (15) is computed at a series of discrete time steps t. 

If the material parameters allow for stable limit cycles, we 

expect the solution of system (6)-(7) to develop from the 

initial state at t = 0 into a series of sharpening pulses. That is, 

regions with high gradient of u will take shape as time goes 

on. In order to accurately capture these regions of rapid 

transitions, we use adaptive mesh refinement such that the grid 

is fine in regions where uz is high and coarser when u is 

smoother. The integral (15) requires evaluating the time 

derivatives at any given point, but this is challenging with an 

adaptive mesh that changes in time. Instead, we rewrite the 

energy formula with only spatial derivatives using (6): 
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Fig. 5. Energy evolution for various values of smoothing parameters p and q 
(a = 0, b = 4). 

 

 
Fig. 6. Energy evolution for mismatch in the values of wave impedance  (a = 
0, b = 4). 

 

.            (16) 
 

We compare the computed energy with the energy increase 

first theorized in [5] and observed in [6] and [8] for the case 

when 2 = 1, which gives an increase after every temporal 

period by a factor (2/1)2.  

Fig. 5 characterizes energy evolution for several pairs of 

values of p and q that depict the functional grading; we 

assume that there is no wave impedance mismatch. However, 

if p = q < 0.5, then the energy accumulation persists, but 

becomes less intensive than in the case of sharp interfaces. 

The reason is that, unlike the impedance mismatch, the 

functional grading affects the wave routes and may slow down 

and even decrease the energy accumulation.  

Now we assume that both spatial and temporal interfaces 

are sharp, but allow for a mismatch in wave impedance. In 

Fig. 6, for the ratio 2/1 taking values from 1 to 1.3, we see 

that the energy accumulation is practically independent of 

impedance mismatch. The pattern of wave routes remains 

unaffected, but due to wave reflection at material property 

interfaces, the energy does not concentrate in pulses as quickly 

as it does in the absence of reflections. However, the net 

energy is still accumulated at temporal transients from the 

slow materials to fast, but this time in the waves traveling in 

both directions. Concentration of energy in sharp pulses takes 

in these circumstances more time than in the absence of the 

wave impedance mismatch. 

The case of impedance mismatch is of a special interest due 

to a number of reasons. Firstly, the energy is then redistributed 

between families of left- and right-going waves. Secondly, the 

wave reflections slow down the energy concentration in 

pulses. Thirdly, the energy loss may be possible at temporal 

transients from fast materials into slow. Fourthly, the wave 

impedance mismatch makes the system capable of producing 

resonances due to wave reflections. The general analysis of all 

these factors requires special effort with final results that are 

hard to predict. An evidence for that is given by Fig. 6 where 

practically no effect in the net energy accumulation is 

observed for relatively large mismatch 2/1 = 1.3. This 

observation may be viewed as an advantage of wave 

impedance mismatch compared to that in wave velocity.  

The solid curve in Figs. 5 and 6 passes through points 

representing the exponential energy growth at moments of 

temporal switching, with the rate defined as ln(2/1)2. Energy 

is accumulated at selected moments of temporal switching; 

between two such moments it remains constant.  

V. CONCLUSION 

This letter continues investigation of the energy/power 

accumulation developed in a transmission line with space- and 

time-dependent parameters represented in [8] as the material 

DM checkerboard structure. In that paper, we considered an 

ideal assembly in which the temporal and spatial material 

interfaces between adjacent cells were sharp, and the wave 

impedances of different materials matched. In the present 

letter, we have examined the influence of gradual spatial and 

temporal transitions from one material cell to another. It has 

been found that the energy accumulation persists for certain 

ranges of parameters that characterize deviations from an ideal 

assembly. Both theoretical and numerical evidence for such 

persistence have been demonstrated. The case of wave 

impedance mismatch deserves additional, more detailed study 

because of many counteracting effects. The presented results 

may facilitate the engineering work towards fabrication of the 

transmission lines employing the proposed mechanism of 

energy accumulation.  
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