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Abstract

The periodic unfolding method, introduced in [D. Cioranescu, A. Damlamian, G. Griso, Periodic unfolding and homogenization,
C. R. Acad. Sci. Paris, Ser. I 335 (2002) 99–104], was developed to study the limit behavior of periodic problems depending on a
small parameter ε. The same philosophy applies to a range of periodic problems with small parameters and with a specific period
(as well as to almost any combinations thereof). One example is the so-called Neumann sieve.

In this work, we present these extensions and show how they apply to known results and allow for generalizations (some in
dimension N � 3 only). The case of the Neumann sieve is treated in details. This approach is significantly simpler than the original
ones, both in spirit and in practice.
© 2007 Elsevier Masson SAS. All rights reserved.

Résumé

La méthode de l’éclatement périodique, introduite dans [D. Cioranescu, A. Damlamian, G. Griso, Periodic unfolding and
homogenization, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 99–104], a pour but l’étude du comportement asymptotique de problèmes
périodiques avec période tendant vers zéro. La même approche permet de traiter toute une famille de problèmes caractérisés par
des périodicités de tailles tendant vers zéro. Un exemple est donné par le problème connu sous le nom de la passoire de Neumann.

Nous présentons ici divers prolongements et généralisations de l’éclatement périodique (certains nécéssitant que la dimension
N soit supérieure à 3) et nous l’appliquons à la passoire de Neumann. Pour ce type de problèmes, cette approche apparaît comme
élémentaire, directe et plus efficace que les méthodes classiques.
© 2007 Elsevier Masson SAS. All rights reserved.

Keywords: Periodic unfolding; Neumann sieve; Strange term; Homogenization

1. Introduction

The periodic unfolding method (see [8]), as a simpler alternative to the two-scale convergence, was developed to
study the limit behavior of periodic problems depending on a small parameter ε. As it turns out, the same philosophy
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applies to a whole range of periodic problems with small parameters, provided they have a specific period. The method
is flexible enough to apply as well to almost any combinations of the preceding cases.

In this work, we present these various extensions and show how they apply to known results and allow for
generalizations. This approach is significantly simpler than the original ones, both in spirit and in practice.

The plan of the paper is as follows.
Section 2 is devoted to the presentation of various unfolding operators and their main properties for domains in

R
N,N ∈ N

∗. More precisely, in Section 2.1, we recall the definition of the unfolding operator Tε for the periodic
case in fixed domains ([8] and [12]). In Section 2.2, we present the unfolding operator adapted to the case of holes of
size ε (with Neumann boundary condition) with period of same size (see [9] for details and applications). Section 2.3
introduces the unfolding operator Tε,δ depending of two small parameters ε and δ (corresponding to the scales ε

and εδ) and which was first introduced in a similar form in [6] and [7]. The following subsections deal again with
an unfolding operator T bl

ε,δ depending on the scales ε and εδ when the latter occurs only on a layer. This approach
never assumes the existence of an extension operator in the cells but is based on the Poincaré–Wirtinger inequality
(Section 2.1) and Sobolev–Poincaré–Wirtinger inequality (Sections 2.2 and 2.3). The latter requires that the dimension
N be larger than 2.

The remainder of the paper is devoted to the application to various linear problems in perforated domains and with
oscillating coefficients. For simplicity, we assume a homogeneous Dirichlet boundary condition on the outer boundary
of the domain, but more general boundary conditions can be handled provided the outer boundary is Lipschitz and the
perforations do not intersect it. In each case, we obtain both the unfolded and the classical (standard) form for the limit
problem. The operator Tε allows to homogenize the coefficients of the differential operators, whereas the operators
Tε,δ (or T bl

ε,δ, . . .) generates the “strange terms” in the limit.
Section 3 concerns the homogenization of elliptic problems with oscillating coefficients, for volume ε-periodically

distributed small holes of size εδ with Dirichlet condition. These results are well known for the Laplace operator,
with the appearance of the “strange term” (see [10] and references therein). For the case of oscillating coefficients, we
refer to [11] where H -convergence is used. It should be noted that for technical reasons, our method fails to apply in
dimension N = 2. See also [2] for the nonlinear case.

Section 4 considers small perforations of size εδ which are distributed ε-periodically in a layer of thickness ε.
It generalizes the results of [21,17] and [10] to the case of oscillating coefficients.

Section 5 deals with the Neumann sieve problem with zero thickness and oscillating coefficients. For the case of
constant coefficients, we refer the reader to [4,12,16,20,1] and [19]. We also refer to the recent paper [3] for a different
approach. In Section 6, the thick sieve is treated (for which we refer to [15] for the case of constant coefficients).
The unfolding method was applied for the first time for sieve problems in [18], also in the case of constant coefficients.

To conclude this section, we would like to point out that using the various unfolding operators introduced in
this paper, one can treat any combination of the previous problems, for instance, a medium with ε-size Neumann
perforations and εδ-size Dirichlet holes in the bulk (see Fig. 10), or even a thick sieve in such a medium. This will be
presented in a forthcoming paper which will also include the proof of convergence for the energies.

2. The periodic unfolding operator

In this section we recall the general properties of the periodic unfolding operator introduced in [8] and include
variants and generalizations, all based on the technique of unfolding. In particular, we introduce the notion of unfolding
criterion for integrals (in short u.c.i.), in order to simplify the proofs where unfolding is used.

For N in N
∗, let Y be the unit cube of R

N centered in the origin, Y
.= ]− 1

2 , 1
2 [N (more general sets Y having the

paving property in R
N can also be used, cf. [14]). We consider the periodical net on R

N (i.e. the subgroup Z
N ) and

all the corresponding translates of Y . By analogy with the one-dimensional case, to each x ∈ R
N we can associate

its integer part, [x]Y belonging to the net, such that x − [x]Y ∈ Y , the latter being its fractional part, respectively, i.e,
{x}Y = x − [x]Y (see Fig. 1). These definitions are ambiguous, but only on a set of measure zero, which is enough for
our purpose.

Therefore we have:

x = ε

{
x

ε

}
Y

+ ε

[
x

ε

]
Y

for every x ∈ R
N.
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Fig. 1. The basic decomposition.

Fig. 2. The sets Ω , Ω̂ε and Λε .

Let Ω be open and bounded in R
N . We use the following notations:

Ω̂ε =
{
x ∈ Ω,

(
ε

[
x

ε

]
+ εY

)
⊂ Ω

}
, Λε = Ω \ Ω̂ε. (2.1)

The set Ω̂ε is the largest union of εY cells contained in Ω , while Λε is the subset of Ω containing the parts from εY

cells intersecting the boundary ∂Ω (see Fig. 2).
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2.1. The case of fixed domains: the operator Tε

We recall here the definition of the unfolding operator and its main properties (for details and proofs we refer the
reader to [8] and [13]).

Definition 2.1. For φ ∈ Lp(Ω), the unfolding operator Tε :Lp(Ω) → Lp(Ω × Y) is defined as follows:

Tε(φ)(x, y) =
{

φ(ε[ x
ε
]Y + εy) if (x, y) ∈ Ω̂ε × Y,

0 if (x, y) ∈ Λε × Y.

Theorem 2.2 (Properties of the operator Tε).

1. For any v,w ∈ Lp(Ω), Tε(vw) = Tε(v)Tε(w).

2. For any w ∈ Lp(Ω), one has the following “exact integration” formula:∫
Ω×Y

Tε(w)(x, y)dx dy =
∫
Ω

w(x)dx −
∫
Λε

w(x)dx =
∫
Ω̂ε

w(x)dx.

3. For any u ∈ L1(Ω), ∫
Ω×Y

∣∣Tε(u)
∣∣dx dy �

∫
Ω

|u|dx.

4. For any u ∈ L1(Ω), ∣∣∣∣ ∫
Ω

udx −
∫

Ω×Y

Tε(u)dx dy

∣∣∣∣ �
∫
Λε

|u|dx. (2.2)

5. Let {wε} ⊂ L2(Ω) such that wε → w strongly in L2(Ω). Then

Tε(wε) → w strongly in L2(Ω × Y).

6. Let wε ⇀ w weakly in H 1(Ω). Then, there exists a subsequence and ŵ ∈ L2(Ω;H 1
per(Y )) such that

Tε(∇wε) ⇀ ∇xw + ∇yŵ weakly in L2(Ω × Y).

Property 4 shows that any integral of a function w on Ω , is “almost equivalent” to the integral of its unfolded
on Ω × Y , the “integration defect” arises only from the cells intersecting the boundary ∂Ω and is controlled by the
right-hand side integral in (2.2).

The next proposition, which we call unfolding criterion for integrals (u.c.i.), is a very useful tool when treating
homogenization problems.

Proposition 2.3 (u.c.i.). If {wε} is a sequence in L1(Ω) satisfying∫
Λε

|wε|dx → 0,

then ∫
Ω

wε dx −
∫

Ω×Y

Tε(wε)dx dy → 0.

Based on this result, in order to simplify the proofs in the sequel, we introduce the following notation:
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Notation 2.4. If {wε} is a sequence satisfying u.c.i., we write:∫
Ω

wε dx
Tε∼=

∫
Ω×Y

Tε(wε)dx dy.

Corollary 2.5. Let {uε} be bounded in L2(Ω) and {vε} be bounded in Lp(Ω) with p > 2. Then we have:∫
Ω

uεvε dx
Tε∼=

∫
Ω×Y

Tε(uε)Tε(vε)dx dy.

We end this subsection with the notion of local average of a function.

Definition 2.6. The local average Mε
Y :Lp(Ω) �→ Lp(Ω), is defined for any φ in Lp(Ω), 1 � p < ∞, by

Mε
Y (φ)(x)

.=
∫
Y

Tε(φ)(x, y)dy.

Remark 2.7. The function Mε
Y (φ) is indeed a local average, since

Mε
Y (φ)(x) =

∫
Y

Tε(φ)(x, y)dy =
{

1
εN

∫
ε[ x

ε
]+εY

φ(ζ )dζ if x ∈ Ω̂ε,

0 if x ∈ Λε.

Remark 2.8. Note that Tε(M
ε
Y (φ)) = Mε

Y (φ) on the set Ω × Y .

The next proposition, which will be frequently used as well, is classical:

Proposition 2.9. Let {wε} be a sequence such that wε → w strongly in Lp(Ω) where 1 � p < ∞. Then we have:

Mε
Y (wε) → w strongly in Lp(Ω).

2.2. Unfolding in domains with volume-distributed “small” holes: the operator Tε,δ

In Section 4 below, we will consider domains with εY -periodically distributed holes of size εδ (δ → 0 with ε).
More precisely (see Fig. 3), for a given open B � Y we denote Y ∗

δ = Y \ δB and define the perforated domain Ω∗
ε,δ as

Ω∗
ε,δ =

{
x ∈ Ω, such that

{
x

ε

}
∈ Y ∗

δ

}
. (2.3)

This geometry of domains with “small” holes requires another unfolding operator Tε,δ depending on both parameters
ε and δ. In the next sections, we will consider functions vε,δ which vanish on the whole boundary of the perforated
domain Ω∗

ε,δ , namely belonging to the space H 1
0 (Ω∗

ε,δ). These functions are naturally extended by zero to the whole of

Ω and these extensions belong to H 1
0 (Ω). Consequently, from now on, we will not distinguish elements of H 1

0 (Ω∗
ε,δ)

and their extensions in H 1
0 (Ω). This justifies the introduction of Tε,δ on the fix domain Ω , while it may (and, in

Section 4, will) be applied to elements of H 1
0 (Ω∗

ε,δ).

Definition 2.10. For φ ∈ Lp(Ω), p ∈ [1,∞[, the unfolding operator Tε,δ :Lp(Ω) → Lp(Ω × R
N) is defined by:

Tε,δ(φ)(x, z) =
{
Tε(x, δz) if (x, z) ∈ Ω̂ε × 1

δ
Y,

0 otherwise.

For N � 3, the Sobolev exponent 2N
N−2 associated to 2 is denoted 2∗.

The next results follow from Theorem 2.2 by using the change of variable z = (1/δ)y.
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Fig. 3. The sets B and Y ∗
δ and the corresponding Ω∗

ε,δ .

Theorem 2.11 (Properties of the operator Tε,δ).

1. For any v,w ∈ Lp(Ω), Tε,δ(vw) = Tε,δ(v)Tε,δ(w).

2. For any u ∈ L1(Ω), one has

δN

∫
Ω×RN

∣∣Tε,δ(u)
∣∣dx dz �

∫
Ω

|u|dx.

3. For any u ∈ L2(Ω), ∥∥Tε,δ(u)
∥∥2

L2(Ω×RN)
� 1

δN
‖u‖2

L2(Ω)
.

4. For any u ∈ L1(Ω), ∣∣∣∣ ∫
Ω

udx − δN

∫
Ω×RN

Tε,δ(u)dx dz

∣∣∣∣ �
∫
Λε

|u|dx.

5. Let u ∈ H 1(Ω). Then

Tε,δ(∇xu) = 1

εδ
∇z

(
Tε,δ(u)

)
in Ω × 1

δ
Y.

6. Suppose N � 3 and let ω be open and bounded in R
N . Then the following estimates hold:∥∥∇z

(
Tε,δ(u)

)∥∥2
L2(Ω× 1

δ
Y )

� ε2

δN−2
‖∇u‖2

L2(Ω)
, (2.4)∥∥Tε,δ

(
u − Mε

Y (u)
)∥∥2

L2(Ω;L2∗
(RN))

� Cε2

δN−2
‖∇u‖2

L2(Ω)
, (2.5)

and ∥∥Tε,δ(u)
∥∥2

L2(Ω×ω)
� 2Cε2

δN−2
|ω|2/N‖∇u‖2

L2(Ω)
+ 2|ω|‖u‖2

L2(Ω)
, (2.6)

where C denotes the Sobolev–Poincaré–Wirtinger constant for H 1(Y ).



Author's personal copy

254 D. Cioranescu et al. / J. Math. Pures Appl. 89 (2008) 248–277

7. Suppose N � 3. Let {wε,δ} be a sequence in H 1(Ω) which is uniformly bounded when both ε and δ go to zero.
Then, up to a subsequence, there is W in L2(Ω;L2∗

(RN)) with ∇zW in L2(Ω × R
N) such that

δ
N
2 −1

ε

(
Tε,δ(wε,δ) − Mε

Y (wε,δ)1 1
δ
Y

)
⇀ W weakly in L2(Ω;L2∗

(RN)
)
,

δ
N
2 −1

ε
∇z

(
Tε,δ(wε,δ)

)
1 1

δ
Y

⇀ ∇zW weakly in L2(Ω × R
N

)
.

Assuming furthermore that lim sup(ε,δ)→(0+,0+)
δN/2−1

ε
< +∞, one can choose the subsequence above and some U in

L2(Ω;L2
loc(R

N)) with

δ
N
2 −1

ε
Tε,δ(wε,δ) ⇀ U weakly in L2(Ω;L2

loc(R
N)

)
.

Remark 2.12. In order to establish (2.5)–(2.6) from (2.4), the Sobolev–Poincaré–Wirtinger inequality is used (because
of its scale-invariance). The use of the standard Poincaré–Wirtinger inequality would give,∥∥Tε,δ

(
u − Mε

Y (u)
)∥∥2

L2(Ω ′×RN)
� 1

δ2

C′ε2

δN−2
‖∇u‖2

L2(Ω)
,

where C′ is the Poincaré–Wirtinger constant of Y . This estimate is not compatible with (2.4).

Concerning the integral formulas, we have the following results, similar to those of the previous subsection.

Proposition 2.13 (u.c.i.). If {wε} is a sequence in L1(Ω) satisfying∫
Λε

|wε|dx → 0,

then ∫
Ω

wε dx
Tε,δ∼= δN

∫
Ω×RN

Tε,δ(wε)dx dz.

Corollary 2.14. Let {uε} be bounded in L2(Ω) and {vε} be bounded in Lp(Ω) with p > 2. Then∫
Ω

uεvε dx
Tε,δ∼= δN

∫
Ω×RN

Tε,δ(uε)Tε,δ(vε)dx dz.

2.3. The boundary-layer unfolding operator: the operator T bl
ε,δ

For sieve-type problems (Sections 4 and 5 below), we consider the case of holes of size εδ, distributed in Σ ′
ε , a layer

of thickness ε parallel to a hyperplane in the open domain Ω in R
N . We denote x′ .= (x1, . . . , xN−1), Π

.= {xN = 0}
and set Σ = Π ∩ Ω .

The layer Σ ′
ε is defined as

Σ ′
ε = Ω ∩

{
x; |xN | < ε

2

}
,

and by analogy with (2.1), we introduce the corresponding sets,

Σ̂ ′
ε =

{
x ∈ Σ ′

ε ,

(
ε

[
x

ε

]
+ εY

)
⊂ Σ ′

ε

}
, Λ ′

ε = Σ ′
ε ,\Σ̂ ′

ε ,

and denote Σ̂ε = Σ̂ ′
ε ∩ Π.

The set Σ̂ ′
ε is the largest union of εY cells contained in Σ ′

ε (see Fig. 4).
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Fig. 4. The sets Σ ′
ε, Σ̂ε and Λ′

ε .

Definition 2.15. For φ ∈ Lp(Σ ′
ε ), p ∈ [1,∞[ the unfolding operator T bl

ε,δ :Lp(Σ ′
ε) → Lp(Σ × R

N) is defined by:

T bl
ε,δ(φ)(x′, z) =

{
φ(ε[ (x′,0)

ε
]Y + εδz) if (x′, z) ∈ Σ̂ε × 1

δ
Y,

0 otherwise.

This operation, designed to capture the contribution of the barriers in the limit process, was originally used in [18].
We also introduce the notion of local average related to the hyperplane Σ .

Definition 2.16. The local average M
ε,bl
Y :Lp(Σ ′

ε ) �→ Lp(Σ), is defined for every φ in Lp(Σ ′
ε ), 1 � p < ∞, by

M
ε,bl
Y (φ)(x′) = δN

∫
1
δ
Y

T bl
ε,δ(φ)(x′, z)dz =

{
1

εN

∫
ε[ x′

ε
]+εY

φ(ζ )dζ if x′ ∈ Σ̂ε,

0 if x′ ∈ Σ \ Σ̂ε.

Remark 2.17. Since elements of Lp(Σ) can be considered as functions of Lp(Σ ′
ε ), M

ε,bl
Y can be applied to them.

With this convention, T bl
ε,δ(M

ε,bl
Y (φ)) = M

ε,bl
Y (φ) on the set Σ .

We also have an equivalent of Proposition 2.9.

Proposition 2.18. Let {wε} be a sequence such that wε ⇀ w weakly in H 1(Ω). Then

M
ε,bl
Y (wε) → w|Σ strongly in L2(Σ).

It is easy to check that most of the results stated in the previous subsection extend to T bl
ε,δ .

Theorem 2.19 (Properties of the operator T bl
ε,δ).

1. For any v,w ∈ Lp(Σ ′
ε ),

T bl
ε,δ(vw) = T bl

ε,δ(v)T bl
ε,δ(w).

2. For any u ∈ L1(Σ ′
ε ),

εδN

∫
Σ×RN

T bl
ε,δ(u)dx′ dz =

∫
Σ̂ ′

ε

udx, and εδN

∫
Σ×RN

∣∣T bl
ε,δ(u)

∣∣dx′ dz �
∫
Σ ′

ε

|u|dx.
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3. For any u ∈ L2(Σ ′
ε), ∥∥T bl

ε,δ(u)
∥∥2

L2(Σ×RN)
� 1

εδN
‖u‖2

L2(Σ ′
ε )

.

4. For any u ∈ L1(Σ ′
ε), one has ∣∣∣∣ ∫

Σ ′
ε

udx − εδN

∫
Σ×RN

T bl
ε,δ(u)dx′ dz

∣∣∣∣ �
∫
Λ ′

ε

|u|dx.

5. Let u be in H 1(Σ ′
ε ). Then,

T bl
ε,δ(∇xu) = 1

εδ
∇z

(
T bl

ε,δ(u)
)

in Σ × 1

δ
Y.

6. Suppose N � 3 and let ω be open and bounded in R
N . Then the following estimates hold:∥∥∇z

(
T bl

ε,δ(u)
)∥∥2

L2(Σ× 1
δ
Y )

� ε

δN−2
‖∇u‖2

L2(Σ ′
ε )

,∥∥T bl
ε,δ

(
u − M

ε,bl
Y (u)

)∥∥2
L2(Σ;L2∗

(RN))
� Cε

δN−2
‖∇u‖2

L2(Σ ′
ε )

,

and ∥∥T bl
ε,δ(u)

∥∥2
L2(Σ×ω)

� 2
Cε

δN−2
|ω|2/N‖∇u‖2

L2(Σ ′
ε )

+ 2|ω|‖u‖2
L2(Σ ′

ε )
,

where C denotes the Sobolev–Poincaré–Wirtinger constant for H 1(Y ).
7. Suppose N � 3. Let {wε,δ} be a sequence in H 1(Σ ′

ε ) such that ‖∇wε,δ‖L2(Σ ′
ε )

is bounded. Then, up to a subse-

quence, there exist W in L2(Σ;L2∗
(RN)) with ∇zW in L2(Σ × R

N) such that

δ
N
2 −1

√
ε

(
Tε,δ(wε,δ) − Mε

Y (wε,δ)1 1
δ
Y

)
⇀ W weakly in L2(Σ;L2∗

(RN)
)
,

δ
N
2 −1

√
ε

∇z

(
Tε,δ(wε,δ)

)
1 1

δ
Y

⇀ ∇zW weakly in L2(Σ × R
N

)
.

Assuming furthermore that lim sup(ε,δ)→(0+,0+)
δN/2−1√

ε
< +∞, one can choose the subsequence above and some U in

L2(Σ;L2
loc(R

N)) with

δ
N
2 −1

√
ε
Tε,δ(wε,δ) ⇀ U weakly in L2(Σ;L2

loc(R
N)

)
.

Proposition 2.20 (u.c.i.). If {wε} is a sequence in L1(Σ ′
ε ) satisfying,∫

Λ ′
ε

|wε|dx → 0,

then ∫
Σ ′

ε

wε dx

T bl
ε,δ∼= εδN

∫
Σ×RN

T bl
ε,δ(wε)dx′ dz.

Corollary 2.21. Let {uε} ⊂ L2(Σ ′
ε ) and {vε} ⊂ Lp(Σ ′

ε) with p > 2, such that ‖uε‖L2(Σ ′
ε )

and ‖vε‖Lp(Σ ′
ε )

are bounded
independently of ε. Then ∫

Σ ′
ε

uεvε dx

T bl
ε,δ∼= εδN

∫
Σ×RN

T bl
ε,δ(uε)T bl

ε,δ(vε)dx′ dz.
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For sieve problems, there is a need to distinguish between the subdomains above and below Σ . Set

Ω+ = R
N+ ∩ Ω, Ω− = R

N− ∩ Ω, Y+ = R
N+ ∩ Y, Y− = R

N− ∩ Y.

We suppose that the two domains Ω+ and Ω− have a Lipschitz boundary.
For simplicity, we will make the convention that all the results stated for Ω+, are true also for Ω− unless specified

otherwise. For any function u defined in Ω , we denote by u+ its restriction to the domain Ω+, i.e., u+ ≡ u|Ω+ .
Analogously, u− ≡ u|Ω− .

The corresponding definitions and propositions are the following:

Definition 2.22. The local average M
ε,bl
Y± :Lp(Σ ′

ε±) �→ Lp(Σ), is defined for every φ in Lp(Σ ′
ε±), 1 � p < ∞, by

M
ε,bl
Y± (φ)(x′) .= δN

|Y±|
∫

1
δ
Y±

T bl
ε,δ(φ)(x′, z)dz.

Proposition 2.23. Let {wε} be a sequence such that wε ⇀ w± weakly in H 1(Ω±). Then

M
ε,bl
Y± (wε) → w±|Σ strongly in L2(Σ).

Theorem 2.24. 1. For all φ ∈ L2(Ω±),∥∥T bl
ε,δ(u)

∥∥2
L2(Σ×R

N± )
� 1

εδN
‖u‖2

L2(Σ ′
ε±)

.

2. Suppose N � 3 and let u belong to H 1(Ω±). For every ω open and bounded in R
N+ the following estimates hold:∥∥∇z

(
T bl

ε,δ(u)
)∥∥2

L2(Σ× 1
δ
Y±)

� ε

δN−2
‖∇u‖2

L2(Σ ′
ε±)

,∥∥T bl
ε,δ

(
u − M

ε,bl
Y (u)

)∥∥2
L2(Σ;L2∗

(RN± ))
� Cε

δN−2
‖∇u‖2

L2(Σ ′
ε±)

,

and ∥∥T bl
ε,δ(u)

∥∥2
L2(Σ×ω)

� 2
Cε

δN−2
|ω|2/N‖∇u‖2

L2(Σ ′
ε+)

+ 2|ω|‖u‖2
L2(Σ ′

ε+)
,

where C denotes the Sobolev–Poincaré–Wirtinger constant for H 1(Y±).
A similar inequality is true for bounded open subsets of R

N− .
3. Suppose N � 3. Let {wε,δ} be a sequence in H 1(Σ ′

ε +) such that ‖∇wε,δ‖L2(Σ ′
ε+) is bounded. Then, up to a

subsequence there exists W+ in L2(Σ;L2∗
(RN±)) with ∇zW

+ in L2(Σ × R
N+) such that

δ
N
2 −1

√
ε

(
T bl

ε,δ(wε,δ) − Mε
Y+(wε,δ)1 1

δ
Y+

)
⇀ W+ weakly in L2(Σ;L2∗

(RN+)
)
,

δ
N
2 −1

√
ε

∇z

(
T bl

ε,δ(wε,δ)
)

1 1
δ
Y+ ⇀ ∇zW

+ weakly in L2(Σ × R
N+

)
.

Assuming furthermore that lim sup(ε,δ)→(0+,0+)
δN/2−1√

ε
< +∞, one can choose the subsequence above and some

U+ in L2(Σ;L2
loc(R

N+)) with

δ
N
2 −1

√
ε
T bl

ε,δ(wε,δ) ⇀ U+ weakly in L2(Σ;L2
loc(R

N+)
)
.

The same result holds true for sequences in H 1(Σ ′
ε−).

The equivalent of Proposition 2.20 (u.c.i.) also holds true in Ω±.
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3. Homogenization in domains with small holes which are periodically distributed in volume

3.1. Functional setting

Let α and β be two real numbers such that 0 < α < β . For any open set O in R
N , denote by M(α,β,O) the set of

the N × N matrix-fields A = (aij )1�i,j�N ∈ (L∞(O))N×N such that

α|λ|2 �
(
A(x)λ,λ

)
and

∣∣A(x)λ
∣∣2 � β

(
A(x)λ,λ

)
,

for any λ ∈ R
N and a.e. x in O.

The perforated domain Ω∗
ε,δ is defined by (2.3). Assume that the matrix field Aε(x) = (aε

ij (x))1�i,j�N belongs to

M(α,β,Ω). For f ∈ L2(Ω), consider the following problem:⎧⎪⎪⎨⎪⎪⎩
Find uε,δ ∈ H 1

0 (Ω∗
ε,δ) satisfying∫

Ω∗
ε,δ

Aε∇uε,δ∇φ = ∫
Ω∗

ε,δ
f φ,

∀φ ∈ H 1
0 (Ω∗

ε,δ).

(Pε,δ)

In this section we suppose that N � 3 and study the asymptotic behavior of problem (Pε,δ) as ε and δ = δ(ε) are
such that there exists a positive constant k1 satisfying,

k1 = lim
ε→0

δ
N
2 −1

ε
, with 0 � k1 < ∞. (3.1)

3.2. Unfolded homogenization result

We now derive the unfolded formulation of the limit problem for Pε,δ . In the limit we will observe the contribution
of the periodic oscillations as well as the contribution of the perforations.

In order to state the result, we introduce the functional space KB defined as follows:

KB = {
Φ ∈ L2∗

(RN); ∇Φ ∈ L2(RN), Φ constant on B
}
. (3.2)

Theorem 3.1. Let Aε belong to M(α,β,Ω). Suppose that, as ε goes to 0, there exists a matrix A such that

Tε(A
ε)(x, y) → A(x,y) a.e. in Ω × Y.

Furthermore, suppose that there exists a matrix field A0 such that as ε and δ → 0,

Tε,δ(A
ε)(x, z) → A0(x, z) a.e. in Ω × (RN \ B). (3.3)

Let uε,δ be the solution of the problem (Pε,δ). Then

uε,δ ⇀ u0 weakly in H 1
0 (Ω), (3.4)

and there exists û in L2(Ω;H 1
per(Y )), and U vanishing on Ω × B with U − k1u0 belonging to L2(Ω;KB), such that

the triplet (u0, û,U) satisfies the following three conditions:∫
Y

A(x, y)
(∇xu0(x) + ∇yû(x, y)

)∇yφ(y)dy = 0, (3.5)

for a.e. x in Ω and all φ ∈ H 1
per(Y ); ∫

RN\B
A0(x, z)∇zU(x, z)∇zv(z)dz = 0, (3.6)

for a.e. x in Ω and all v ∈ KB with v(B) = 0;∫
Ω×Y

A(∇xu0 + ∇yû)∇ψ dx dy − k1

∫
Ω×∂B

A0∇zUνBψ dσz =
∫
Ω

f ψ dx, (3.7)

for all ψ ∈ H 1
0 (Ω), where νB is the inward normal on ∂B and dσz the surface measure.
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The proof of this theorem, makes use of the next two elementary results.

Lemma 3.2. Let N � 3. Then, for every δ0 > 0, the set⋃
0<δ<δ0

{
φ ∈ H 1

per(Y ); φ = 0 on δB
}

is dense in H 1
per(Y ).

Proof. Let ψ ∈ C∞
per(Y ) be fixed. For δk

k→∞−−−→ 0 consider φk ∈ H 1
per(Y ) smooth with

φk =
{

0 on δkB,

1 on Y \ 2δkB,

and such that |∇φk| � C
δk

. Define Φk = φkψ . We claim that Φk converges to ψ strongly in H 1
per(Y ). To do so, observe

that

‖Φk − ψ‖L2(Y ) + ‖∇Φk − ∇ψ‖L2(Y ) �
∫

2δkB

|ψ |2 dy +
∫

2δkB

|∇ψ |2 dy +
∫

2δkB

|∇φk|2|ψ |2 dy.

For the last integral, using the definition of φk , one gets:∫
2δkB

|∇φk|2|ψ |2 dy � C2δN−2
k ‖ψ‖2

L∞(Y ).

Hence,

Φk → ψ strongly in H 1
per(Y ).

Since H 1
per(Y ) is the closure of C∞

per(Y ) in the H 1-norm, a density argument completes the proof. �
Lemma 3.3. Let v in D(RN) ∩ KB (i.e. v = const. = v(B) on B), and set

wε,δ(x) = v(B) − v

(
1

δ

{
x

ε

}
Y

)
for x ∈ R

N.

Then,

wε,δ ⇀ v(B) weakly in H 1(Ω). (3.8)

Proof. For δ small enough, the support of v is compact in 1
δ
Y and consequently,∫

1
δ
Y

∣∣v(z)
∣∣2 dz = ‖v‖2

L2(Rn)
.

Clearly, wε,δ is uniformly bounded on R
N . Observe that the set where wε,δ differs from v(B) is⋃

ξ∈ZN (εξ + εδ{Support(v)}), so that the measure of its intersection with Ω , is at most of order δN . Thus, wε,δ

converges to v(B) in every Lq(Ω) for finite q .
Since Tε,δ(wε)(x, z) = v(B) − v(z), property (5) from Theorem 2.11 gives:

Tε,δ(∇wε,δ) = − 1

εδ
∇zv in Ω̂ε × 1

δ
Y, (3.9)

hence (see Theorem 2.2(2)),

‖∇wε,δ‖2
L2(Ω̂ε)

= δN
∥∥Tε,δ(∇wε,δ)

∥∥2
L2(Ω× 1

δ
Y )

� δN−2

ε2
|Ω|‖∇zv‖2

L2(RN)
.

Due to (3.1), ∇wε,δ is bounded in L2
loc(Ω) which concludes the proof, since wε,δ is εY -periodic in R

N . �
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Proof of Theorem 3.1 (for the case k1 > 0). Observe first that by the Lax–Milgram theorem, there exists a unique
solution uε,δ of (Pε,δ) and it satisfies

‖uε,δ‖H 1
0 (Ω∗

ε,δ)
� C‖f ‖L2(Ω), (3.10)

which implies convergence (3.4), up to a subsequence. Next, by Theorem 2.2(6), there exists û ∈ L2(Ω;H 1
per(Y ))

such that

Tε(∇uε,δ) ⇀ ∇xu0 + ∇yû weakly in L2(Ω × Y). (3.11)

By Theorem 2.11(7), there exists some U in L2(Ω;L2
loc(R

N)) such that, up to a subsequence,

δ
N
2 −1

ε
Tε,δ(uε,δ) ⇀ U weakly in L2(Ω;L2

loc(R
N)

)
. (3.12)

By Proposition 2.9, one has

δ
N
2 −1

ε
Mε

Y (uε,δ)1 1
δ
Y

→ k1u0 strongly in L2(Ω;L2
loc(R

N)
)
. (3.13)

On the other hand, by Theorem 2.11(7) there exists a W in L2(Ω;L2∗
(RN)) with ∇zW in L2(Ω × R

N) such that

δ
N
2 −1

ε

(
Tε,δ(uε,δ) − Mε

Y (uε,δ)1 1
δ
Y

)
⇀ W weakly in L2(Ω;L2∗

(RN)
)
. (3.14)

From (3.12), (3.13) and (3.14), one concludes:

U = W + k1u0, and ∇zU = ∇zW,

and, by Theorem 2.11(5) and (7) again

δ
N
2 −1

ε
∇z

(
Tε,δ(uε,δ)

)
1 1

δ
Y

= δ
N
2 Tε,δ(∇uε,δ) ⇀ ∇zU weakly in L2(Ω × R

N). (3.15)

From Definition 2.10, Tε,δ(uε,δ) = 0 in Ω × B , so that by (3.12),

U = 0 on Ω × B. (3.16)

Due to (3.16), W = U − k1u0 actually belongs to L2(Ω;KB).
Using Φ(·) = εψ(·)φ( ·

ε
) as a test function in (Pε,δ), with ψ ∈D(Ω) and φ ∈ C1

per(Y ) vanishing in a neighborhood
of the origin, we have:

ε

∫
Ω∗

ε,δ

Aε∇uε,δ∇ψφ

( ·
ε

)
+

∫
Ω∗

ε,δ

Aε∇uε,δ ψ ∇φ

( ·
ε

)
= ε

∫
Ω∗

ε,δ

f ψφ

( ·
ε

)
.

It is easy to see that the first integral as well as the right-hand side of the above equality converge to zero. The
second integral above is unfolded with Tε noting that Tε(∇φ(·/ε))(x, y) = ∇φ(y). Applying Theorem 2.2(1) and (4),
then Corollary 2.5, one gets:∫

Ω∗
ε,δ

Aε∇uε,δψ∇φ

( ·
ε

) Tε∼=
∫

Ω×Y

Tε(A
ε)(x, y)Tε(∇xuε,δ)(x, y)∇φ(y)Tε(ψ)(x, y)dx dy (3.17)

(the unfolding criterion of integrals (u.c.i.) is trivially satisfied since ψ is compactly supported in Ω). From (3.11),
we can pass to the limit with respect to ε in (3.17). Then, by Lemma 3.2, we obtain (3.5), the first equation of
the unfolded formulation for the limit problem. This equation describes the effect of the periodic oscillations of the
coefficients in (Pε,δ).

In order to describe the contribution of the perforations, we use the function wε,δ introduced in Lemma 3.3. For ψ

in D(Ω), use wε,δ ψ as a test function in (Pε,δ). By the definition of wε,δ this function vanishes on the holes and by
the choice of ψ , it vanishes near the boundary of Ω . Thus, we obtain,∫

Ω∗
ε,δ

Aε∇uε,δ∇wε,δ ψ +
∫

Ω∗
ε,δ

Aε∇uε,δ∇ψwε,δ =
∫

Ω∗
ε,δ

f wε,δψ. (3.18)



Author's personal copy

D. Cioranescu et al. / J. Math. Pures Appl. 89 (2008) 248–277 261

The first term in (3.18) is unfolded with Tε,δ . Again, the choice of the test function implies that the u.c.i. is satisfied,
so by Theorem 2.11 and Corollary 2.14, we can write,∫

Ω∗
ε,δ

Aε∇uε,δ∇wε,δψ
Tε,δ∼= δN

∫
Ω×RN

Tε,δ(A
ε)Tε,δ(∇uε,δ)Tε,δ(∇wε,δ)Tε,δ(ψ). (3.19)

Therefore (3.19), together with (3.9), yields∫
Ω∗

ε,δ

Aε∇uε,δ∇wε,δψ
Tε,δ∼= δ

N
2 −1

ε

∫
Ω×RN

Tε,δ(A
ε)δ

N
2 Tε,δ(∇uε,δ)(−∇zv)Tε,δ(ψ). (3.20)

From the following obvious inequality,∥∥Tε,δ(ψ) − ψ
∥∥

L∞(Ω̂ε× 1
δ
Y )

� Cε‖∇ψ‖L∞(Ω),

we obtain:

Tε,δ(ψ)∇zv → ψ∇zv strongly in L2(Ω × R
N). (3.21)

Convergences (3.15), (3.21), as well as hypothesis (3.3), allows us to pass to the limit in (3.20) to obtain:

lim
ε→0

∫
Ω∗

ε,δ

Aε∇uε,δ∇wε,δψ dx = −k1

∫
Ω×(RN\B)

A0(x, z)∇zU(x, z)∇zv(z)ψ(x)dx dz, (3.22)

which by density, is true for every v ∈ KB .
The second term in (3.18) is unfolded with Tε and we have,∫

Ω∗
ε,δ

Aε∇uε,δwε,δ∇ψ
Tε∼=

∫
Ω×Y

Tε(A
ε)Tε(∇uε,δ)Tε(wε,δ)Tε(∇ψ).

Using Theorem 2.2(5) and convergences (3.8) and (3.11), we can pass to the limit with respect to ε in the above
equality to get:

lim
ε→0

∫
Ω∗

ε,δ

Aε∇uε,δwε,δ∇ψ = v(B)

∫
Ω×Y

A(∇xu0 + ∇yû)∇xψ, (3.23)

where we also used the fact that Tε(∇ψ) converges uniformly to ∇ψ (hence strongly in every Lq(Ω × Y) for
1 � q � ∞).

Passing to the limit with respect to ε in (3.18) and using (3.22) and (3.23), we obtain,

v(B)

∫
Ω×Y

A(∇xu0 + ∇yû)∇ψ − k1

∫
Ω×(RN\B)

A0∇zU∇vψ = v(B)

∫
Ω

f ψ, (3.24)

which, by density, holds true for all ψ ∈ H 1
0 (Ω) and v ∈ KB . Choosing v(B) = 0 in (3.24) yields Eq. (3.6), whereupon

the Stokes formula transforms (3.24) into (3.7). This concludes the proof of the theorem. �
3.3. Standard form for the limit problem

Here we show that the unfolded problem is well-posed and we give the formulation in terms of the macroscopic
solution u0 alone.

First, consider the classical correctors χ̂j , j = 1, . . . ,N , defined by the cell problems (see [5]),⎧⎪⎨⎪⎩
χ̂j ∈ L∞(Ω;H 1

per(Y )),∫
Y

A(x, y)∇(χ̂j − yj )∇φ dy = 0 a.e. x ∈ Ω,

∀φ ∈ H 1
per(Y ).

(3.25)
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Assuming u0 is known and solving Eq. (3.5) for û as a function of u0, gives:

û(x, y) = −
N∑

j=1

∂u0

∂xj

(x)χ̂j (x, y),

which used in Eq. (3.7) from Theorem 3.1 yields∫
Ω

Ahom∇u0∇ψ dx − k1

∫
Ω×∂B

A0∇zUνBψ dσz =
∫
Ω

f ψ dx, (3.26)

where, for a.e. x in Ω , Ahom(x) is the homogenized matrix defined as

Ahom
ij (x) =

∫
Y

(
aij (x, y) −

N∑
k=1

aik(x, y)
∂χ̂j

∂yk

(x, y)

)
dy. (3.27)

Eq. (3.26) is the variational formulation for

−div
(
Ahom∇u0

) − k1

∫
∂B

A0∇zUνB dσz = f. (3.28)

It remains to clarify the connection between the second term in (3.28) and u0. In order to do so, let θ be the solution
of the corresponding “cell problem”:⎧⎨⎩

θ ∈ L∞(Ω;KB), θ(x,B) ≡ 1,∫
RN\B

tA0(x, z)∇zθ(x, z)∇zΨ (z)dz = 0 a.e. for x ∈ Ω,

∀Ψ ∈ KB with Ψ (B) = 0.

(3.29)

From (3.29), (3.16) and Green’s formula together with Eq. (3.6), we get:∫
∂B

A0∇zUνB dσz =
∫
∂B

A0∇z(U − k1u0)νB dσz = −k1u0

( ∫
∂B

tA0∇zθνB dσz

)
,

so that Eq. (3.28) becomes

−div
(
Ahom∇u0

) + k2
1Θu0 = f,

where

Θ(x)
.=

∫
∂B

tA0(x, z)∇zθ(x, z)νB dσz. (3.30)

Remark 3.4. From definition (3.30) the function Θ(x) equals,

Θ(x) =
∫

RN\B
A0(x, z)∇zθ(x, z)∇zθ(x, z)dz,

which is non-negative and can be interpreted as the local capacity of the set B .

In conclusion, by Lax–Milgram’s theorem, we have:

Theorem 3.5. The limit function u0 given by Theorem 3.1 is the unique solution of the homogenized equation:⎧⎪⎨⎪⎩
u0 ∈ H 1

0 (Ω),∫
Ω
Ahom∇u0∇ψ + k2

1

∫
Ω

Θu0ψ = ∫
Ω

f ψ,

∀ψ ∈ H 1
0 (Ω).

(3.31)
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Fig. 5. An example of set Ω ′
ε,δ : an electrostatic screen.

Remark 3.6. The contribution of the oscillations of the matrix Aε in the homogenized problem are reflected by the first
term of the left-hand side in (3.31). The contribution of the perforations is the zero order “strange term” k2

1Θ(x)u0.

Remark 3.7.

1. The proof is actually simpler for the case k1 = 0 and the statement is included in Theorem 3.5: the small holes
have no influence at the limit.

2. The case of lim δ
N
2 −1

ε
= ∞ is easy to analyze: from Theorem 2.11(6),

Tε,δ(uε,δ) ⇀ u0 weakly in L2(Ω;L2
loc(R

N)
)
.

On the other hand, since Tε,δ(uε,δ) = 0 in Ω × B , this implies that u0 = 0.

4. Homogenization in domains with small holes which are periodically distributed in a layer

4.1. Functional setting

As in the preceding section, we suppose that N � 3. We use the notations introduced in Section 2.3 for domains
with small holes contained in the layer Σ ′

ε . The corresponding perforated layer Σ ′
ε,δ is given by:

Σ ′
ε,δ =

{
x ∈ Σ ′

ε such that

{
x

ε

}
Y

∈ Y ∗
δ

}
.

The perforated domain is now (see Fig. 5 for an example),

Ω ′
ε,δ = Ω \

{
x ∈ Σ ′

ε such that

{
x

ε

}
Y

∈ δB

}
.

The small perforations are of size εδ with δ = δ(ε) satisfying,

k2 = lim
ε→0

δ
N
2 −1

√
ε

, where 0 � k2 < ∞. (4.1)

We consider the asymptotic behavior for the following problem:⎧⎪⎪⎨⎪⎪⎩
Find uε,δ ∈ H 1

0 (Ω ′
ε,δ) satisfying∫

Ω ′
ε,δ

Aε∇uε,δ∇φ = ∫
Ω ′

ε,δ
f φ, f ∈ L2(Ω),

∀φ ∈ H 1
0 (Ω ′

ε,δ).

(P ′
ε,δ)



Author's personal copy

264 D. Cioranescu et al. / J. Math. Pures Appl. 89 (2008) 248–277

4.2. Unfolded homogenization result

Theorem 4.1. Let Aε belong to M(α,β,Ω). Suppose that, as ε goes to 0, there exists a matrix A such that

Tε(A
ε)(x, y) → A(x,y) a.e. in Ω × Y.

Furthermore, suppose that there exists a matrix field A0 such that, as ε and δ → 0,

T bl
ε,δ(A

ε)(x′, z) → A0(x
′, z) a.e. in Σ × (RN \ B). (4.2)

Let uε,δ be the solution of the problem (Pε,δ). Then

uε,δ ⇀ u0 weakly in H 1
0 (Ω),

and there exists û ∈ L2(Ω;H 1
per(Y )), and U satisfying (4.11) with U − k2u0 in L2(Σ;KB), such that (u0, û,U)

solves the equations ∫
Y

A(x, y)
(∇xu0(x) + ∇yû(x, y)

)∇yφ(y)dy = 0, (4.3)

for a.e. x in Ω and all φ ∈ H 1
per(Y ); ∫

RN\B
A0(x

′, z)∇zU(x′, z)∇zv(z)dz = 0, (4.4)

for a.e. x′ in Σ and all v ∈ KB with v(B) = 0;∫
Ω×Y

A(∇xu0 + ∇yû)∇ψ − k2

∫
Σ×∂B

A0∇zUνBψ dσz =
∫
Ω

f ψ, (4.5)

for all ψ ∈ H 1
0 (Ω), where νB and dσz are the inward normal and the surface measure on ∂B .

For the proof of this theorem, we need the equivalent of Lemma 3.3 with a similar proof (where Tε,δ is replaced
by T bl

ε,δ).

Lemma 4.2. Let v in D(RN) ∩ KB and, for δ small enough, set

wbl
ε,δ(x) = v(B) − v

(
1

δ

{
x′

ε

}
Y

,
xN

εδ

)
for x ∈ R

N.

Then,

wbl
ε,δ ⇀ v(B) weakly in H 1(Ω). (4.6)

Proof of Theorem 4.1 (for the case k2 > 0). We denote uε,δ the extension by zero to the whole of Ω of the solution of
(P ′

ε,δ). The reasoning is similar to that of the previous section. The following estimate is straightforward from (P ′
ε,δ):

‖uε,δ‖H 1
0 (Ω) � C‖f ‖L2(Ω),

so that, up to a subsequence,

uε,δ ⇀ u0 weakly in H 1
0 (Ω).

Eq. (4.3) is obtained exactly as in the proof of Theorem 3.1.
By Theorem 2.19(7), there exists some U in L2(Σ;L2

loc(R
N)) such that, up to a subsequence

δ
N
2 −1

√
ε
T bl

ε,δ(uε,δ) ⇀ U weakly in L2(Σ;L2
loc(R

N)
)
. (4.7)
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Since T bl
ε,δ

(
M

ε,bl
Y (uε,δ)

) = M
ε,bl
Y (uε,δ)1 1

δ
Y

, Proposition 2.18 implies:

δ
N
2 −1

√
ε

M
ε,bl
Y (uε,δ)1 1

δ
Y

→ k2u0|Σ strongly in L2(Σ;L2
loc(R

N)
)
. (4.8)

On the other hand, Theorem 2.19(7) gives a W in L2(Σ;L2∗
(RN)) with ∇zW in L2(Σ × R

N), such that

δ
N
2 −1

√
ε

(
T bl

ε,δ(uε,δ) − M
ε,bl
Y (uε,δ)1 1

δ
Y

)
⇀ W weakly in L2(Σ;L2∗

(RN)
)
. (4.9)

From (4.7), (4.8) and (4.9), one concludes:

U = W + k2u0, and ∇zU = ∇zW,

and, by Theorem 2.19(5) and (7) again,

√
εδ

N
2 T bl

ε,δ(∇uε,δ) = δ
N
2 −1

√
ε

∇z

(
T bl

ε,δ(uε,δ)
)
1 1

δ
Y

⇀ ∇zU weakly in L2(Σ × R
N). (4.10)

From Definition 2.15, T bl
ε,δ(uε,δ) = 0 in Σ × B , so (4.7) implies:

U = 0 on Σ × B. (4.11)

Therefore, W = U − k2u0 belongs to L2(Σ;KB).

In order to capture the contribution of the perforations to the limit problem, we adapt the proof of Theorem 3.1 and
use Lemma 4.2. For ψ ∈D(Ω), let Φ

.= ψwbl
ε,δ , be a test function in problem (P ′

ε,δ). Since wbl
ε,δ is constant outside

Σ ′
ε for δ small enough, one obtains:∫

Σ ′
ε,δ

Aε∇uε,δ∇wbl
ε,δψ +

∫
Ω ′

ε,δ

Aε∇uε,δ∇ψwbl
ε,δ =

∫
Ω ′

ε,δ

f wbl
ε,δψ. (4.12)

Observe that since wbl
ε,δ vanishes in the holes, one actually has∫

Σ ′
ε,δ

Aε∇uε,δ∇wbl
ε,δψ =

∫
Σ ′

ε

Aε∇uε,δ∇wbl
ε,δψ,

which unfolded with T bl
ε,δ gives:∫

Σ ′
ε

Aε∇uε,δ∇wbl
ε,δψ

T bl
ε,δ∼= εδN

∫
Σ×RN

T bl
ε,δ(A

ε)T bl
ε,δ(∇uε,δ)T bl

ε,δ

(∇wbl
ε,δ

)
T bl

ε,δ(ψ). (4.13)

Properties (5) of Theorem 2.19 implies:

T bl
ε,δ

(∇wbl
ε,δ

) = − 1

εδ
∇zv,

so that (4.10) and (4.13) yield,∫
Σ ′

ε,δ

Aε∇uε,δ∇wbl
ε,δψ

T bl
ε,δ∼= δ

N
2 −1

√
ε

∫
Σ×RN

T bl
ε,δ(A

ε)
δ

N
2 −1

√
ε

∇z

(
T bl

ε,δ(uε,δ)
)
(−∇zv)T bl

ε,δ(ψ). (4.14)

From the compactness of the support of v and the straightforward inequality,∥∥T bl
ε,δ(ψ) − ψ

∥∥
L∞(Σ̂ε× 1

δ
Y )

� cε‖∇xψ‖L∞(Ω)N ,

we obtain:

T bl
ε,δ(ψ)∇zv → ψ∇zv strongly in L2(Σ × R

N). (4.15)
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This, together with convergences (4.1) and (4.10), as well as hypothesis (4.2), allows us to pass to the limit in (4.14)
which now reads

lim
ε→0

∫
Σ ′

ε,δ

Aε∇uε,δ∇wbl
ε,δψ dx = −k2

∫
Σ×RN

A0(x
′, z)∇zU(x′, z)∇zvψ dx′ dz. (4.16)

By a density argument, (4.15) is true for every v in KB .
The second term in (4.12) is unfolded with Tε and using Theorem 2.2, we get at the limit

lim
ε→0

∫
Ω ′

ε,δ

Aε∇uε,δw
bl
ε,δ∇ψ dx = v(B)

∫
Ω×Y

A(x, y)(∇xu0 + ∇yû)∇xψ dx dy,

which, with (4.16) gives Eq. (4.4). Eq. (4.5) is obtained similarly. �
4.3. Standard form of the homogenized equation

Like in Section 3.4, one can rewrite system (4.3)–(4.5) in the standard form. The result is stated in the next theorem,
the proof of which follows the same lines as that of Theorem 3.5.

Theorem 4.3. The limit function u0 given by Theorem 4.1 is the solution of the homogenized equation:⎧⎪⎨⎪⎩
u0 ∈ H 1

0 (Ω),∫
Ω
Ahom∇u0∇ψ + k2

2

∫
Σ

Θ ′u0ψ = ∫
Ω

f ψ,

∀ψ ∈ H 1
0 (Ω),

(4.17)

where Θ ′ is defined by (3.30) with x ′ in place of x.

Remark 4.4. The strong formulation for (4.17) is the following:⎧⎨⎩−divAhom∇u0 = f in Ω \ Σ,

−[Ahom∇u0] = (k2)
2Θ ′u0 on Σ,

u0 = 0 on ∂Ω,

where [Ahom∇u0] denotes the jump across Σ ,[
Ahom∇u0

] .=Ahom∇u−
0 n− +Ahom∇u+

0 n+ on Σ,

n+ and n− denoting the respective exterior unit normal to Ω+ and Ω− on Σ .

Remark 4.5. 1. The proof for the case k2 = 0 is actually simpler, and the statement is included in Theorem 4.3: the
small holes have no influence at the limit, i.e. the equation −divAhom∇u0 = f is satisfied in the whole of Ω .

2. As in Remark 3.7, for the case of lim δ
N
2 −1√

ε
= ∞, Theorem 2.19(6) implies:

T bl
ε,δ(uε,δ) ⇀ u0|Σ weakly in L2(Σ;L2

loc(R
N)

)
.

On the other hand, T bl
ε,δ(uε,δ) = 0 in Σ × B implies that u0|Σ = 0. Therefore, the limit problem splits into two

separate homogeneous Dirichlet problems in Ω+ and Ω−,{−divAhom∇u0 = f in Ω±,

u0 = 0 on ∂Ω±.

5. The thin Neumann sieve with variable coefficients

5.1. Functional setting

We use the same notations as in Sections 2 and 4. For an open subset S of Y ∩ Π such that S ⊂ (Y ∩ Π), set

Yδ = Y+ ∪ Y− ∪ δS,
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Fig. 6. The set Yδ and the thin sieve Ωbl
εδ .

and

Sε,δ =
{
x ∈ Σ such that

{
x

ε

}
Y

∈ δS

}
.

For Ω open and bounded in R
N (N � 3), define:

Ωbl
εδ = Ω+ ∪ Ω− ∪ Sε,δ and Σ ′

ε,δ
.= Σ ′

ε ∩ Ωbl
εδ.

The connection between Ω+ and Ω− occurs through the “sieve” consisting of the set Sε,δ (see Fig. 6). We assume
that ε and δ satisfy assumption (4.1) of Section 4:

k2 = lim
ε→0

δ
N
2 −1

√
ε

, where 0 � k2 < ∞.

Consider the space

V = {
v ∈ H 1(Ω+ ∪ Ω−); v = 0 on ∂Ω

}
,

which is a Hilbert space for the scalar product,

〈u,v〉V =
∫

Ω+∪Ω−

∇u∇v for all u,v ∈ V.
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For simplicity, when v belongs to V , we denote ∇v the L2(Ω)−function which equals the gradient of v in Ω+ ∪ Ω−
(this is the restriction to Ω+ ∪ Ω− of the distributional gradient of v). We also denote by [v] the jump of v across
Σ, [v] .= v+|Σ − v−|Σ , which belongs to H 1/2(Σ). Finally set

Vε,δ = {
v ∈ V, [v] = 0 on Sε,δ

}
.

The thin Neumann sieve model is:⎧⎪⎨⎪⎩
Find uε,δ ∈ Vε,δ satisfying,∫
Ωbl

ε,δ
Aε∇uε,δ∇φ = ∫

Ωbl
ε,δ

f φ, f ∈ L2(Ω),

∀φ ∈ Vε,δ.

(Pbl
ε,δ)

5.2. Unfolded homogenization result

In this problem, the equivalent of the space KB of Section 3 (see (3.2)), is

K̂S = {
Φ ∈ H 1

loc

(
R

N+ ∪ R
N−

); ∇Φ ∈ L2(
R

N+ ∪ R
N−

)
, [Φ] = 0 on S

}
. (5.1)

Proposition 5.1. There exist two linear forms l± on K̂S such that for every Φ in K̂S , the functions Φ± − l±(Φ) belong
to L2∗

(RN±).
The space K̂S is Hilbert space for the norm,

‖Φ‖2
K̂S

.= ‖∇Φ‖2
L2(RN+∪R

N− )
+

(
l+(Φ) + l−(Φ)

2

)2

. (5.2)

Furthermore,

K̂S
∞ .= {

Φ ∈ K̂S,Φ± ∈ C∞(
R

N±
)
, supp(∇Φ±) bounded in R

N±
}
,

is dense in K̂S for this norm.

Proof. Due to the Sobolev–Poincaré–Wirtinger inequality (applied in the sets 1
δ
Y± with δ → 0), for every Φ in K̂S ,

there exist two constants l±(Φ) such that (Φ± − l±(Φ)) belong to L2∗
(RN±).

It is well known that the first term in (5.2) is a Hilbert semi-norm on the space K̂S , so that, with the second term, it
defines a norm. The density of K̂S

∞
in K̂S follows by a standard argument of truncation and regularization. �

Theorem 5.2. Let Aε belong to M(α,β,Ω). Suppose that, as ε goes to 0, there exists a matrix A such that

Tε(A
ε)(x, y) → A(x,y) a.e. in Ω × Y.

Furthermore, suppose that there exists a matrix field A0 such that, as ε and δ → 0,

T bl
ε,δ(A

ε)(x′, z) → A0(x
′, z) a.e. in Σ × R

N. (5.3)

Let uε,δ be the solution of the problem (Pbl
ε,δ). Then

uε,δ ⇀ u0 weakly in V,

and there exists û ∈ L2(Ω;H 1
per(Y )), U ∈ L2(Σ; K̂S) satisfying,

l±(U) = k2u
±
0 |Σ for a.e. x′ ∈ Σ, (5.4)

and such that (u0, û,U) solves the following three equations:∫
Y

A(x, y)
(∇xu0(x) + ∇yû(x, y)

)∇yφ(y)dy = 0, (5.5)

for a.e. x in Ω and all φ ∈ H 1
per(Y ), ∫

RN

A0(x
′, z)∇zU(x′, z)∇zv(z)dz = 0, (5.6)
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for a.e. x′ in Σ and all v ∈ K̂S with l±(v) = 0, and∫
Ω×Y

A(∇xu0 + ∇yû)∇φ − k2

∫
Σ×S

A0 ∇zUn+[φ]Σ =
∫
Ω

f φ, (5.7)

for all φ ∈ V .

Proof (for the case k2 > 0). Let uε,δ be a test function in (Pbl
ε,δ). Using the Poincaré inequality on Ω+ and Ω−, there

is a constant C (independent of ε, δ) such that,

‖uε,δ‖V � C‖f ‖L2(Ω).

Consequently, up to a subsequence, there exists u0 ∈ V such that

uε,δ ⇀ u0 weakly in V.

By Theorem 2.2, one can also assume that there exists û ∈ L2(Ω;H 1
per(Y )) with,

Tε(∇uε,δ) ⇀ ∇xu0 + ∇yû weakly in L2(Ω × Y).

Using ψ ∈D(Ω) as a test function in (Pbl
ε,δ), and unfolding with operator Tε , we get:∫

Ωbl
ε,δ

Aε∇uε,δ∇ψ dx
Tε∼=

∫
Ω×Y

Tε(A
ε)Tε(∇uε,δ)Tε(∇ψ)dx dy.

Applying properties (5) and (6) of Theorem 2.2 we can pass to the limit to obtain,∫
Ω×Y

A(x, y)
[∇xu0 + ∇yû

]∇xψ dx dy =
∫
Ω

f ψ dx.

Next, consider φ ∈ H 1
per(Y ) and ψ ∈ D(Ω+) ∪ D(Ω−). Using Φ(x) = εψ(x)φ(x

ε
) as a test function in (Pbl

ε,δ)

yields,

ε

∫
Ωbl

ε,δ

Aε∇uε,δ∇ψφ

( ·
ε

)
+

∫
Ωbl

ε,δ

Aε∇uε,δψ∇φ

( ·
ε

)
= ε

∫
Ωbl

ε,δ

f ψφ

( ·
ε

)
.

As in Section 3.3, passing to the limit gives (5.5).
By Theorem 2.24(3), there exists U ∈ L2(Σ;L2

loc(R
N±)) such that (up to a subsequence),

δ
N
2 −1

√
ε
T bl

ε,δ

(
u±

ε,δ

)
⇀ U± weakly in L2(Σ;L2

loc

(
R

N±
))

. (5.8)

By construction T bl
ε,δ(M

ε,bl
Y± (u±

ε,δ)) = M
ε,bl
Y± (u±

ε,δ)1 1
δ
Y±. By Proposition 2.23, one has:

δ
N
2 −1

√
ε

M
ε,bl
Y±

(
u±

ε,δ

)
1 1

δ
Y

→ k2u
±
0 |Σ strongly in L2(Σ;L2

loc(R
N±)

)
. (5.9)

By Theorem 2.24(3) there exists a W in L2(Σ;L2∗
(RN)) with ∇zW

± in L2(Σ × R
N±) such that

δ
N
2 −1

√
ε

(
T bl

ε,δ(u
±
ε,δ) − M

ε,bl
Y± (u±

ε,δ)1 1
δ
Y

)
⇀ W± weakly in L2(Σ;L2∗

(RN±)
)
. (5.10)

From (5.8), (5.9) and (5.10), one concludes:

U± = W± + k2u
±
0 |Σ , and ∇zU

± = ∇zW
±. (5.11)

Again by Theorem 2.24(3), one has the convergence:

δ
N
2 −1

√
ε

∇z

(
T bl

ε,δ

(
u±

ε,δ

)) = √
εδ

N
2 T bl

ε,δ

(∇u±
ε,δ

)
⇀ ∇zU

± weakly in L2(Σ × R
N±

)
. (5.12)
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From Definition 2.15, T bl
ε,δ(u

+
ε,δ) = T bl

ε,δ(u
−
ε,δ) on Σ × S, so that by convergences (5.8), (5.12) one has:[
U(x′, ·)] = 0 on S for a.e. x′ ∈ Σ.

Therefore, U ∈ L2(Σ; K̂S), and (5.11) implies (5.4).
In order to obtain equations (5.6) and (5.7), choose a function v in K̂S

∞
and set:

wε,δ(x
′, xN) = v

(
1

δ

{
x′

ε

}
Y

,
xN

εδ

)
.

Clearly, [wε,δ] = 0on Sε,δ and ∇w±
ε,δ vanishes outside Σ ′

ε,δ for δ small enough. One easily shows (as in Lemma 4.2)
that {

Tε(w
±
ε,δ) → l±(v) strongly in L2(Ω±),

w±
ε,δ ⇀ l±(v) weakly in H 1(Ω±).

(5.13)

For ψ ∈D(Ω), using ψwε,δ as a test function in problem (Pbl
ε,δ) gives:∫

Ωbl
ε,δ

Aε∇uε,δ∇ψwε,δ +
∫

Σ ′
ε,δ

Aε∇uε,δ∇wε,δψ =
∫

Ωbl
ε,δ

f wε,δψ. (5.14)

The first term in (5.14) is unfolded with Tε as usual. This yields∫
Ωbl

ε,δ

Aε∇uε,δ∇ψwε,δ

Tε∼=
∫

Ω×Y

Tε(A
ε)Tε(∇uε,δ)Tε(∇ψ)Tε(wε,δ)dx dy.

Applying (5.13) and properties (5) and (6) of Theorem 2.2, one obtains:

lim
ε→0

∫
Ωbl

ε,δ

Aε∇uε,δ∇ψwε,δ = l+(v)

∫
Ω+×Y

A(x, y)(∇xu0 + ∇yû)∇xψ dx dy

+ l−(v)

∫
Ω−×Y

A(x, y)(∇xu0 + ∇yû)∇xψ dx dy.

The second term in (5.14) is unfolded with T bl
ε,δ . The choice of the test function implies that u.c.i. is satisfied, so∫

Σ ′
ε,δ

Aε∇uε,δ∇wε,δψ

T bl
ε,δ∼= εδN

∫
Σ×RN

T bl
ε,δ(A

ε)T bl
ε,δ(∇uε,δ)T bl

ε,δ(∇wε,δ)T bl
ε,δ(ψ). (5.15)

Property (5) from Theorem 2.19 gives:

T bl
ε,δ(∇wε,δ) = 1

εδ
∇zv,

which, together with (5.15), yields∫
Σ ′

ε,δ

Aε∇uε,δ∇wε,δψ

T bl
ε,δ∼= δ

N
2 −1

√
ε

∫
Σ×RN

T bl
ε,δ(A

ε)
√

εδ
N
2 T bl

ε,δ(∇uε,δ)∇zvT bl
ε,δ(ψ). (5.16)

Convergences (5.3), (5.12), allow to pass to the limit in (5.16) to obtain:

lim
ε→0

∫
Σ ′

ε,δ

Aε∇uε,δ∇wε,δψ = k2

∫
Σ×RN

A0 ∇zU(x′, z)∇zvψ dx′ dz.

Now, the limit in (5.14) becomes:
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l+(v)

∫
Ω+×Y

A(∇xu0 + ∇yû)∇xψ + l−(v)

∫
Ω−×Y

A(∇xu0 + ∇yû)∇xψ

+ k2

∫
Σ×RN

A0(x
′, z)∇zU(x′, z)∇zvψ dx′ dz

= l+(v)

∫
Ω+

f ψ + l−(v)

∫
Ω−

f ψ, (5.17)

which, by density, holds for every v ∈ K̂S . Eq. (5.6) is then simply obtained by choosing l+(v) = l−(v) = 0 in (5.17).
Using (5.6) with an arbitrary v in K̂S

∞
one deduces by Green’s formula that∫

R
N±

A0∇zU∇zv dz =
∫
S

A0∇zUn±(
v(z′) − l±(v)

)
dz′, (5.18)

which still holds for every v ∈ K̂S . Then, (5.18) together with (5.17) leads to,

l+(v)

( ∫
Ω+×Y

A(∇xu0 + ∇yû)∇xψ − k2

∫
Σ×S

A0∇zUn+ψ −
∫

Ω+

f ψ

)

+ l−(v)

( ∫
Ω−×Y

A(∇xu0 + ∇yû)∇xψ − k2

∫
Σ×S

A0∇zUn−ψ −
∫

Ω−

f ψ

)

+ k2

∫
Σ×S

(
A0∇zUn+ + A0∇zUn−)

vψ = 0. (5.19)

Taking l+(v) = l−(v) = 0 in (5.19), implies that

A0∇zUn+ + A0∇zUn− .= [A0∇zU ]S = 0 a.e. on Σ × S. (5.20)

Since l+(v) and l−(v) are independent, (5.19) now gives the following two formulas:∫
Ω+×Y

A(∇xu0 + ∇yû)∇xψ − k2

∫
Σ×S

A0∇zUn+ψ =
∫

Ω+

f ψ,

∫
Ω−×Y

A(∇xu0 + ∇yû)∇xψ − k2

∫
Σ×S

A0∇zUn−ψ =
∫

Ω−

f ψ,

(5.21)

which, by density, hold for every ψ in H 1
0 (Ω). Let φ be arbitrary in V . Eq. (5.7) is obtained by choosing ψ = φ+,

respectively ψ = φ− in (5.21), and adding the two corresponding equations. �
5.3. Standard form of the homogenized equation

As in Section 4.4, one can write system (5.4)–(5.7) in a standard form, with only u0 as unknown.
First, from (5.6), the first term in the left-hand side of (5.7), can be written in terms of the standard homogenized

operator: ∫
Ω×Y

A(∇xu0 + ∇yû)∇φ =
∫
Ω

Ahom∇u0∇φ,

for every φ in the space V , using the same cell-problems (3.25) and the same Ahom given by (3.27).
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Next, observe that for a given u0, problem (5.4)–(5.6) for U , has a unique solution by the Lax–Milgram theorem
(applied on a closed affine subspace of K̂S ).

Now, we show how Eq. (5.7) can be brought to the standard form. More precisely, it remains to clarify
the connection between the term −k2

∫
S
A0 ∇zUn+ and [u0]Σ . In order to do so, let θ be the solution of the following

“cell problem”: ⎧⎪⎨⎪⎩
θ ∈ L∞(Σ; K̂S), l±(θ) ≡ ±1,∫

RN
tA0(x

′, z)∇zθ(x′, z)∇zΨ (z)dz = 0 for a.e. x′ ∈ Σ,

∀Ψ ∈ K̂S with l±(Ψ ) = 0.

(5.22)

From (5.18) follows: ∫
R

N+∪R
N−

A0∇zU∇zv dz = (
l+(v) − l−(v)

) ∫
S

A0∇zUn− dz′. (5.23)

Similarly, the solution of (5.22) is unique and satisfies for a.e. x′ in Σ ,

tA0∇zθn+ + tAA0∇zθn− .= [
tA0∇zθ

]
S

= 0,∫
R

N+∪R
N−

tA0∇zθ∇zv dz = (
l+(v) − l−(v)

)∫
S

tA0∇zθn− dz′. (5.24)

Formula (5.23) holds for v = θ , whereas (5.24) does for v = U , so that combining the two yields,∫
S

A0∇zUn− dz′ = l+(θ) − l−(θ)

2

∫
S

A0∇zUn− dz′ = l+(U) − l−(U)

2

∫
S

tA0∇zθn− dz′.

Consequently, by (5.4),

k2

∫
S

A0(x
′, z)∇zU(x′, z)n− dz′ = k2

2

2
Θ(x′)[u0]Σ(x′),

where

Θ(x′) .=
∫
S

tA0∇zθn− dz′ = −
∫
S

tA0∇zθn+ dz′,

the latter equality deriving from (5.23). Thus, Eq. (5.7) becomes:∫
Ω

Ahom∇u0∇φ dx + k2
2

2

∫
Σ

Θ(x′)[u0]Σ(x′)[φ]Σ(x′)dx′ =
∫
Ω

f φ dx.

We have proved the following theorem:

Theorem 5.3. The limit function u0 given by Theorem 5.2 is the solution of the homogenized equation:⎧⎪⎨⎪⎩
u0 ∈ V,∫
Ω
Ahom∇u0∇φ + k2

2
2

∫
Σ

Θ[u0]Σ [φ]Σ = ∫
Ω

f φ,

∀φ ∈ V.

(5.25)

Remark 5.4. Taking v = θ in (5.24) shows that

Θ(x′) = 1

2

∫
R

N+∪R
N−

A0(x
′, z)∇zθ(x′, z)∇zθ(x′, z)dz

is non-negative. This implies existence and uniqueness of the solution u0 of (5.25).
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Remark 5.5. The strong formulation for the solution u0 of the limit problem is:⎧⎨⎩
−divAhom∇u0 = f in Ω \ Σ,

Ahom∇u0n
−|Σ = −Ahom∇u0n

+|Σ = k2
2
2 Θ[u0]Σ,

u0 = 0 on ∂Ω.

Remark 5.6. In the case where A0 is even with respect to zN , θ vanishes on S. Then, Θ(x′) can be interpreted as the
local capacity of the set S, the capacitary potential being (1 ∓ θ±).

Remark 5.7. 1. The proof for the case k2 = 0 is actually simpler and the statement is included in Theorem 5.3: the
holes are too small to keep any connection between Ω+ and Ω−. The limit problem is split into two independent
problems in each of these sets with mixed homogeneous boundary conditions,⎧⎨⎩−divAhom∇u0 = f in Ω±,

Ahom∇u0n
±|Σ = 0 on Σ,

u0 = 0 on ∂Ω± \ Σ.

2. For the case of lim δ
N
2 −1√

ε
= ∞, Theorem 2.24(2) implies:

T bl
ε,δ(uε,δ) ⇀ u±

0 |Σ weakly in L2(Σ;L2
loc

(
R

N±
))

.

On the other hand, [T bl
ε,δ(uε,δ)]S = 0 on Σ × S implies that [u0]|Σ = 0. Therefore, u0 belongs to H 1

0 (Ω) so that
the limit problem is satisfied in the whole of Ω .

6. The thick Neumann sieve with variable coefficients

In this section we extend the results of Section 5 to the case of a thick Neumann sieve of thickness of order ε > 0.
We will use the same notations, unless specified otherwise, and we only sketch the main modifications of setting and
of the proof.

For an open subset S of Y ∩ Π such that S � (Y ∩ Π), we introduce the class FS of admissible sets, which we use
to describe a thick sieve with holes shaped according to S.

Definition 6.1. The subset set F of R
N is in FS , if

(i) F is closed with connected complement in R
N ,

(ii) F is symmetric with respect to all the hyperplanes of equations {zj = 0, j ∈ 1, . . . ,N − 1} and F = F+ ∪ F− ∪
{Π \ S},

(iii) F is such that F ∩ 1
δ
Y ⊂ {|zN | � 1

2δ
} for every 0 < δ � 1,

(iv) F+ and F− are unbounded with Lipschitz boundary,
(v) there exists some positive R such that the boundaries ∂F+ and ∂F− outside the ball of radius R, are Lipschitz

graphs over R
N−1.

For F ∈FS , set

Fδ = δF ∩ Y, and Fε,δ =
{
x ∈ Σ ′

ε such that

{
x

ε

}
Y

∈ Fδ

}
.

Define:

Ωns
εδ = Ω \ Fεδ and Sε,δ = Ωns

εδ ∩ Π.

Fig. 7 present an example of admissible set F in dimension 3. Fig. 8 is the corresponding sieve. Fig. 9 is a two
dimensional cross-section.

We use the same space V as in Section 5, while the Vε,δ is now:

Vε,δ = {
v ∈ H 1(Ωns

εδ + ∪ Ωns
εδ −

)
, v|∂Ω = 0, [v]Sε,δ = 0

}
.
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Fig. 7. An example of set F : the hole in the sieve.

Fig. 8. The 3D geometry of the thick Neumann sieve.

Fig. 9. A 2D cross-section of the set F and the domain Ωns
ε,δ .

The thick Neumann sieve problem can be stated as follows:⎧⎪⎨⎪⎩
Find uε,δ ∈ Vε,δ satisfying,∫
Ωns

ε,δ
Aε∇uε,δ∇φ = ∫

Ωns
ε,δ

f φ, f ∈ L2(Ω),

∀φ ∈ Vε,δ.

(Pns
ε,δ)
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The equivalent of the space K̂S (see (5.1)) is the following, where G denotes the complement of F :

K̃G = {
Φ ∈ H 1

loc(G); ∇Φ ∈ L2(G)
}
. (6.1)

Proposition 6.2. There exist two linear forms l± on K̃G such that for every Φ in K̃G, the functions Φ± − l±(Φ)

belong to L2∗
((RN \ F)±).

The space K̃G is a Hilbert space for the norm given by:

‖Φ‖2
K̃G

.= ‖∇Φ‖2
L2((RN+∪R

N− )\F)
+ l+(Φ)2 + l−(Φ)2.

Furthermore, for this norm, l+ and l− are continuous on K̃G, and

K̃G
∞ .= {

Φ ∈ K̃G,Φ ∈ C∞(G), supp(∇Φ) bounded in G
}
,

is dense in K̃G.

Proof. The proof is the same as that of Proposition 5.1. The only modification concerns the sequence of sets on which
the Sobolev–Poincaré–Wirtinger inequality (with a uniform constant) is applied. In view of Definition 6.1(iv), this can
be achieved on the sets 1

δ
Y± ∩ {±zN > R} ∩ G (making use of [22]). �

The unfolded limit problem and the standard homogenized equation are given in the next two theorems. Up to the
modifications of notations indicated above, theirs proofs are the same as in Section 5.

Theorem 6.3. Let Ω be open and bounded in R
N , N � 3, and Aε belong to M(α,β,Ω). Suppose that, as ε goes to

0, there exists a matrix A such that

Tε(A
ε)(x, y) → A(x,y) a.e. in Ω × Y.

Furthermore, suppose that there exists a matrix field A0 such that, as ε and δ → 0,

T bl
ε,δ(A

ε)(x′, z) → A0(x
′, z) a.e. in Σ × (RN \ F).

Let uε,δ be the solution of the problem (Pns
ε,δ). Then

uε,δ ⇀ u0 weakly in H 1
loc(Ω \ Σ),

and there exist û ∈ L2(Ω;H 1
per(Y )), U ∈ L2(Σ; K̃G) satisfying,

l±(U) = k2
(
u±

0

)
|Σ for a.e. x′ ∈ Σ,

and such that (u0, û,U) solves the equations,∫
Y

A(x, y)
(∇xu0(x) + ∇yû(x, y)

)∇yφ(y)dy = 0,

for a.e. x in Ω and all φ ∈ H 1
per(Y ); ∫

G

A0(x
′, z)∇zU(x′, z)∇zv(z)dz = 0,

for a.e. x′ in Σ and all v ∈ K̃G with l±(v) = 0,∫
Ω×Y

A(∇xu0 + ∇yû)∇φ − k2

∫
Σ×S

A0∇zUn+[φ]Σ =
∫
Ω

f φ,

for all φ ∈ V .
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Fig. 10. The combination of a Neumann hole T and a Dirichlet hole δB.

Theorem 6.4. The limit function u0 given by Theorem 6.3 is the solution of the homogenized equation:⎧⎪⎨⎪⎩
u0 ∈ V,∫
Ω
Ahom∇u0∇φ + k2

2
2

∫
Σ

Θ[u0]Σ [φ]Σ = ∫
Ω

f φ,

∀φ ∈ V,

where

Θ(x′) = 1

2

∫
G

A0(x
′, z)∇zθ(x′, z)∇zθ(x′, z)dz,

and θ is the solution of the cell-problem,⎧⎪⎨⎪⎩
θ ∈ L∞(Σ; K̃G), l±(θ(x′, ·)) ≡ ±1,∫
G

tA0(x
′, z)∇zθ(x′, z)∇zΨ (z)dz = 0, a.e. for x′ ∈ Σ,

∀Ψ ∈ K̃G with l±(Ψ ) = 0.

Remark 6.5. The function Θ(x′) can be interpreted as the local relative capacity (in G) of the set C(x′) defined as the
set where θ(x′, ·) vanishes, the capacitary potential being (1−θ(x′, ·)) “above C(x′)” and (1+θ(x′, ·)) “below C(x′)”.
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