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Abstract We design a device that generates fields canceling out a knownprobing
field inside a region to be cloaked while generating very small fields far away from
the device. The fields we consider satisfy the Laplace equation, but the approach re-
mains valid in the quasistatic regime in a homogeneous medium. We start by relating
the problem of designing an exterior cloak in the quasistatic regime to the classic
problem of approximating a harmonic function with harmonicpolynomials. An ex-
plicit polynomial solution to the problem was given earlierin [Phys. Rev. Lett. 103
(2009), 073901]. Here we show convergence of the device fieldto the field needed
to perfectly cloak an object. The convergence region limitsthe size of the cloaked
region, and the size and position of the device.
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1 Introduction

Cloaking – preventing detection of objects from a probing field – has been the subject
of many recent studies, see e.g. the reviews [1, 7]. A cloak can beactiveor passive
depending on whether active sources are needed to maintain the cloak. A cloak is
said to beinterior if it completely surrounds the object to be hidden andexterior
otherwise.

One approach to obtainpassive interiorcloaks is to exploit the invariance of the
governing equations (e.g. Laplace, Helmholtz, Maxwell equations,. . .) to coordinate
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transformations. This approach was introduced in [6, 20, 14, 15, 3, 7] (see also refer-
ences in [1, 7]) and is based on ideas first observed in [4]. Although transformation
based cloaking is set on solid mathematical grounds and has been demonstrated ex-
perimentally in a variety of physical settings, the cloaks generated with this approach
require materials with extreme properties that are usuallyapproximated using spe-
cially designed metamaterials. Unfortunately metamaterials used in electromagnetic
transformation based cloaking are typically very dispersive, meaning that the cloak
operates only in a narrow band of frequencies. Also losses inthe cloak material gen-
erate heat that can make the object detectable using infrared. Some recent results in
generating broadband low-loss metamaterials have been obtained in [23]. In an effort
to overcome the shortcomings of transformation based cloaks, various regularizations
have been proposed (see [12] and references therein).

Otherpassive interiorcloaking methods include plasmonic cloaking (see [1] and
references therein). Cloaking methods that arepassiveandexterior include cloaking
with complementary media [13], cloaking by anomalous resonances [17, 19, 18] and
plasmonic cloaking [22].

An example of anactive interiorcloak appears in [16] and uses sources contin-
uously distributed over a closed surface surrounding the cloaked region in order to
cancel out the incident field inside the cloaked region.

Here we focus on anactive exteriorcloak for the 2D Laplace equation [8], which
can be easily adapted to 2D quasistatics in a homogeneous medium. This scheme
assumes the incident or probing field is known and uses one active source (cloaking
device) to cancel the incident field in the cloaked region with no significant perturba-
tion in the far field. Thus an object inside the cloaked regioninteracts very little with
the probing field and becomes harder to detect. Active exterior cloaking has been ex-
tended to the 2D Helmholtz equation in [9, 10] and to the 3D Helmholtz equation in
[11]. Our approach assumes a homogeneous background mediumand requires three
(resp. four) devices or antennas to construct a cloak for the2D (resp. 3D) Helmholtz
equation.

Our goal here is to rigorously justify the quasistatic cloaking method of [8]. Qua-
sistatics refers to the Maxwell or Helmholtz equations in the long wavelength limit,
where the governing equation is the Laplace equation. We start by describing the
cloak setup in Section 2. Then in Section 3, we prove the existence of a solution for
the 2D quasistatic active exterior cloak, based on a classicharmonic approximation
result due to Walsh (see e.g. [5]). Unfortunately the existence proof is not construc-
tive. We proposed a candidate constructive solution without proof in [8], supported
by numerical experiments. In Section 4 we give the argumentsbehind this solution
and prove that it does indeed solve the active exterior cloaking problem.

2 Cloak setup and device requirements

Three regions inR2 are needed to describe our cloak setup: the region to be cloaked,
the cloaking device, and the observation region. See Figure1 (left) for an example
setup. The main idea of our cloaking method is to cancel out an(assumed known)
incident fieldu0 inside the cloaked region while perturbing the far field onlyslightly.
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Fig. 1 The effect of the inversion (Kelvin) transformw= 1/zon the cloak geometry. The cloaked region is
in red and the device sources are all contained in the gray disk. The green region is the observation region,
where the device field must be very small to avoid detection.

Thus the total field inside the cloaked region is practicallyzero and the scattered field
from any objects inside the cloaked region is reduced significantly.

Here we consider the conductivity equation with conductivity one and a harmonic
incident fieldu0 (i.e.∆u0 = 0). Without loss of generality, we take as cloaked region
the diskB(c,a)⊂R2, centered atc= (p,0) ∈R2, p> 0, and with radiusa> 0. As in
[8], we consider one cloaking device located insideB(0,δ ), with δ ≪ 1. The device
generates a fieldu, harmonic outsideB(0,δ ). In order to cloak objects the device field
u needs to satisfy the following requirements.

1. The total fieldu+u0 in the cloaked regionB(c,a) is very small.
2. The device fieldu is very small far away from the device, e.g. in the observation

regionR2 \B(0,R) for a largeR> 0.

In order for the device to beexteriorto the cloaked region, we must have

p> a+ δ . (1)

Also the observation radiusRneeds to be large enough to contain both the device and
the cloaked region:

R> a+ p. (2)

3 Cloak existence

The existence of a device fieldu having the desired cloaking properties to within a
toleranceε is stated in the next theorem.

Theorem 1 Let ε > 0 be an arbitrarily small parameter. Let also a> 0, c= (p,0),
p > 0 and R satisfy the inequalities(1) and (2). Then for a harmonic incident field
u0, there are functions g0 : R2 → R and u: R2 →R such that

{
∆u= 0, in R

2\B(0,δ ),
u= g0, on∂B(0,δ ),

with |u|< ε in R
2\B(0,R) and|u+u0|< ε in B(c,a).

(3)
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Region z plane w= 1/z plane

Cloaking device B(0,δ ) R2 \B(0,1/δ )
Cloaked region B(c,a) B(c∗,α) with c∗ = (β ,0), α = a/|p2 − a2|

andβ = p/(p2−a2)

Observation region R2 \B(0,R) B(0,1/R)

Table 1 The different regions in our cloak setup and how they are mapped by the inversion (Kelvin)
transformation.

The main idea of the proof of Theorem 1 is to relate active exterior cloaking to
the problem of approximating harmonic functions with harmonic polynomials. We
rely on the following classic result.

Lemma 1 (Walsh, see e.g. [5], page 8)Let K be a compact set inR2 such thatR2\K
is connected. Then for each function w harmonic on an open setcontaining K and
for anyε > 0, there is a harmonic polynomial q for which|w−q|< ε on K.

We can now proceed with the proof of Theorem 1.

Proof It is convenient to use complex numbersz= x+ iy to represent points(x,y) ∈
R

2. By applying the inversion (Kelvin) transformationw= 1/z, the geometry of the
problem transforms as in Table 1. (see also Figure 1).

Thus the cloaking problem (3) is equivalent to finding functions g̃0 and ũ for
which {

∆ ũ= 0, in B(0,1/δ ),
ũ= g̃0, on ∂B(0,1/δ ),

with |ũ|< ε onB(0,1/R) and|ũ+ ũ0|< ε onB(c∗,α).

(4)

Hereε is as in the statement of the theorem,g̃0(z) = g0(1/z) and the functioñu0(z) =
u0(1/z) is harmonic onR2\ {0}.

Let Ũ0 denote the analytic extension ofũ0 in B(c∗,α), obtained by addingi times
its harmonic conjugate. Notice that sincẽU0 is analytic, it can be arbitrarily well
approximated by a polynomial, e.g. a truncation of the powerseries ofŨ0. Therefore,
there is a polynomialQ0 such that

|Ũ0−Q0|< ε/2, onB(c∗,α). (5)

For ũ0 this means that

|ũ0−q0|< ε/2, onB(c∗,α), (6)

whereq0 is the real part ofQ0. Thus we may solve (4) by first approximating the
(inverted) incident field̃u0 by q0 and then studying the following problem

{
∆ ũ= 0, in B(0,1/δ ),

ũ= g̃0, on ∂B(0,1/δ ),

with |ũ|< ε onB(0,1/R) and|ũ+q0|< ε/2 onB(c∗,α).

(7)
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After inversion, the conditions (1) and (2) necessary for having an exterior cloak
become

1/R< β −α, (the two disksB(0,1/R) andB(c∗,α) do not touch), and

β +α < 1/δ , (the two disksB(0,1/δ ) andB(c∗,α) do not touch).
(8)

Therefore, there exists 0< ξ ≪ 1 such that

1
R
+ ξ < β −α − ξ . (9)

We can now apply Lemma 1 to the compact setK = B(0,1/R)∪B(c∗,α) (which has
a connected complement by virtue of (8)) and the function

w=

{
0 in B(0, 1

R+ ξ ),
−q0 in B(c∗,α + ξ ),

(10)

which is a harmonic function in the open setB(0, 1
R+ξ )∪B(c∗,α +ξ ) (a set contain-

ing K). We obtain that there exists a harmonic polynomialq such that|q−w|< ε/2
onK. A solution to (7) is then given bỹu= q andg̃0 = q on∂B(0,1/δ ). This implies
the statement of the theorem.

Remark 1We assumed throughout this section that the incident fieldu0 is harmonic
onR

2. This corresponds to a source located at infinity. Recall ourmethod relies on
approximating the Kelvin transformed analytic extension of the incident fieldŨ0 in-
side the Kelvin transformed cloaked regionB(c∗,α) by a polynomialQ0 (see (11)).
This approximation only requires analyticity ofU0 inside the cloaked regionB(c,a).
Hence the results of this section and the construction of Section 4 below generalize
easily to the case where the incident fieldu0 is harmonic inside the observation region
B(0,R). This is the case where the sources generating the incident field are outside
the observation region but not necessarily located at infinity.

Remark 2Clearly, Theorem 1 also holds when the device and cloaked region are not
necessarily disks. The only requirements are that they be bounded, disjoint and that
the complement of their union be connected (see Lemma 1).

4 A constructive solution for active cloaking

Although mathematically rigorous, the existence result ofTheorem 1 does not give
an explicit expression for the potential required at the active device (antenna). To give
an explicit harmonic solution to problem (3), we first simplify the problem in Sec-
tion 4.1. Then we give a candidate solution to the simplified problem in Section 4.2,
in the form of a Lagrange interpolation polynomial. A bettersolution is constructed in
Section 4.3 by averaging several Lagrange interpolation polynomials. The resulting
polynomial turns out to be a Hermite interpolation polynomial. Then in Section 4.4
we show that this Hermite interpolation polynomial solves (4) (and thus the cloaking
problem (3)) provided its degree is sufficiently large. Thisconvergence study reveals
constraints on the size of the cloaked region and the device that are due to the partic-
ular solution we construct.
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4.1 Simplifying the problem

In the proof of Theorem 1, we related the cloaking problem (3)to the problem of
approximating a polynomialQ0 with an analytic functionV such that for someε > 0,

|V|< ε in B(0,1/R) and|V +Q0|< ε in B(c∗,α). (11)

Now consider the problem of finding an analytic functionW such that for someε ′ > 0,

|1−W|< ε ′ in B(0,1/R) and|W|< ε ′ in B(c∗,α). (12)

Assuming we can find an approximantW in (12) with ε ′ = ε/M and

M = sup
z∈B(c∗,α)∪B(0,1/R)

|Q0(z)|, (13)

a solution to (11) is thenV = −Q0(1−W), which is analytic because the product of
two analytic functions is analytic.

For illustration purposes we fast forward to Figure 3, wherewe give an example of
a functionW with the approximation properties (12). The functionW is a polynomial
whose motivation, derivation and analysis are the subject of the remainder of this
section.

In order to use such a functionW for cloaking, assumeQ0(1/z) is the harmonic
incident field. Then the device field needed for solving the cloaking problem (3) is
the real part of the functionU(1/z) = −Q0(1/z)(1−W(1/z)) (after having undone
the Kelvin transformation we used for the analysis). The actual device field is illus-
trated in Figure 4. On the left, a scatterer perturbs the incident field and can be easily
detected. On the right, the device field (based on the function W of Figure 3 is acti-
vated and suppresses the incident field inside the cloaked region, making the object
undetectable for all practical purposes.

4.2 A first candidate polynomial from Lagrange interpolation
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Fig. 2 Left: sample interpolation points for the interpolation polynomial pφ ,ψ with n = 5, φ = 0 and
ψ = π/3. Right: the modulus of the polynomialpφ ,ψ with n= 10,φ =−ψ = π/10 andβ = 4. The color
scale is logarithmic and the interpolation nodes are indicated by the interpolation values.

We present a polynomial solution to (12) based on Lagrange interpolation. This is
an intermediary step to motivate the explicit solution to (12) given later in Section 4.3.
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The idea applies only to the case whereα =R= 1 andβ = p/(p2−a2)> 2. The can-
didate solution is a polynomial that is one atn equally distributed points on∂B(0,1)
and zero atn equally distributed points on∂B(c∗,1). The motivation being that by
surrounding both 0 andc∗ = (β ,0) by n points where the polynomial has the desired
values, we hope to get close to a polynomial satisfying (12).

To be more precise, let us introduce the following family of 2n nodes{eiφ wj ,β +

eiψwj}n−1
j=0. Hereφ andψ are two arbitrary angles andwj = exp[2iπ j/n], for j =

0, . . . ,n−1. Define the polynomialpφ ,ψ as the unique polynomial of degree 2n−1
satisfying,

pφ ,ψ(e
iφ wj ) = 1 andpφ ,ψ(β +eiψwj) = 0, for j = 0, . . . ,n−1. (14)

An example of the interpolation nodes and the values ofpφ ,ψ is shown in Fig-
ure 2(left).

The polynomialpφ ,ψ is unique and can be written explicitly as

pφ ,ψ(z) =
n−1

∑
m=0

qφ ,ψ,m(z), (15)

whereqφ ,ψ,m(z) are Lagrange interpolation polynomials (see e.g. [24]) defined for
m= 0, . . . ,n−1 by

qφ ,ψ,m(z) =

[
n−1

∏
j=0, j 6=m

z−eiφwj

eiφ wm−eiφ wj

][
n−1

∏
j=0

z− (β +eiψwj )

eiφ wm− (β +eiψwj)

]
, (16)

or alternatively by their interpolation properties

qφ ,ψ,m(e
iφ wj) = δm j, andqφ ,ψ,m(β +eiψwj) = 0, for j = 0, . . . ,n−1. (17)

Hereδm j = 1 if m= j and 0 otherwise is the Kronecker delta. Straightforward calcu-
lations give the expression

qφ ,ψ,m(z) =

[
(z−β )n−eiψn

(eiφ wm−β )n−eiψn

][
zn−eiφn

z−eiφ wm

][
1

n(wmeiφ )n−1

]
, (18)

which will be used later in Section 4.3.
We state the following symmetry property of the polynomialpφ ,ψ for later use.

Lemma 2 For any anglesφ andψ , the polynomial pφ ,ψ has the following symmetry
property:

pφ ,ψ(z)+ pψ+π ,φ+π(β − z) = 1. (19)

Proof Equation (19) follows from noticing that forj = 0, . . . ,n−1,

pψ+π ,φ+π(β − (β +eiψwj)) = pψ+π ,φ+π(e
i(ψ+π)wj) = 0, and

pψ+π ,φ+π(β −eiφ wj) = pψ+π ,φ+π(β +ei(φ+π)wj) = 1.
(20)

Hence the polynomialpφ ,ψ(z) + pψ+π ,φ+π(β − z)− 1 must be identically zero be-
cause it is of degree 2n−1 and has 2n roots{eiφ wj ,β +eiψwj}n−1

j=0.
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An actual polynomialpφ ,ψ is shown in Figure 2(right). Unfortunately this poly-
nomial is not a good solution for problem (12) as the regions wherepφ ,ψ ≈ 1 and
pφ ,ψ ≈ 0 to within a certain tolerance (say 1%) are relatively small. Changingφ and
ψ does not give a significant improvement. However these polynomials are the build-
ing block for the ensemble average polynomial solving (12) that we present next.

4.3 The ensemble average polynomial
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Fig. 3 The modulus of the ensemble average polynomial〈p〉(z) for n = 12 andβ = 1. The device field
used for cloaking is〈p〉 (1/z). Within 1% accuracy, the polynomial〈p〉 is close to one inside the dashed
white circle and close to zero inside the solid white circle.The boundary of the convergence regionDβ of
〈p〉 asn→ ∞ is the peanut shaped curve in red (see Theorem 2). The color scale is logarithmic from 0.01
(dark blue) to 100 (dark red), with light green representing1.

In an effort to obtain a polynomial solution to problem (12) we calculate the
ensemble average of the polynomialspφ ,ψ with respect to the two phase factors
φ ,ψ ∈ [0,2π ], that is

〈p〉(z) = 1
(2π)2

∫ 2π

0

∫ 2π

0
pφ ,ψ(z)dφdψ . (21)

We prove in Theorem 2, using the next lemma, that indeed〈p〉 is a solution for (12).
An example of such polynomial forβ = 1 andn= 12 is given in Figure 3.

Lemma 3 The ensemble average polynomial defined in(21)has the expression

〈p〉(z) =
(

1− z
β

)n n−1

∑
j=0

(
z
β

) j (n+ j −1)!
j!(n−1)!

. (22)

Proof We first use the Cauchy residue theorem to compute the integral

1
2π

∫ 2π

0

(z−β )n−eiψn

(eiφ wm−β )n−eiψndψ =
1

2iπ

∫

|w|=1

(z−β )n−wn

(eiφ wm−β )n−wn

dw
w

=
(z−β )n

(eiφ wm−β )n ,

(23)
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Fig. 4 Real part of the total field with the cloaking device active (right) and inactive (left), for an incident
field u0(z) = z andn = 12. The solid white, dashed white and red curves are the Kelvin transforms of
the respective curves in Figure 3. The solid black disk is an almost resonant scatterer with radiusr = 0.1,
located atz= 1.05 and with dielectric constantε = −1+ 10−3, chosen to be plasmonic with a negative
value close to−1 to amplify its effect. The solid black curve is the contour|u| = 100. The color scale is
linear from -10 (dark blue) to 10 (dark red).

since the integrand has a single simple pole atw = 0 in the disk|w| < 1. Then by
plugging (23) into the expression forqφ ,ψ,m we get that

1
2π

∫ 2π

0
qφ ,ψ,m(z)dψ =

(z−β )n

(eiφ wm−β )n

zn−eiφn

z−eiφ wm

1
n(wmeiφ )n−1 . (24)

Recalling thatpφ ,ψ is the sum (15) ofqφ ,ψ,m we can write

〈p〉(z) = 1
2π

n−1

∑
m=0

(z−β )n

(eiφ wm−β )n

zn−eiφn

z−eiφ wm

1
n(wmeiφ )n−1 . (25)

Now all n terms in the previous sum are identical, therefore

〈p〉(z) = 1
2π

∫ 2π

0

(z−β )n

(eiφ −β )n

zn−eiφn

z−eiφ
1

eiφ(n−1)

=
1

2iπ

∫

|w|=1
(z−β )n zn−wn

(z−w)(w−β )n

dw
wn

=
(z−β )n

2iπ

∫

|w|=1

(
zn

wn −1

)
1

(z−w)(w−β )ndw

=
(z−β )n

2iπ

∫

|w|=1

n−1

∑
j=0

zj

wj+1(w−β )ndw

= (z−β )n
n−1

∑
j=0

zj

j!
d j

dwj

[
1

(w−β )n

]

w=0
,

(26)

where we used Cauchy’s theorem in the last equality of (26). The desired expression
(22) follows by straightforward algebraic manipulations of (26).
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Remark 3By using elementary algebraic manipulations and (26), it ispossible to
show that〈p〉 is the Hermite interpolation polynomial [24] of degree 2n− 1 that is
uniquely defined by the 2n interpolation conditions

〈p〉(0) = 1, 〈p〉(β ) = 0, and〈p〉( j) (0) = 〈p〉( j) (β ) = 0, for j = 1, . . . ,n−1. (27)

Notice that the ensemble average polynomial inherits the symmetry property (19)
for pφ ,ψ , that is

〈p〉 (z)+ 〈p〉(β − z) = 1. (28)

This symmetry property means that by design, the polynomialgives as good an ap-
proximation to one near the origin as the approximation to zero nearβ .

4.4 Asymptotics of the ensemble average polynomial

We now study the behavior of the polynomial〈p〉 (defined in (21)) asn → ∞. The
following result shows that the polynomial〈p〉 solves the problem (12), and gives
limits to the size of the cloaked region.

Theorem 2 The ensemble average polynomial〈p〉 can be written as

〈p〉= 1
2
+

n−1

∑
k=0

(2k)!
(k!)2

(
z
β

(
1− z

β

))k(1
2
− z

β

)
. (29)

The polynomial〈p〉(z) converges as n→ ∞ if and only if z belongs to the convergence
region

Dβ =

{
z∈ C, |z2−βz|< β 2

4

}
. (30)

The convergence is uniform on compact subsets of Dβ to the function

χ(z) =

{
1 if ℜ(z)< β/2,

0 otherwise.
(31)

For large enough n, the polynomial〈p〉 solves(12) if and only if

1
R
<

β
2
√

2+2
and α <

β
2
√

2+2
. (32)

Proof Consider the function

fn(t) = (1− t)n
n−1

∑
j=0

t j
(

n+ j −1
j

)
(33)

where for any positive integersmandp,
(m

p

)
= m!

p!(m−p)! . Note that, from (22) we have

fn(t) = 〈p〉(β t), for all t ∈ C. (34)
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Then for allt 6= 1 we obtain,

fn+1(t)
(1− t)n+1 =

n

∑
j=0

t j
(

n+ j
j

)

= 1+
n

∑
j=1

t j
[(

n+ j −1
j −1

)
+

(
n+ j −1

j

)]

=
n

∑
j=1

t j
(

n+ j −1
j −1

)
+

[
1+

n

∑
j=1

t j
(

n+ j −1
j

)]

=
n−1

∑
k=0

tk+1
(

n+ k
k

)
+

n

∑
j=0

t j
(

n+ j −1
j

)

= t

[
fn+1(t)

(1− t)n+1 − tn
(

2n
n

)]
+

fn(t)
(1− t)n + tn

(
2n−1

n

)
.

(35)

In the above equation we used the recurrence relation
(

m
p

)
=

(
m−1
p−1

)
+

(
m−1

p

)
, for any integersm, p> 0.

From (35), for any integern≥ 1 we obtain,

fn+1(t) = fn(t)− (1− t)ntn+1
(

2n
n

)
+(1− t)ntn

(
2n−1

n

)

= fn(t)− (1− t)ntn
(

2n
n

)(
t − 1

2

)
, for all t 6= 1.

(36)

In (36) we used the identity
(

2n
n

)
= 2

(
2n−1

n

)
, for every integern≥ 1.

From the first order linear recurrence (36) we obtain,

fn(t) =
1
2
+

n−1

∑
k=0

(1− t)ktk
(

2k
k

)(
1
2
− t

)
(37)

and this is valid for alln ≥ 1 and allt ∈ C (as (37) which was initially obtained
for t 6= 1 checks also fort = 1). The final expression (29) follows from substituting
t = z/β in (37) and using (34).

Notice that the polynomial〈p〉 is in fact then-th order partial sum of the following
infinite sum,

1
2
+

∞

∑
k=0

(1− z
β
)k
(

z
β

)k(2k
k

)(
1
2
− z

β

)
.

By the ratio test this series converges uniformly on compacts subsets of the region
Dβ (defined at (30)) to a limit functionϕ and diverges inC\Dβ . From the uniform
convergence of〈p〉 we deduce the analyticity ofϕ in Dβ and by using the Taylor



12

expansion around the origin forϕ , the Remark 3, and the symmetry property (28) we
obtain convergence to the function (31) insideDβ .

We now study the convergence regionDβ in order to show that the constraints
(32) are necessary and sufficient for〈p〉 to solve (12). First notice that the definition
of the regionDβ and simple algebra reveal that

1
R
<

β
2
√

2+2
⇔ 1

R
e−iπ ∈ (Dβ ∩{z∈ C,2Re(z)< β}), and (38)

α <
β

2
√

2+2
⇔ β +α ∈ (Dβ ∩{z∈C,2Re(z)> β}). (39)

Next we show that

1
R
<

β
2
√

2+2
⇔ B(0,1/R)⋐ (Dβ ∩{z∈ C, 2Re(z)< β}), and (40)

α <
β

2
√

2+2
⇔ B(c∗,α)⋐ (Dβ ∩{z∈ C, 2Re(z)> β}), (41)

where⋐ is the classical symbol for compact inclusions. By using theequivalences
(38) and (39) it is easy to check that the inclusions in (40) and (41) imply the con-
straints (32). To show the implication (⇒), we first show that for any two positive
real numbersl ,q with 2max{l ,q}< β , we have

le−π i ∈ Dβ ⇔ B(0, l)⋐ (Dβ ∩{z∈ C,2Re(z)< β}) and (42)

β +q∈ Dβ ⇔ B(c∗,q)⋐ (Dβ ∩{z∈ C,2Re(z)> β}). (43)

Let us first show the equivalence (42). The sufficiency (⇐) is immediate. For the other
implication (⇒), we can use the definition ofDβ to show that for anyθ ∈ [−π ,π ] we
have,

leiθ ∈ Dβ ⇔ |l2eiθ −β l |< β 2

4

⇔ (l2eiθ −β l)(l2e−iθ −β l)<
β 4

16

⇔ l4+β 2l2−2l3β cosθ − β 4

16
< 0. (44)

Since we assumedle−π i ∈ Dβ , equation (44) immediately implies that

l4+β 2l2+2l3β − β 4

16
< 0. (45)

Consider the even functionf : [−π ,π ]→R defined by,

f (θ ) = l4+β 2l2−2l3β cosθ − β 4

16
. (46)

Observe now that, becausel > 0, its derivativef ′(θ ) = 2l3β sinθ has the signs,

f ′(θ )≥ 0 for θ ∈ [0,π ] and f ′(θ )≤ 0 for θ ∈ [−π ,0]. (47)
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Note that from inequality (45) and the definition (46) off (θ ) one immediately ob-
tains

f (−π) = f (π)< 0. (48)

Then the signs off ′(θ ) in (47) together with the particular values off (θ ) in (48)
imply

f (θ )< max{ f (π), f (−π)}< 0, for all θ ∈ [−π ,π ]. (49)

Because of equivalence (44) we conclude from inequality (49) that

leiθ ∈ Dβ , for anyθ ∈ [−π ,π ]. (50)

From the conditions onl , we have that 2Re(leiθ )≤ 2l < β and by using this in (50)
we obtain

leiθ ∈ (Dβ ∩{z∈C,2Re(z)< β}), for anyθ ∈ [−π ,π ]. (51)

Inclusion (51) together with the convexity ofDβ ∩{z∈ C,2Re(z)< β} implies that

Bl (0)⋐ Dβ ∩{z∈C,2Re(z)< β}.

This establishes the equivalence (42). From the definition of the setDβ , by simple
algebraic manipulation we obtain

β +q∈ Dβ ⇔ qe−π i ∈ Dβ . (52)

Equivalence (52) clearly implies that (43) follows from (42) applied toq instead ofl .
Finally, observing the fact that the constraints (32) imply2max{ 1

R,α}< β and using
equivalences (38), (39), (42) and (43) for1

R andα instead ofl andq respectively, we
obtain the desired equivalences (40) and (41). By using the uniform convergence of
the polynomial〈p〉 to the functionχ(z) in Dβ , and equivalences (40) and (41) we
obtain that the constraints (32) are indeed necessary and sufficient for convergence of
〈p〉.

Remark 4The expression (29) of the ensemble average polynomial could also be
obtained by generalizing to distributions a theorem by Ramharter [21] (which is in
turn a generalization of a result due to Berger and Tasche [2]). To remain concise, we
prefer to include a direct proof.

5 Summary

For the Laplace equation we have shown the existence of a device capable of cloaking
a region exterior to the device, assuming a priori knowledgeof the incident field.
The proof relies on a non-constructive harmonic function approximation result. The
theory does not constrain the size and relative positions ofthe device and cloaked
region, as long as they are bounded, disjoint and the complement of their union is
connected. Although the construction of such a cloaking device is clearly not unique,
we presented earlier in [8] a construction based on an explicit polynomial. Here we
rigorously justify this construction and show that the constraints (32) must be satisfied
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in order to have a proper active exterior cloak. Because of the constraints (32), the
current strategy fails to cloak large objects (α large) unless they are sufficiently far
from the origin (β large enough). In [11] (see Conjecture 1), we present without
proof, as a conjecture, an extension of Theorem 2 which givesa wider choice of
cloaks and that is supported by numerical experiments.
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