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Abstract We design a device that generates fields canceling out a kpowbing
field inside a region to be cloaked while generating very fiedts far away from
the device. The fields we consider satisfy the Laplace eguuabut the approach re-
mains valid in the quasistatic regime in a homogeneous medive start by relating
the problem of designing an exterior cloak in the quasistagime to the classic
problem of approximating a harmonic function with harmopatynomials. An ex-
plicit polynomial solution to the problem was given earlie{Phys. Rev. Lett. 103
(2009), 073901]. Here we show convergence of the device titette field needed
to perfectly cloak an object. The convergence region lirthits size of the cloaked
region, and the size and position of the device.
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1 Introduction

Cloaking — preventing detection of objects from a probinlgifiehas been the subject
of many recent studies, see e.g. the reviews|[1, 7]. A cloakbesctiveor passive
depending on whether active sources are needed to maih&icldak. A cloak is
said to beinterior if it completely surrounds the object to be hidden axterior
otherwise.

One approach to obtaassive interioricloaks is to exploit the invariance of the
governing equations (e.g. Laplace, Helmholtz, Maxwellaguns,. . .) to coordinate
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transformations. This approach was introducedlin [6, 201543, 7] (see also refer-
ences in|[1}17]) and is based on ideas first observed in [4hodigh transformation
based cloaking is set on solid mathematical grounds anddwrs demonstrated ex-
perimentally in a variety of physical settings, the cloakaerated with this approach
require materials with extreme properties that are uswgllyroximated using spe-
cially designed metamaterials. Unfortunately metamal®rised in electromagnetic
transformation based cloaking are typically very dispgrsimeaning that the cloak
operates only in a narrow band of frequencies. Also losst®icloak material gen-
erate heat that can make the object detectable using idfr8mme recent results in
generating broadband low-loss metamaterials have beaimebtin [23]. In an effort
to overcome the shortcomings of transformation based s|oaakious regularizations
have been proposed (seel[12] and references therein).

Otherpassive interiorcloaking methods include plasmonic cloaking (see [1] and
references therein). Cloaking methods thatpassiveandexteriorinclude cloaking
with complementary media [13], cloaking by anomalous reseaes|[1/7, 19, 18] and
plasmonic cloaking [22].

An example of aractive interiorcloak appears ir [16] and uses sources contin-
uously distributed over a closed surface surrounding tbhaked region in order to
cancel out the incident field inside the cloaked region.

Here we focus on aactive exteriorcloak for the 2D Laplace equation [8], which
can be easily adapted to 2D quasistatics in a homogeneousmebhis scheme
assumes the incident or probing field is known and uses oneacurce (cloaking
device) to cancel the incident field in the cloaked regiomwib significant perturba-
tion in the far field. Thus an object inside the cloaked regmeracts very little with
the probing field and becomes harder to detect. Active extelbaking has been ex-
tended to the 2D Helmholtz equation in [9) 10] and to the 3Dnielltz equation in
[12]. Our approach assumes a homogeneous background madainequires three
(resp. four) devices or antennas to construct a cloak fo2théesp. 3D) Helmholtz
equation.

Our goal here is to rigorously justify the quasistatic cliogkmethod ofl[3]. Qua-
sistatics refers to the Maxwell or Helmholtz equations ia filng wavelength limit,
where the governing equation is the Laplace equation. W Isyadescribing the
cloak setup in Sectidn 2. Then in Sectidn 3, we prove the exést of a solution for
the 2D quasistatic active exterior cloak, based on a cléssimonic approximation
result due to Walsh (see e.gl [5]). Unfortunately the eristeproof is not construc-
tive. We proposed a candidate constructive solution witipooof in [8], supported
by numerical experiments. In Sectibh 4 we give the argumieeiiénd this solution
and prove that it does indeed solve the active exterior ahgghroblem.

2 Cloak setup and device requirements

Three regions ifk? are needed to describe our cloak setup: the region to beazdoak
the cloaking device, and the observation region. See Flfjteft) for an example
setup. The main idea of our cloaking method is to cancel oyaasumed known)
incident fieldug inside the cloaked region while perturbing the far field oslightly.
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Fig. 1 The effect of the inversion (Kelvin) transform= 1/z on the cloak geometry. The cloaked region is
in red and the device sources are all contained in the gray Tie green region is the observation region,
where the device field must be very small to avoid detection.

Thus the total field inside the cloaked region is practicadiyo and the scattered field
from any objects inside the cloaked region is reduced sizanifiy.

Here we consider the conductivity equation with conduttisne and a harmonic
incident fieldup (i.e. Aug = 0). Without loss of generality, we take as cloaked region
the diskB(c,a) C R?, centered at = (p,0) € R?, p> 0, and with radiug > 0. As in
[8], we consider one cloaking device located ins&{6, d), with 6 < 1. The device
generates a field, harmonic outsid8(0, d). In order to cloak objects the device field
u needs to satisfy the following requirements.

1. The total fieldu+ up in the cloaked regioB(c,a) is very small.
2. The device fieldi is very small far away from the device, e.g. in the observatio
regionR?\ B(0,R) for a largeR > 0.
In order for the device to bexteriorto the cloaked region, we must have
p>a+d. (1)

Also the observation radil®needs to be large enough to contain both the device and
the cloaked region:
R>a+p. (2)

3 Cloak existence

The existence of a device fieldhaving the desired cloaking properties to within a
tolerancee is stated in the next theorem.

Theorem 1 Lete > 0 be an arbitrarily small parameter. Let also:a 0, ¢c = (p,0),
p > 0 and R satisfy the inequaliti€]) and (@). Then for a harmonic incident field
Uo, there are functionsg: RZ2 — R and u: R? — R such that

Au=0, in R?\ B(0,9),
U= Jo, OnaB(ov 6)7 (3)
with |u| < £ in R?\ B(0,R) and |u+ Uo| < € in B(c,a).



Region zplane w=1/zplane
Cloaking device | B(0,3) R?\ B(0,1/5)
Cloaked region B(c,a) B(c*,a) with ¢ = (B,0), a = a/|p? — &|

andB = p/(p* - &%)
Observation region| R?\B(0,R) | B(0,1/R)

Table 1 The different regions in our cloak setup and how they are redgdyy the inversion (Kelvin)
transformation.

The main idea of the proof of Theordm 1 is to relate activeraxteloaking to
the problem of approximating harmonic functions with hamegolynomials. We
rely on the following classic result.

Lemma 1 (Walsh, see e.g.[5], page 8¢t K be a compact set iR? such thaR?\ K
is connected. Then for each function w harmonic on an openm#aining K and
for anye > 0, there is a harmonic polynomial g for whi¢Ww— q| < € on K.

We can now proceed with the proof of Theorigm 1.

Proof It is convenient to use complex numbers x+ iy to represent point§,y) €
RR?. By applying the inversion (Kelvin) transformation= 1/z, the geometry of the
problem transforms as in Talile 1. (see also Figlre 1).

Thus the cloaking probleni](3) is equivalent to finding fuant gy and U for
which

AU=0,inB(0,1/9),
U= 0o, ondB(0,1/9), (4)
with |U] < € onB(0,1/R) and|U+ Up| < € onB(c",a).
Heree is as in the statement of the theord®(z) = go(1/2) and the functionip(z) =
Uo(1/2) is harmonic orR?\ {0}.
LetUq denote the analytic extension@fin B(c*, a), obtained by addingtimes
its harmonic conjugate. Notice that sindg is analytic, it can be arbitrarily well

approximated by a polynomial, e.g. a truncation of the pcseeies ofJo. Therefore,
there is a polynomiaQg such that

|Up— Qo| < £/2, onB(c*,q). (5)
For Ug this means that
|U0—QO| <£/27 OnB(C*7a)7 (6)

whereqq is the real part 0fg. Thus we may solvd {4) by first approximating the
(inverted) incident fieldip by go and then studying the following problem

AU=0, inB(0,1/3),
U= 0o, ondB(0,1/9), (7
with |U] < € onB(0,1/R) and|U+ qo| < £/2 onB(c", a).



5

After inversion, the condition§{1) andl (2) necessary fasifigan exterior cloak
become

1/R< B —a, (thetwo disksB(0,1/R) andB(c*,a) do not touch), and

8
B+a<1/d, (thetwo disksB(0,1/5) andB(c",a) do not touch). ®
Therefore, there existsQ £ <« 1 such that
1
=HE<B-a-¢. ©)

We can now apply Lemnid 1 to the compactket B(0,1/R) UB(c*, a) (which has
a connected complement by virtue of (8)) and the function
" {o inB(0, & + &),

—Qo inB(c*,a+ &), (10)

which is a harmonic function in the open &0, £ + &) UB(c*, a + &) (a set contain-
ing K). We obtain that there exists a harmonic polynomialich thaiq—w| < €/2
onK. A solution to [T) is then given by = g andgp = q ondB(0,1/d). This implies
the statement of the theorem.

Remark 1We assumed throughout this section that the incident figid harmonic
onR?. This corresponds to a source located at infinity. Recallnoethod relies on
approximating the Kelvin transformed analytic extensibthe incident fieldJg in-
side the Kelvin transformed cloaked regiBfc*, a) by a polynomialQo (see [(11)).
This approximation only requires analyticity df inside the cloaked regioB(c,a).
Hence the results of this section and the construction ofi@&€d below generalize
easily to the case where the incident figjds harmonic inside the observation region
B(0,R). This is the case where the sources generating the incigdatdie outside
the observation region but not necessarily located at tgfini

Remark 2Clearly, Theorerhll also holds when the device and cloakedmege not
necessarily disks. The only requirements are that they badex, disjoint and that
the complement of their union be connected (see Lefma 1).

4 A constructive solution for active cloaking

Although mathematically rigorous, the existence resulfloéoreni]l does not give
an explicit expression for the potential required at thézaatevice (antenna). To give
an explicit harmonic solution to problerl (3), we first sinfplihe problem in Sec-
tion[4.1. Then we give a candidate solution to the simplifiezbfem in Sectioh 412,
in the form of a Lagrange interpolation polynomial. A bettelution is constructed in
Sectio 4.B by averaging several Lagrange interpolatidynpmials. The resulting
polynomial turns out to be a Hermite interpolation polynammhen in Sectioh 414
we show that this Hermite interpolation polynomial solNd)s(@nd thus the cloaking
problem[[B)) provided its degree is sufficiently large. T¢oavergence study reveals
constraints on the size of the cloaked region and the delvateate due to the partic-
ular solution we construct.



4.1 Simplifying the problem

In the proof of Theorerill, we related the cloaking problemt¢3jhe problem of
approximating a polynomia)y with an analytic functiol such that for some > 0,

V| < €in B(0,1/R) and|V + Qo| < € in B(c", a). (11)
Now consider the problem of finding an analytic functirsuch that for some’ > 0,

|[1-W| < ¢ inB(0,1/R) and|W| < & in B(c", a). (12)
Assuming we can find an approximafdtin (12) withe’ = ¢/M and

M = sup  |Qo(2)], (13)
zeB(c*,a)UB(0,1/R)
a solution to[(Il) is thew = —Qu(1— W), which is analytic because the product of
two analytic functions is analytic.

For illustration purposes we fast forward to Figlure 3, wheeagive an example of
a functionw with the approximation propertigs (12). The functidris a polynomial
whose motivation, derivation and analysis are the subjéthhe remainder of this
section.

In order to use such a functi® for cloaking, assum&y(1/z) is the harmonic
incident field. Then the device field needed for solving theaking problem[(B) is
the real part of the functiod (1/z) = —Qu(1/2)(1—W(1/z)) (after having undone
the Kelvin transformation we used for the analysis). The@aadevice field is illus-
trated in Figur€}4. On the left, a scatterer perturbs theladi field and can be easily
detected. On the right, the device field (based on the fumttimf Figurel3 is acti-
vated and suppresses the incident field inside the cloakgaoivemaking the object

undetectable for all practical purposes.
2
1
0
-1
e 2

Fig. 2 Left: sample interpolation points for the interpolationlypmmial py y with n =5, ¢ = 0 and
Y = 11/3. Right: the modulus of the polynomial, , with n= 10, ¢ = — = 11/10 andB = 4. The color
scale is logarithmic and the interpolation nodes are inditay the interpolation values.

4.2 A first candidate polynomial from Lagrange interpolatio

Im

We present a polynomial solution fo {12) based on Lagrartgegnlation. This is
an intermediary step to motivate the explicit solutiori @)(diven later in Sectiodn 4!.3.
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The idea applies only to the case wheare- R= 1 andB = p/(p®—a?) > 2. The can-
didate solution is a polynomial that is onere¢qually distributed points 08B(0, 1)
and zero anh equally distributed points 0dB(c*,1). The motivation being that by
surrounding both 0 andf = (3,0) by n points where the polynomial has the desired
values, we hope to get close to a polynomial satisfyiing (12).

To be more precise, let us introduce the following family nﬁbdes{e“”wj B+
e“”wj}?;é. Here @ and ¢ are two arbitrary angles and; = exp2irj/n], for j =
0,...,n—1. Define the polynomiaby, , as the unique polynomial of degrea 2 1
satisfying,

Pe.w(€?W;)) =1 andpy 4 (B +€%¥wj) =0, for j=0,....,n—-1. (14

An example of the interpolation nodes and the valuepgj, is shown in Fig-
urel2(left).
The polynomialpy,  is unique and can be written explicitly as

n—1
Po.y(2) = zo%,w,m(z)v (15)

whereqy ¢ m(z) are Lagrange interpolation polynomials (see e.g. [24])n@efifor
m=0,...,n—1hy

qw,w,m(Z)Zl H o z=ew ][nl z— (B+€%wj)

&Pwm —ePw; | | 1 €% — (B+€Yw))

] ,  (16)

j=0,j#m
or alternatively by their interpolation properties
q(p,w,m(eiij) = Omj, andqy,y.m(B + e“”wj) =0, forj=0,...,n—1 a7)

Herednj = 1if m= j and O otherwise is the Kronecker delta. Straightforwardwal
lations give the expression

el

p.p.m(2) = (€PWm — B)N—e¥n | | z— &Pwip, Wne?)n-1

| as
which will be used later in Sectidn 4.3.
We state the following symmetry property of the polynonggl, for later use.

Lemma 2 For any anglesp andy, the polynomial p , has the following symmetry
property:
Po.y(2) + Py+mein(B—2) = 1. (19)

Proof Equation[(ID) follows from noticing that fgr=10,...,n—1,
Py+me+n(B— (B+ einj)) = pw+n,<p+n(ei<w+n)wj) =0, and
Py mprn(B —€%W)) = Py norn(B +e|((p+n)wj) =1

Hence the polynomiapy y(2) + Py-+me+n(B — 2) — 1 must be identically zero be-
cause it is of degree2- 1 and has @roots{€®wj, 8 + €%w; }’j‘;é.

(20)



An actual polynomiapy, ¢ is shown in Figurél2(right). Unfortunately this poly-
nomial is not a good solution for problem {12) as the regiohemp, y ~ 1 and
Pe,y =~ 0 to within a certain tolerance (say 1%) are relatively sn@langingp and
Y does not give a significant improvement. However these potyjals are the build-
ing block for the ensemble average polynomial solving (b2} tve present next.

4.3 The ensemble average polynomial

2

V. o 1
U = . 1
5 2

.6
-0.5 0 1 1

Fig. 3 The modulus of the ensemble average polynortj#lz) for n =12 andB = 1. The device field
used for cloaking igp) (1/z). Within 1% accuracy, the polynomiap) is close to one inside the dashed
white circle and close to zero inside the solid white cirdlee boundary of the convergence regdp of
(p) asnh — = is the peanut shaped curve in red (see The@iem 2). The callerisdogarithmic from @1
(dark blue) to 100 (dark red), with light green representing

In an effort to obtain a polynomial solution to problem](12¢ walculate the
ensemble average of the polynomigg, with respect to the two phase factors
@,y € 10,27, that is

21 p2m
P @~ [, ) Pew(@dody. @)

We prove in Theorerl 2, using the next lemma, that indgeds a solution for[(1R).
An example of such polynomial f@ = 1 andn = 12 is given in Figurél3.

Lemma 3 The ensemble average polynomial define@ii) has the expression

<p>(2)=(1—é)n:]z:(é)j%. (22)

Proof We first use the Cauchy residue theorem to compute the itegra

1 [2m (z—B)"—€yn 1 (z—B)"—w" dw
ZT/O (e""Wm*B)”*ei‘l’"dw_E'f/\w\:l(ei“”Wm*B)”*W”W
__(z=B)"
(€owm—B)"’

(23)
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Fig. 4 Real part of the total field with the cloaking device activiglft) and inactive (left), for an incident
field up(z) = zandn = 12. The solid white, dashed white and red curves are the iKetansforms of
the respective curves in Figdre 3. The solid black disk islamst resonant scatterer with radius- 0.1,
located atz= 1.05 and with dielectric constamt= —1+ 10-3, chosen to be plasmonic with a negative
value close to-1 to amplify its effect. The solid black curve is the contouir= 100. The color scale is
linear from -10 (dark blue) to 10 (dark red).

since the integrand has a single simple polevat O in the disk|w| < 1. Then by
plugging [238) into the expression fqp, 4 m We get that

1 gem (z—B)" "€, 1

21 Jo doym(2)dY = (€9Win — B) Z— €Wy, N(Wing®)n-1 (24)
Recalling thatpy,y is the sum[(I5) ofjy,y.m We can write
1"l z-p)n - 1
<p> (Z) - ET”ZO (ei(me— B)n 7 eW’Wm n(Wmei(p)n—l' (25)
Now all nterms in the previous sum are identical, therefore
1 m (z-p)" - 1
1 n 2 —w dw
~ 3 S P e
_(z=B)" / 2 ) r
2T S WO 1 (z—w)(w—B)“dW (26)

Z

_(@=p)" e
2im /\W\:l ]Zo Wi+ (w— B)ndw

nlz dl { 1 ]
=z-B)"Yy = — | —— ,
( B) ];) J' dWJ (W_B)n W0
where we used Cauchy’s theorem in the last equaliti df (26¢. desired expression
([22) follows by straightforward algebraic manipulatiorigZg).
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Remark 3By using elementary algebraic manipulations &nd (26), fidssible to
show that(p) is the Hermite interpolation polynomial [24] of degree21 that is
uniquely defined by therRinterpolation conditions

(P (0)=1, (p)(B)=0, and(p)V (0)= () (B) =0, for j =1,...,n— 1. (27)

Notice that the ensemble average polynomial inherits thensgtry property[(19)
for py,y, that is

P@+{PB-2=1 (28)

This symmetry property means that by design, the polynogias as good an ap-
proximation to one near the origin as the approximation to rear(.

4.4 Asymptotics of the ensemble average polynomial

We now study the behavior of the polynomial) (defined in[Z21L)) a® — «. The
following result shows that the polynomiéb) solves the probleni{12), and gives
limits to the size of the cloaked region.

Theorem 2 The ensemble average polynom(ig) can be written as

1 (2k)! 2\\*/1 z
g (a00p) Gg) @
The polynomia({p) (z) converges as s> « if and only if z belongs to the convergence
region

2
Dﬁ{zec, |fBz|<%}. (30)
The convergence is uniform on compact subsetsgablhe function
1 if 02 <pB/2,
Z) = 31
x(2 {0 otherwise. 1)

For large enough n, the polynomigp) solves(12)if and only if
1 B B

and a <

< .
R "~ 2V2+2 2v2+42

Proof Consider the function

=(1-1) Zotl('r”rJ ) (33)

Note that, from[(2R) we have

(32)

where for any positive integersandp, () = m(mLip)!.

fa(t) = (p) (Bt), forallt € C. (34)
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Then for allt £ 1 we obtain,
fn+l Z]tj< ! )
e | )
i
n n
— ) (n+] ) 1+Zt1(n‘LJ )] (35)
=] J
-1
() (M)
K=o
_t{(lt)”“ t n +(1—t)”+t n .
In the above equation we used the recurrence relation

(m) _ (m—l) n (m—l) for any integersn, p > 0
p/ \p-1 P/ o

From [35), for any integem > 1 we obtain,

fapa(t) = f(t) — (1—t)ntn+l<2nn) * (1_t)ntn<2nn 1>

() — (1—t)”t”(2nn) (t - %) , forallt # 1.

In (36) we used the identity

(Zn) - 2(2nn 1), for every integen > 1.

5 —

(36)

n

From the first order linear recurren€el(36) we obtain,

— —+ Z 1—t)ktk (Zk) (é—t) (37)

and this is valid for alln > 1 and allt € C (as [3T) which was initially obtained
for t # 1 checks also for = 1). The final expressiof_(29) follows from substituting
t =z/B in (32) and using(34).

Notice that the polynomidlp) is in fact then-th order partial sum of the following

infinite sum, 2 Zolf_ <—> <2kk> (2 é)

By the ratio test this series converges uniformly on congpaabsets of the region
Dg (defined at[(3D)) to a limit functiop and diverges irC\ Dg. From the uniform
convergence ofp) we deduce the analyticity af in Dg and by using the Taylor
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expansion around the origin fgr, the Remark13, and the symmetry propeliy (28) we
obtain convergence to the functign{31) insidlg.

We now study the convergence regiDg in order to show that the constraints
(32) are necessary and sufficient f@) to solve [I2). First notice that the definition
of the regionDg and simple algebra reveal that

é < 2¢§+2 %e*i"e (Dpn{ze C,2Reg2) < B}), and (38)
<2\/§+2©B+ae(DBﬂ{zeC,2Re(z)>B}). (39)

Next we show that
% < 2\/§+2 & B(0.1/R) € (Dy{ze C, 2Rz < B}), and  (40)
a< 2\/§+2 & B(c',a) € (DgN{ze C, 2Re2) > B}), (41)

where& is the classical symbol for compact inclusions. By usingdbaivalences
(38) and[(3D) it is easy to check that the inclusiondid (4@ &) imply the con-

straints [[3R). To show the implicatior(), we first show that for any two positive
real numbers$, q with 2max|l,q} < 3, we have

le”™ e Dg < B(0,) € (DgN{ze C,2Rez) < B}) and (42)
B+ae€Dg < B(c*,q) € (Dgn{ze C,2Rez) > B}). (43)

Let us first show the equivalen¢e{42). The sufficieney (s immediate. For the other
implication (=), we can use the definition &f to show that for any < [, 71} we
have,
i 2.6 2
€'’ eD 1<d® — Bl < =
€Dg & | Bl| < 7
4

246 _ 2.-i6 _ P
< (17 - Bl) (1€ BI)<16
B4
®I4+BZI272I3BCOS(971—6<O. (44)
Since we assumdd " ¢ Dg, equation[(44) immediately implies that
B4
I4+B2I2+2I3B—1—6<0. (45)
Consider the even functioh: [— T, 7] — R defined by,
B4
f(G):I4+B2I2—2I3Bcose—E. (46)

Observe now that, becaulse 0, its derivativef’(8) = 213 sin@ has the signs,

f/(8) >0for6 €[0,m and f'(8) <0for6 c[-m0]. (47)
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Note that from inequality((45) and the definitidn {46) Idf9) one immediately ob-
tains
f(—m) = f(m <O. (48)

Then the signs of(0) in (44) together with the particular values 6(6) in (48)
imply
f(8) <max{f(m),f(—m} <0, forall 6 € [—m, . (49)
Because of equivalende {44) we conclude from inequalitly (A&
le'® € D, for any6 € [, 71]. (50)

From the conditions oh we have that Rgl€'?) < 2| < B and by using this in{30)
we obtain

le'® e (DgN{ze C,2Regz) < B}), forany8 € [, ). (51)
Inclusion [51) together with the convexity Big N {z € C,2Re(z) < B} implies that

Bi(0) € Dgn{zec C,2Reg2) < B}.

This establishes the equivalentel(42). From the definitidhe setDg, by simple
algebraic manipulation we obtain

B+qeDg+qe ™ e Dp. (52)

Equivalence[(52) clearly implies thaf (43) follows from §4®plied toq instead of .
Finally, observing the fact that the constraiftd (32) irﬂbmw{%{, a} < B andusing
equivalences (38)_(B9], (U2) and143) @anda instead of andq respectively, we
obtain the desired equivalencgs](40) dnd (41). By using tiifein convergence of
the polynomial(p) to the functionx(z) in Dg, and equivalence§ (40) arid [41) we
obtain that the constrain{s {32) are indeed necessary #iinclesut for convergence of

(p)-

Remark 4The expressior_(29) of the ensemble average polynomiaticalsb be
obtained by generalizing to distributions a theorem by Rantehn [21] (which is in
turn a generalization of a result due to Berger and TascheT@femain concise, we
prefer to include a direct proof.

5 Summary

For the Laplace equation we have shown the existence of eelezpable of cloaking
a region exterior to the device, assuming a priori knowledfythe incident field.
The proof relies on a non-constructive harmonic functioprapimation result. The
theory does not constrain the size and relative positiorthefdevice and cloaked
region, as long as they are bounded, disjoint and the congpienf their union is
connected. Although the construction of such a cloakingageg clearly not unique,
we presented earlier in/[8] a construction based on an éxpltitynomial. Here we
rigorously justify this construction and show that the daaigts [32) must be satisfied
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in order to have a proper active exterior cloak. Because ettnstraintd(32), the
current strategy fails to cloak large objectslarge) unless they are sufficiently far
from the origin @ large enough). In_[11] (see Conjecture 1), we present withou
proof, as a conjecture, an extension of Theofém 2 which givesder choice of
cloaks and that is supported by numerical experiments.
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