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Ezample 4 y = iz ggtisfieg ¥ +y =0, for

Y =it Y = —ef® ez — gfs — ¢

5. Define zla+i) — glatd) lne gor 1oat 2 < 0.

A 8. Show that 2°+% = 2% [cos (b In z) + 1 sin (1n z)].
The following theorem shows the connection between real and complex b 3 b. 8how that
solutions of a linear differential equation with real coefficients, '
% Lotiv {a + ib) Zla—1+id

Theorem 1 Consider the differential equation

a(z)y” + bz)y’ + c(z)y = 0

where a, b, ¢ are yeal Junctions. The complex Jundion y = u 4 iy whery 1 6. Show that y = 't eatisfies %" —ay’ + 2y =0. What are real
¥, v are real is a solution if and only if u and v are solutions. § lutions of the equation?
: 7. Show that y = ¢* satisfies y’ — 4y = 0. Are the real and imaginary

Proof As usual? denote the left-hand sj : . . . parts of y solutions of the equation? Why?
d A and side of the differential equation by 8 8. Lot u and v be real linearly independent solutions of a(z)y” + b(z)y’ +

L(y). It is easy to prove (see Prob. 3) that L(y) = L(u) + L(v) whens 3 ;(z)y = 0 where a, b, ¢ are real functions. Show that y, = u + iv and th =

L(x) and L(v) are real. Therefore y is a solution if and only if Liyy= § ot i i
L{u) + i L(v) = 0. Since a complex numbser is zero if and only if its real B % — v (§ is the complex conjugate of y) are complex solutions. Show that the

. . & al complex solution isy = + ¢, where ¢, and ¢, are arbitrary complex
and imaginary parts are zero, we have L{y) = 0 if and only if L(x) = 0 and § merl . P a1 T &b “ @ P
L(v) = 0. 5

3 {i.e., the usual rule for differentiation holds).

Example 5 In Example 4 we have seen that y = 6% satisfies y* + ¥ =0 ' . 54 Homogeneous linear equations with constant coefficients

Since & = gog 2 + ¢ 8in z, the above theorem shows that cos 2 and 8in z arg

real solutions. § A simple, but important, class of linear differential equations is that with

constant coefficients. We consider the homogeneous equation
6y’ +by' +cy=0 (8)
i where a, b, and ¢ are real cunstants and a = 0. Since this equation does not

& contain z explicitly, it could be solved by the method of Sec. 2-7. We
& prefer to use a simpler, but less direct, approach.

Problems 5-3

LI f=u+iwandg =r + is are differentiable complex functions of 5
real variable, prove that: :

a (f+g) =f +¢g b. (foY =fg + 19
N of —fo 8 Let us consider the types of functions that could Ppossibly satisfy
o. (;) = T‘ d. (¢f) =g o & complex constany § Eq. (8). The solution could not be a function like y = In z, for the deriv-

4 stives of this function are y' = 1/z and y" = —1/2*. Upon substitution
§ into the cquation there would be no term to cancel the term ¢ (Inz). It is
§ dear that the solution must be a function whose derivative does not differ
 greatly in form from the function itself. The functions e**, sin Bz, cos fx
come to mind immediately. The funections sin Bz and cos fz are simply com-
* binations of complex exponentials and need not be considered separately.
§  Therefore it is reasonable to look for solutions in the form
y=¢€" 9
o 4§ where A must be determined so that (9) satisfies the differential equation (8).
3.Ify=-u+wandLy=a(z)y'+b(z)y'+o(z)y,wherea,b,oarema| 'w s ! 1pdx " 23,4z ituti i
unotions, show that L(y) = L(u) -+ sL(v). | ;1;6 (‘:;;"‘Vv:tl‘;'ne; of (0) are y’ = Je** and y" = A%¢*>. Substituting these into

4. Bhow that y = ellHle gapicfias ¥ =2 + 2y =0. What are req |
olutions of the equation? ' %@l + bl +¢c)=0

2. Verkythate"whereciaoomplaxandzisredsatisﬁas:
8. %107 — golzytzy)

02;
b. _c_l = g0l@r—zg)
8%%s i

¢. Reealling De Moivre’s formula (» a positive integer)
(008 b -+ § sin bz)® = cos nbz + ¢ 8in nbz, show that (6°%)" = goan,
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If this equation holds for all z, then et

is a soluti . ,
above can hold for all z only if solution for all z; however, the

al* +bl +¢c=0 (19

This equation, which determines 4, is called th

. e auxili ot
equation. The roots of (10) are iary or characteristis

= VP —dac
2a

(Iif t;l.le dlls'crim'inant A = b? — 4ac is greater than zero, the roots are real and
1stinet; if A is equal to zero, the roots are real and equal; and if A is less than

Zero bhe roots are com plex cOn[u &be numbers »b e d.lscuss each 0. b
3 g b B
f heﬂe

Case I. Real, distinct roots, A > 0. If A > 0, the roots are

2 _—b+\/bz—4a,c
1=

2a
g = 0 = Vb —dac
2a

and are real, distinet numbers, Therefore e** and e*s* are both solutions

of the differential equation. Since th, i
. . ese functions i i
independent, the general solution is e obviously lineerly

Y = i eM® 4 g ehim

(11)
Case II. Real, 1 - :
given by equal roots, A = 0. In this case we have only one root
=2
! 22 (12)

r.l‘herefore e‘!" is & solution of the differential equation. Of course, ¢,eh2
is also a solution, but we need a second linearly independent solutiox; ' To
find this, we use the method of variation of parameters.f Assume a sol.ution

of the form y = Az . . . . ”
we obtain Y = v(z)e"". Substituting this into the differential equation (8),

av” + (2ad; + by’ + (ad? + bl 4+ cjv =0 (13)

N t This me?hod, w.rhen us.ed in this manner to find a second solution of g
omogeneouz.l linear differential equation, when one solution is known, is ofte
called reduction of order (see Sec. 5-6, Prob. 9). 8 ot
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Since A, is a root of the characteristic equation, the coefficient of v vanishes,

and since A, = —b/2a, the coefficient of v’ also vanishes. The differential
equation (13) therefore reduces to
v =0 (14)
The general solution of this equation is
V= Cy + €%
Since y = v(x)e®, we have that
b (15)

y = c,eM% + cyze
is a solution of the differential equation (8). Since the functions e*® and
zet® are linearly independent, the general solution is given by Eq. (15).

Case III. Complex conjugate roots, A < 0. In this case the roots are

).1=a+iﬁ=—2%+i T:_Zb.;
12=a—iﬂ=—2%—i 2—4%—:
and are conjugate complex numbers (since @, b, ¢ are real). These yield the
two complex solutionsf
'a+h2 — 3% (cos fz + i sin fz) (16)
¢'a=P% — ¢°% (oo fxr — i sin fz) (17)

Since the differential equation (8) has real coefficients, the real and imaginary
parts of either of these functions, namely,

(18)

are real solutions (see Theorem 1, Sec. 5-3). The Wronskian of these
functions is easily shown to be nonzero. Therefore the functions (18) are
linearly independent solutions and the general solution for this case is

y = €** (4 cos fz + B sin fx)

where 4, B are arbitrary real constants.

e®cos fr  e*®gin fr

(19)

We also note that the general complex-valued solution of the differential
equation (8) is (see Prob. 8, Bec. 5-3)

Yy = c,_e"”’"”" + cse(a—(ﬂ)w (20)

t See Sec. 5-3.
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A ' figure 1

where ¢, and ¢g are arbitrary complex constanta. Equation (20) can be written, '
using the right-hand sides of (18) and (17),

Y = e=[(e; + ¢;) 008 fz + ¥(c, — cy) sin fz] (21)

If we now take o, and ¢; to be conjugate complex constants, then it is easily shown |
that ¢, + c; and i(c; —~ cy) are both real numbers. Calling these numbers 4 and |
B respeotively, we have again the real general solution (18).
i
It is often convenient to write the solution for this case in still another |
form. Let 4 and B be thought of as the coordinates of a point in the plane, |

Introducing polar coordinates C and 3 of the point, we have (see Fig. 1).

{

!

A =Ccosd C=+4*4+ B* {

B=Csinéd o 4= arct&ng']' (22)
Substituting these in Eq. (19), we obtain

y = Ce" (cos & cos Bz + sin 6 sin fz) (23)

Recalling the addition law for cosines, we obtain the solution in the compact
form

y = Ce** cos (fx — 4) (24)
In & similar way we obtain
y = Ce*®sin (fz -+ 0) (25)

where the angle 6 is the complement of 4.

Summary The solutions of

DE:ay" +by' +ecy=0 az£0

t By the angle 6 = arctan B/4 we do not mean the principal value of
arotan B/A but rather the angle 8 such that

B 4

i = d 6 =
sin 8 Vi 5 an co8 Vil 5
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are obtained by first solving the characteristic equation

al’ 4 bA4c=0
and, according to the type of roots, using the results of the accompanying table.

Li ly ind t
Type of root menrs();l::;oe::n(lcn General solution
Real, distinct,
Ay # Ay el yAes c1et1® 4 ¢ cha®
Real, equal
A = A el gehi= 616" 1® 4 csxehs=
cle(¢+lﬂ)s + c,e"'_‘ﬂ"
Complox conjugate or
2 +ig glatipiz gla—ifiz ¢** (4 cos fz + B sin fz)
1= o + 4
or or
Ay =a — 3
: g £0 €™ cos fiz, ¢** sin fiz Ce™ cos (fz — 6)
or
Ce** sin (fz -+ 6)

Most scientists and enginecrs encounter linear equations with constant
coefficicnts 8o often that the above results, and the methods used to obtain
them, arc committed to memory.

Ezample 1 2y* —y' — 3y =0
The characteristic equation is

22 -2 -3=0
Therefore

A =-—1

LY

1’ =
and the goneral solution is

y = cle_z + cae&‘nli

Ezample 2 y* — 4y’ + 4y =0
The characteristic equation is
A —42 +4=0

A=2,2
The general solution is

y =(c + c:-")ﬂu
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Example 3 32y — 40y’ + 17y = 0

The characteristic equation is
322 — 404 + 17 =0

A =% -1}

The solution can be written in the form

Ay =§ +1§

Yy = clg(H'ﬂ): + cze(l—xi):
or
= el*(4 cos §x + B sin §x)
or
y = cel® cos (Jz — §)

Problems 5-4

1. Find the general solution of:

8.y =0 b.y" — 2y =0
c. ¥ —aly =0 d. y" +a%y =0
. ¥ +y =0 fL.y"+2 +y=0
g 3y + 14y’ + 8y =0 hy" +y +y=0

2. Suppose the characteristic equation for differential equation (8) hag
distinct, real roots, 4, and A,. Show that (eh1® — et))(1 18 & soluti
» - olut

Eq. (8). Show also that =4 wtiomet

) et _ gAym
lim —————— = gzeh1?
‘ll"‘lx 11 - lg

This limiting process is another way of finding the second linearly independent
solution in the case of equal roots.

3. Buppose the roots of the characteristic equation are real and distinct. The
roots can then be written as 4, ; = 4 + B where 4 and B are real. Show that

the solution of the differential equation can be written as ¥ = e42(c, cosh Bz 4
¢ 8inh Bz). Recall the definitions of the hyperbolic functions:

@ + o=@ e — @

) sinhx =

cosh z =

4. Write down a homogeneous second-order linear differential equation with
constant real coefficients whose solutions are:

1,z b. 2, 702

. 3 cos 4z, 5 sin 4x d. e®cosz, e gin 2
. b6 cosh 2z, 9 sinh 22 f. 463, Tgeda

. 6008 (z — 1), e cos (z — 2) h. z, e®

R ®© o p
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5. We note that the solutions of the second-order differential equation with
constant coefficients are defined for all . Could this have been predicted from
the existence theorem?

6. Referring to the existence theorem, explain why the function In z cannot
be the solution of a homogeneous linear equation with constant coefficients.

7. Solve: DE: y* + y* — 6y =0

IC: y(0) =1 y'(0) = —2

8. Solve the following third-order equations by extending the method in

the text:

a. y" =0 b.y" —y =0
. y" —Ty" 4+ 168y — 12y =0 d. y" —3y" + 3y —y =0

5-5 Undetermined coefficients

We have seen that the general solution of the nonhomogeneous equation

Liy)=ay" + by + ey =flz) a#0 (26)
is

Y=t (27)
where y, is the general solution of the homogeneous equation and y, is a
particular solution of Eq. (26). In Sec. 5-4 we solved the homogeneous
equation with constant coefficients. We now investigate methods of
finding particular solutions of Eq. (26) when f(x) is an exponential, a sinusoid,
a polynomial, or a product of such functions. These functions appear often
in applications.

I. f(x) = ke*®. We seek a particular solution of the differential
equation

ay"” + by' + cy = ke*™® (28)
Beoause of the exponential term on the right-hand side of the equation, we
look for a solution in the form

Yp = Ae*® (29)

where the undetermined coefficient 4 will be determined so that the differ-
ential equation is satisfied. The substitution of (29) into the differential
equation (28) results in

(aa® + bat -+ ) Ae®® = ke (30)
or
k

A=— "
ac® 4+ bo + ¢
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Therefore
ke @31
= —— e
Ys ae? + b + ¢ )

provided the denominator is not Z6ro.
characteristic polynomial

P(A) =al® - b1 + ¢

evaluated at 1 = .
convenient form

We note that the denominator ig the

(32)

The particular solution can therefore be written in the

xT

Px) # 0 (33)

Y.

7 (o)

If p(a) = 0, Eq. (33) does not determine a particular solution. In

this case « is a root of the characteristic equation. Therefore €** ig a solution
of the homogeneous equation and cannot possibly also be a solution of the

nonhomogeneous equation. To find & particular solution if pla) = 0, we
assume
Yp = Aze*™t (34)
Substituting into the differentia] equation (28), we obtain
(@o® + bat + 0) Aze* 4 (2a0 +- ) Aes® — esa
Since p(a) = au? + bo, + ¢ =0, we have 4 = k/(2aa + b) and
-]
_ kze (35)
2a0 + b
provided the denominator is not zero. We note that 2ax 4 b — p'(a);
therefore
kxe*® ,
=— P(x) =0, p'(a) 0 - (36)
P'(a)

If p(a) = 0 and P'(«) % 0, then « is a simple root of the characteristic
equation. If both p(a)and P'(«) are zero, « is a double root of the character-
istic equation.t This means that both e** and ze*= are solutions of the homo-
geneous equation. In this case we assume

Y, = Aze®® (37)

T Alternatively we could assume y,, = v(z)e*® and determine v(z) by sub-
stituting into (28).

1 If « is & root of P(R) =0, then p(i) = (A — a)g(A) where 9(A) is a linear
polynomial. ¥ g(a) # 0, « is & simple root and if g(x) = 0, « is a double root,
We see that p'(i) = (A — a)g’(A) + g(3); therefore p’(a) = g{«). This shows
that if ¢ is a simple root, p’(«) # 0 and if « is & double root, p(a) = P(a) = 0.
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Proceeding as above, we obtain

kzzeﬁz kxzeaz (38)

Y= o0 p"(a)

mina i tion, ¢ is different from

inator cannot be zero since, by assump n, ! .

— deISI:)lmma.rizing the above we have the following convenient rule:
Zero.

4 particular solution of L(y) = ke*® is given by

pla) = p'(e) =0

(2 0
P()
%={¥"  p@)=0, P@#0
?'(a)
_@f pla) = p'(a) =0
\p"(a)

Ezample 1 Solve
Yy — by +4y =3 + 26°
PA) =12 — 6L +4=0
Yn = 16" + ™
3 2ze* ~ — e
¥~z T pD i
y =0e® + e + § — fae”
II. f(z) = k cos fz or f(x) = k sin ﬂz.. We shall handle this Za::mll)z
loiting the relationship between sinusoids and complex expon s 8.
Z?f;’rs;nfight the method may appear artificial. However, the method is

h used and is the basis of the impedance method us.ed in solving alter-
z::(i’ng-cun'ent circuits.} Consider the differential equation

1=4l1

L{y) = ay” + by’ + cy = k cos fiz
Also consider the companion equation
L(v) = av” 4 by’ 4+ cv = ksin fz
‘We now combine these two real equations into one equation for the complex
function

w=y+i1}
t See Secs. 3-9 and 6-4.

(41)

(39)

(40)
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Since the operator L is linear, we have
L(w) = L(y) + iL(v)
= k(cos Bx + 7 sin Bz)
Therefore the complex function w satisfies

L(w) = ke'= W)

This equation has an exponential on the right-hand side and can be solved a3
in Case I. After w is found, ¥ can be found by taking the real part of w,
and v by taking the imaginary part. We summarize this method below,

Method To find a particular solution of L{y) = k cos Bz [or L(y) =
k sin 8z), find a particular solution of L(w) = ke'®* and lake the real part [or
tmaginary parl] of the resull.

Ezample 2 Find a particular solution of !

¥ + 7y 4+ 12y = 3 cos 2z (43) :
We have

p(A) =A% + 71 + 12 (44) |

Consider y = Re w = real part of w, where w satisfies the equation

w4+ Tw' + 12w = 3ei2z (45)
A particular solution of Eq. (46) is
361"-‘.: 38:'2.2
Y 0@ T8 + 14 (46)

In order to find Re Wp = Yp» We must put w, in an appropriate form:
3ef2z 8§ 144
YTy T ins — 14

= z4g(cos 2z + isin 2z)(8 — 147)
= y45(8 cos 2z + 14 gin 2z) + 7604(8 8in 2z — 14 cos 2z)
Yp = Rew, = 35 cos 2z + 81 sin 22 (47)
Alternatively, we could have written

8 4 147 = 1/260e

3eilz

? ~ \/260¢%

6 = arctan 14
and

3
= e gil22-0) (8)

vV 260

w
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Therefore

(49)

Yp = = cos (2z — 0)

The two expressions (47) and (49) for y, are exactly equivalent.

Ezample 3 y" + 4y = 3sin 22
pl) =42 +4 =0

y = Imw

A= 32

w* + 4w = 3ei%F

i2z 12z .
v — 3ze? _ 3ze' — _igei
» T P2 4
Y, = Imw, = —}xcos 2z

An alternative way of solving L(y) = k cos fz or L(y) = k sin Bz is
to assume a solution of the form

i 50
y, = A cos fz + Bsin fz (50)

and to determine the coefficients 4 and B by subst,li;;utin(g1 ix?toﬂthe dxéi(;etx;
i i i ficients of cos Sz and sin fz on
tial equation and equating the coe ient ! ' .
zir(li:az of Ehe equation. Ifp(if) = O, that is, if cos Bz (and sin Bz) is & solution

of the homogeneous equation, the form
51
y, = z(4 cos fz -+ B sin fz) (81)
must be used in place of (50).

Ezample 4 y" + Ty’ + 12y = 3 cos 2z
y, = 4 cos 2z + Bsin 2z
Substituting into the differential equation, we obtain

(84 + 14B)cos 2z + (8B — 144)sin 2z = 3 cos 2z

Therefore (why?)

(84 + 14B) =3 8B — 144 =0

Yp = o5 c08 2z + % sin 2z

III. f(z) = By+ Bz + *++ + B,z" The differential equation

ay’ + by + cy = By + Bx 4 -+ + Bz" (62)
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l o ly poly .
clear has a llonllﬂ:l fOI a8 paItICUIEI ﬂolutlon

yy = Qn(z) = Ao + Alx + e + A,‘Z" (53)
into the differential equation will yi
i yield a polynomial of d
:’eft-l;t.md t;:de of thfa equation. The coefficients 4, can then ?er?bttizndtll:e
p((;(;x)a —mg t_ c:) cc;eﬂicl’ents of like powers of z on both sides of the equa,tio: IZ‘
obtai,—l c -_l ut'p (0) = b £ 0, we must assume Yy = 2Q,.(z) in orde.r to
& polynomial of degree  on the left side of the equut?on

if p(0) = p'(0) = 0, we must assume Y, = 2%Q,(z) i
n(%).
Ezample 5 y* + 3y’ — 222 + 3z
Assume
Yp = z(Az® + Bz 4 )
Subatituting into the equation, we obtain after simplification
9Ax? + (64 +6B)x + 2B + 3C = 24! 4 3x
and equating coefficients of different powers of z, we.obtain
94 =2 6A + 6B =3 2B+3C=0
Therefore
A=} B=§ cC--p
and the particular solution is
Yp =320+ 522 — &z
V. f(z)= (B, + Bz .- 4 B_x")e** For the equation
ay” + by’ 4 oy = (B, + Bz + -+ + B 2% (64)
We must assume
Yo = @, (x)e** @ 0
o T P(a) # (66)
—_ az ’
o Yp = 2Q,(z)e Plx) =0, p'(a) 3 0 (66)
Yo = 2Qu(2)e"  pla) = p'(w) = 0 (87)

By allowing « in these e

uations t
the equation 4 0 be & complex number, we can also solve

ay" 4 by’ + cy = (By+ Bz + -+ + B, z")e* cos Bz (68)

or the same equation with cos Bz replaced by sin Bz.

If p(0) = ¢ £ 0, the
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Exzample 8 y” + 4y = ze®sinz
Let y = Im w.

w” + 4w = zeTe'® = gelltNa
Assurae

w, = (Az + B)elttie
Substituting, we obtain

(2 + 4)dz + (4 + 20)B + (2 + 204 ==

Therefore
1 144
A=gy w=d B=-go
and
zeTel® 1 447 4ol

Y» T4 12 6 +8i

Y, = Imw, = fyae®(—cosz + 28inz) — Ae%(—oos 2z + 7 sin )

Problems 5-5

Find particular solutions of the following equations:

1. " + 3y’ — by = 4e®® 4 B
2. y" + 3y’ + by = 28in 3z
3.y + 8y =4cos 3z

4. y" +3y —4y =2 +5
5. y* + 4y +4y = 32 g @
6. y* — 3y +4y =23 + 3z

7. y" — 3y’ +y = 3Tsing

8. y* — 3y’ = 2% {- 3e®

9. y" + 2y’ + 2y = 2e*cosx
10. y* — 4y = 3xe®®

5-6 Variation of parameters

The method of variation of parameters enables us to find a particular
solution of a nonhomogeneous equation whenever two linearly independent
solutions of the homogeneous equation are known. This method works
for any linear equation even when the coefficients are mot constant. We
consider the equation

a(z)y" + b(z)y’ + c(z)y = f(z)
where all the functions are continuous in some interval I and a(z) 7 0 in I.

We assume that y,(z) and y,(z) are linearly independent solutions of the
homogeneous equation. The general solution of the homogeneous equation

(69)
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is therefore
Y = () + coyy(x) (60)

We now try to find a solution of the nonhomogeneous equation (69)
replacing the constants ¢, and ¢, by functions of z.
solution in the form

by

Therefore we look for g

¥ = vy, (x) +- Vp(2)ya(2)

By substituting this expression into the differential equation (59), we will get
only one condition that the two functions »,(z) and v5(2) must satisfy. W
therefore can impose another condition. This can be rather arbitrarily
imposed but should be such as to simplify the determination of vy(z) and
vg(2).

Let us calculate the derivatives of (61). We have

Y =yl + vyi + (vjy, + o) (62)
Before proceeding to calculate ¥, we note that if we require
vY + vy, =0 (63)

then no second derivatives of v, and v, will appear in y”. We therefore take

(63) as one condition on vy and v,.  Caleulating ¢”, with the condition (63),
we obtain

¥ = vy + vyl + vl + vy,
Substituting (61), (62),

(64)
and (64) into the differential equation, we obtain
(a9’ + byi + eya)oy + (ayg + by; + cy)o, + vjay] + va8y; = f(z)

(65)
The cocfficients of v, and v, are zero because ¥ and y, are solutions of the
homogeneous equation. Therefore we. have the two equations
UYL+ vy =0
f(z)

a(z)

"o 1 66
VY1 + vyy = (66)

to determine v, and v,. These equations can be solved for v; and v, provided

Y Y

R | = 'I’ -_— 4 0 (67)
v, gy = Y — vy =

This determinant is the Wronskian of % and y,; and is always different from
zero if y, and y, are linearly independent. Solving Egs. (66), we obtain

o= — @ L @)
! a(z) W[y,,95] a(z) W[y,,v,]

Aaa

(1) |
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Therefore ie .
Yol2)f () dz v =J\?/1(x)f(x (68)
“z—mem%l a(z) W[31,9,)
i ation is
and a solution of the nonhomogeneous equ "

y = n(@)y () + vy(®)y2(x)
Ezample 1 Solve:y* +y =secx
Linearly independent solutions of the homogeneous equation are
in
y, = CO8 T Yy = Binz
and the general solution of the homogeneous equation i8

Yp =6} COBZT + Cz8IN T

We have | | )
Wiy,ys] = ¥1¥5 — Yz¥y = cos z (cos z) — (sin z)( —s1n z) =
1Y2

Therefore

f sin 2 dz = In |cos z|

v = _J.gina:secmdz = 7) cosz
= de =z
vy = fcoszseozdz = |
y, = cos zln|cos z{ 4+ zsinz
P

Yy, + ¥ —clcos:z:+c,sinm+oosx1nlcos:z:|+:z:smx
Y =Un » =

Problems 5-6

Solve by variation of parameters:

¥y +y=tanz

y* — by’ + By = 2
y'_y =sin2x
y’_y =z — 26F

)hb:to:-‘

e

5.y +4y +4y =3

6. By variation of parameters show that the solution of

DE:y" + A%y =f(z) A>0
IC: y(0) =0
y(0) = 0

y = %L’ f(¢) sin Az — ¢) dt



