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We present a simple design of circular or spherical
shells capable of amplifying a long-wavelength or
static field. This design makes use of only two
isotropic materials and is optimally restricted to
the prescribed geometric and materials constraint.
Furthermore, it is shown that the amplification factor
of the structure can be made arbitrarily large as the
ratio of the radius of the inner sphere to that of
the outer sphere decreases to zero. It is anticipated
that the presented design will be useful for high-gain
antennae for telecommunications, magnets generating
strong, local uniform fields and thermoelectric devices
harvesting thermal energy, among other applications.

1. Introduction
The design of composites usually focuses on optimizing
(i.e. maximizing or minimizing) the effective properties
of composites [1,2]. In many applications, however, it is
the local field that one would like to control and optimize.
This is clearly the case for mechanical structures where
minimizing stress concentration is critical for improving
the safety and reliability of the structures [3,4]. Moreover,
recent attempts in cloaking devices, as discussed in
Pendry et al. [5], Leonhardt [6], Milton et al. [7] and
Norris [8], from the viewpoint of optimal design [9],
concern designing a passive structure such that the wave
field in a subregion is negligibly small, and henceforth,
the presence of a foreign object does not interact with
and cannot be detected by external wave fields. The
exciting development [10–13] in realizing ‘cloaking’ for
acoustic waves and electromagnetic waves motivates
us to ponder on the opposite question of cloaking,
i.e. the possibility of ‘field amplifiers’ such that the
wave fields in a subregion are much stronger than

2013 The Author(s) Published by the Royal Society. All rights reserved.
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the external wave fields. It appears to be an easy task to amplify short-wavelength (or high-
frequency) waves locally. For instance, the classic convex and concave lens/mirrors can be
arranged to focus lights in a small local region. In addition, antennae or microphones are
essentially devices that receive and amplify external weak wave fields. Then, the interesting
question is whether it is possible to amplify a long-wavelength or static field.

Undoubtedly, the question raised above is of great practical interest. To mention a few, we
note that the technology of magnetic resonance imaging requires a highly uniform magnetic
field [14] of the order of 0.2–10 T, and hence the use of superconductors and associated cryogenic
systems is inevitable. In addition, large magnets generating fields above 10 T cost tens of millions
of dollars to build, and are precious tools for investigating a wide range of materials that are the
essential building blocks of all modern technologies, including computers, motors, maglev trains,
etc. (see [15]). The estimated cost of generating a magnetic field is around US $1 million per tesla
[16]. Therefore, there is substantial economic incentive in using a passive structure to amplify an
ambient magnetic field. Moreover, in high-precision measurements of magnetic or electric fields,
the sensitivity of the measuring devices can be improved as much as a passive structure can
amplify the measured fields [17]. Long-distance underwater or in-air communications typically
rely on acoustic or electromagnetic waves of long wavelength (of the order of metres for
underwater acoustic waves and kilometres for electromagnetic waves in air) [18]. The field
amplifier for long-wavelength wave fields can certainly improve the sensitivity of the receivers,
the range of communications and lower the power of transmitters. Finally, in the application
of thermoelectric materials, the electric energy generated by (per unit volume) thermoelectric
materials scales as |∇T|2 (T is temperature) [19]. A structure that can amplify |∇T| can be used to
reduce the thermoelectric materials for a targeted power output and lower the cost of the overall
energy production.

From the mathematical viewpoint, to the leading order, a wave field is governed by an elliptic
equation for ‘normal’, non-resonant devices in the long-wavelength limit. As a well-known fact in
the theory of elliptic equations, geometric singularities, e.g. a sharp tip or corner, induces singular
or unbounded fields at the singularities [20]. However, these unbounded fields are of little interest
for the above-mentioned applications as (i) the region of the large field is small and (ii) the
field is highly non-uniform and diminishes quickly away from the singular point. Therefore, we
focus on passive structures that can amplify an external field uniformly in a subregion. Secondly,
material singularities, e.g. zero or infinite bulk moduli for acoustic waves, also induce singular
fields. Though such singular materials could be realized by dynamic effects such as resonance
or composites at a suitable asymptotic limit [21], we shall restrict ourselves to normal materials
with a positive definite material property tensor. Like the designs of cloaking devices [5,22], the
design of our field amplifier also relies on engineering the effective anisotropy of the medium. For
explicit calculations, the structures are assumed to be spherically symmetric. We remark that this
assumption is not essential and the proposed approach can be implemented, at least numerically,
for general geometries.

This paper is organized as follows. The general problem is formulated in §2. We first consider
the long-wavelength limit, i.e. the static (or steady-state) case in §3. Simple designs of shells made
of two materials that can amplify the applied remote field in a bore region without a limit are
presented in §3b. In §4, we rigorously show that the designs and results are valid for long- but
finite-wavelength fields. We summarize in §5 and provide an outlook.

2. Problem statement
We consider a plane wave propagating in the k̂-direction with the far field given by

∇ξ (x) = e1 exp(ikk̂ · x), if |x| → +∞, (2.1)

where k̂ is a unit vector, ei (i = 1, . . . , n) are the canonical bases for the rectangular coordinate
system, the far-field amplitude is normalized to be 1, and λ = 2π/k is the wavelength. Let BR
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denote the ball of radius R centred at the origin, BR2 \ BR1 (0 < R1 < R2) be the domain where
the properties and distribution of the materials are to be designed, and BR1 be the target domain
where the field ∇ξ is preferably strong. The scalar function ξ : R

n → R satisfies

div[A(x)∇ξ (x)] + �(x)k2ξ (x) = 0 on R
n, (2.2)

where the material property tensor A(x) and �(x) take the values of the ambient medium if |x| > R2
or |x| < R1. Without loss of generality, assume that the material properties of the ambient medium
satisfy

A(x) = I and �(x) = 1 ∀|x| > R2 & |x| < R1, (2.3)

where I denotes the the identity matrix in R
n×n.

In general, it can be shown that the gradient field ∇ξ is by no means bounded on BR1 if
the material properties A and � on our design domain BR2 \ BR1 can take arbitrary values of
positive tensors and numbers. In reality, the material properties, of course, have limited choices.
Subsequently, we shall restrict ourselves to two isotropic materials with the tensor A given by
either σ0I or σ1I,

A(x) ∈ {σ0I, σ1I} ∀x ∈ BR2 \ BR1 . (2.4)

Below we first consider the long-wavelength limit (i.e. λ → +∞ or zero frequency), and then
show that the designs in the long-wavelength limit are also valid for low-frequency waves.

3. The long-wavelength limit
In the long-wavelength limit (i.e. zero frequency), the near field around BR2 is determined by (cf.
(4.33) and (2.1))

div[A(x)∇ξ (x)] = 0 on R
n

and (∇ξ (x) − e1) · er → 0 uniformly as |x| → +∞,

}
(3.1)

where er = x/|x| is the radial direction. We remark that equation (3.1) apparently determines
the static response of the dielectric (para/diamagnetic) medium under a far applied electric
(magnetic) field, where the tensor A is interpreted as the dielectric (permeability) tensor. It also
describes the steady state of a thermal (electrical) conductivity problem, where the tensor A is
interpreted as the thermal (electrical) conductivity tensor.

(a) Amplification factor of a single anisotropic spherical shell
Our goal is to find A(x) satisfying the constraint (2.4) such that the gradient field ∇ξ in BR1 can be
as large as possible. Motivated by the calculation of Meyers [23], we assume that the materials in
BR2 \BR1 are transverse isotropic with

A(x) = ar(r)er ⊗ er + at(r)(I − er ⊗ er) ∀R1 < |x| < R2, (3.2)

where ar (at) is the coefficient in the radial (transverse) direction. Note that the above tensors
do not satisfy (2.4) per se. Nevertheless, we may assume that material tensor of form (3.2) is
the effective tensor achieved by composites of σ0I and σ1I. From the classic Hashin–Shtrikman
bounds
[2,15], we infer that the coefficients (ar, at) in (3.2) necessarily satisfy that, for some volume fraction
θ ∈ [0, 1],

(n − 1)σ0

at − σ0
+ σ0

ar − σ0
≤ nσ0 + (1 − θ )(σ1 − σ0)

θ (σ1 − σ0)

and
(n − 1)σ1

at − σ1
+ σ1

ar − σ1
≥ −nσ1 + θ (σ1 − σ0)

(1 − θ )(σ1 − σ0)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.3)

We denote by C the set of all pairs of coefficients (ar, at) satisfying the above inequalities. Figure 3a
illustrates this set for the case where σ0 = 1, σ1 = 10 in three dimensions (n = 3).
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We now solve (3.1) explicitly and find the preferred material properties on the design domain
BR2 \BR1 . By symmetry, we claim that the solution to (3.1) with material properties prescribed by
(2.3) and (3.2) is given by

ξ = e1 · ∇u = u′er · e1, u = u(r) ∀r < R2. (3.4)

To see this, using (3.4), the gradient field is given by

∇ξ = (∇∇u)e1, ∇∇u = u′′er ⊗ er + u′

r
(I − er ⊗ er), (3.5)

and hence

A(x)∇ξ =
{

ar(r)u′′(r)er ⊗ er + at(r)
u′

r
[I − er ⊗ er]

}
e1. (3.6)

Therefore, equation (3.1) is satisfied if

(ar(r)u′′)′ + n − 1
r

[
ar(r)u′′ − at(r)

r
u′

]
= 0 ∀r ∈ (R1, R2),

u′′′ + n − 1
r

[
u′′ − 1

r
u′

]
= 0 ∀r ≤ R1 and r ≥ R2,

u′′(r)|r=R1− = ar(r)u′′(r)|r=R1+,

u′′(r)|r=R2+ = ar(r)u′′(r)|r=R2−

and u′′(r) → 1 as r → +∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

We observe that the field ∇ξ determined by solutions to (3.7) are necessarily uniform on BR1

(cf. (3.10)), and that the magnitude of the field is given by |u′′| |BR1
. Therefore, restricted to the

above geometric and material constraints, the optimal design problem can be stated as

max{|u′′| |BR1
: u is a solution to (3.7);

A(x), given by (3.2), satisfies (3.3)}.

⎫⎬
⎭ (3.8)

We remark that the above optimal design problem is difficult for the non-local dependence of
the field |u′′||BR1

on the material properties ar(r) and at(r), in spite of the fact that (3.7) is merely an
ordinary differential equation that, presumably, may be solved in closed form. Subsequently, we
consider the case that ar(r) and at(r) are constants independent of r. In this case, we rewrite (3.7)1
and (3.7)2 as (i = 0, 1, 2),

u′′′ + n − 1
r

[
u′′ − si

r
u′

]
= 0 ∀r ∈ [RiRi+1), (3.9)

where s0 = s2 = 1, R0 = 0, R3 = +∞ and s1 = at/ar > 0 characterizes the anisotropy of the material
in the shell BR1 \BR0 . By direct calculations, we find the general solution to (3.9) is given by

u′(r) = Air
αi + Bir

βi ∀r ∈ [Ri, Ri+1), i = 0, 1, 2, (3.10)

where Ai, Bi (i = 0, 1, 2) are integration constants, and

αi = 2 − n +
√

(n − 2)2 + 4(n − 1)si

2
> 0,

βi = 2 − n −
√

(n − 2)2 + 4(n − 1)si

2
< 0,

αi + βi = 2 − n.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.11)

The continuity of u′ and equations (3.7)3,4,5 imply that B0 = 0, A2 = 1 (i = 1, 2)

Ai−1Rαi−1
i + Bi−1Rβi−1

i = AiR
αi
i + BiR

βi
i

and
ai−1Ai−1αi−1Rαi−1−1

i + ai−1Bi−1βi−1Rβi−1−1
i = aiAiαiR

αi−1
i + aiBiβiR

βi−1
i ,
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where a0 = a2 = 1, a1 = ar. Thus, we have that[
Ai
Bi

]
= Mi

[
Ai−1
Bi−1

]
(i = 1, 2) and

[
A2
B2

]
= M2M1

[
A0
B0

]
, (3.12)

where (i = 1, 2)

Mi = 1
ai(βi − αi)

[
(−αi−1ai−1 + βiai)R

αi−1−αi
i (−βi−1ai−1 + βiai)R

βi−1−αi
i

(αi−1ai−1 − αiai)R
αi−1−βi
i (βi−1ai−1 − αiai)R

βi−1−βi
i

]
.

Furthermore, as a0 = a2 = 1 and s0 = s2 = 1, by (3.11) we have that α0 = α2 = 1, β0 = β2 = 1 − n and
the transfer matrix of the shell BR2 \BR1 is given by

T = M2M1 = 1
(α1 − β1)a1n

[
T11 T12
T21 T22

]
,

where (ρ = R1/R2 < 1)

T11 = ρn−1[−(−1 + β1a1)(−1 + α1a1 + n)ρβ1

+ (−1 + α1a1)(−1 + β1a1 + n)ρα1 ],

T12 = (−1 + α1a1 + n)(−1 + β1a1 + n)R1−n
2 R−1

1 [−ρβ1 + ρα1 ],

T21 = (−1 + α1a1)(−1 + β1a1)R1
n−1R2[ρβ1 − ρα1 ]

and T22 = ρ1−n[(−1 + α1a1)(−1 + β1a1 + n)ρ−α1

− (−1 + β1a1)(−1 + α1a1 + n)ρ−β1 ].

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.13)

Noting that B0 = 0, A2 = 1 and the exterior field contributed by the term B2r1−n vanishes as r →
+∞, using (3.12), we find the amplification factor f , defined as the ratio of the magnitude of the
field on BR1 to that of the far field as r → ∞, is given by

f = (α1 − β1)a1n
T11

(
recall that a1 = ar, s1 = at

ar

)
. (3.14)

Using (3.11) and (3.13)1 we find that for moderate material properties and geometric factors, e.g.
ar = 10, s1 = 0.1, ρ = 0.1, the amplification factor f = 3.76 in two dimensions, which is a significant
effect with regard to the difficulty in enhancing static fields uniformly by passive structures.

Below we write f = f (ar, s1, ρ, n) to stress that the amplification factor f depends on
the dimension of the space n, material properties (ar, s1) and geometric factor ρ and
explore the conditions to maximize the amplification factor. By (3.11) and (3.13)1, we
show the contours of the amplification factor f = f (ar, s1, ρ, n) in figure 1: (a) f = f (ar, s1 =
0.1, ρ, n = 2); (b) f = f (ar = 1, s1, ρ, n = 2); (c) f = f (ar, s1, ρ = 0.1, n = 2); (d) f = f (ar, s1 = 0.1, ρ,
n = 3); (e) f = f (ar = 1, s1, ρ, n = 3) and (f ) f = f (ar, s1, ρ = 0.1, n = 3). From figure 1a,c or d,f, we
observe that there exists an optimal ar such that the amplification factor is maximized for fixed
s1 and ρ. Further, from figure 1b or figure 1e, we see that the amplification factor f (ar, s1, ρ, n)
increases as s1 decreases or if s1 < 1 and ρ decreases. Qualitatively, we also find that the
amplification factor increases to infinity if s1 or ρ approach zero.

(b) A simple design
As mentioned earlier, we will use composites of σ0I, σ1I to achieve effective tensors prescribed by
(3.2). We have denoted by C the set of all pairs of (ar, at) satisfying (3.3). Direct calculation shows
that this set is alternatively given by

C =
{

(ar, at) : ar ∈ [σ0, σ1], s1 = at

ar
∈ [sL, sU]

}
, (3.15)
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Figure 1. Contour plots of the amplification factor f = f (ar , s1, ρ , n) in two and three dimensions. (a) f = f (ar , s1 =
0.1, ρ , n= 2); (b) f = f (ar = 1, s1, ρ , n= 2); (c) f = f (ar , s1, ρ = 0.1, n= 2); (d) f = f (ar , s1 = 0.1, ρ , n= 3); (e) f =
f (ar = 1, s1, ρ , n= 3) and (f ) f = f (ar , s1, ρ = 0.1, n= 3). (Online version in colour.)

where

sL = (σ1 + (n − 2)ar)(ar − σ0)σ0

ar[σ0(ar − σ0)n + ar(σ1 − ar) − σ0(σ1 − σ0)]

and sU = ar(σ0 + σ1) − σ0σ1

a2
r

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.16)

We remark that the lower boundary of the set C, i.e. ∂LC := {(ar, at) : s1 = sL, ar ∈ [σ0, σ1]}, is also
given by

∂LC :=
{

(ar, at) : at = (1 − θ )(n − 2)σ0 + (1 + θ (n − 2))σ1

n − 2 + θ + (1 − θ )σ1/σ0
, ar = θσ1 + (1 − θ )σ0, θ ∈ [0, 1]

}
. (3.17)

In terms of (ar, s1), the set C is sketched in figure 3b for σ0 = 1, σ1 = 10 in three dimensions, where
the curve corresponds to the lower boundary of the set C.

Restricted to effective tensors attainable by composites of σ0I, σ1I, our goal is to find a simple
microstructure such that the amplification factor is maximized. To this end, we first note that s1 �→
f (ar, s1, ρ, n) is monotonically decreasing. Therefore, the optimal composite must be such that s1 =
sL or, equivalently, the pair (ar, at) satisfies (3.17) for some θ ∈ [0, 1]. Inserting (3.17) into (3.11) and
(3.13)1, using (3.14), we obtain the explicit expression of the amplification factor f as a function of
the dimension n, constituent material properties σ0, σ1, volume fraction θ and geometric factor ρ,

f = f̃ (σ0, σ1, θ , ρ, n).

Upon maximizing the above amplification factor over all θ ∈ [0, 1], we obtain the optimal volume
fraction θ∗, which may be written as

θ∗ = θ∗(σ0, σ1, ρ, n). (3.18)

Though there is no fundamental difficulty in finding the (implicit) analytical expression of the
optimal volume fraction θ∗ and the associated optimal amplification factor

f = f̃ ∗(σ0, σ1, ρ, n) = f̃ (σ0, σ1, θ∗(σ0, σ1, ρ, n), ρ, n), (3.19)
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Figure 2. Contour plots of (a,c) the optimal amplification factor f = f̃ ∗(σ0, σ1, ρ , n) and (b,d) the optimal volume fraction
θ∗ = θ∗(σ0, σ1, ρ , n). (a) f = f̃ ∗(σ0, σ1, ρ = 0.1, n= 2); (b) θ∗ = θ∗(σ0, σ1, ρ = 0.1, n= 2); (c) f = f̃ ∗(σ0, σ1,
ρ = 0.1, n= 3) and (d) θ∗ = θ∗(σ0, σ1, ρ = 0.1, n= 3). (Online version in colour.)

the calculation is tedious and we shall resort to numerical solutions. Figure 2a,b shows
the maximum amplification factor f̃ ∗(σ0, σ1, ρ, n) and the associated optimal volume fraction
θ∗(σ0, σ1, ρ, n) in two dimensions (n = 2) for ρ = 0.1; figure 2c,d shows the maximum amplification
factor f̃ ∗(σ0, σ1, ρ, n) and the associated optimal volume fraction θ∗(σ0, σ1, ρ, n) in two dimensions
(n = 3) for ρ = 0.1.

Finally, we discuss the microstructure such that composites of σ0I and σ1I indeed have the
desired properties prescribed by (3.2) with (ar, at) ∈ ∂LC. From the attainment conditions discussed
in Liu [1], we find that the following simple microstructures realize the material properties
prescribed by (3.2) with (ar, at) ∈ ∂LC. In two dimensions, consider a simple tapered laminate of
σ0I and σ1I around the core sphere BR1 such that the overall structure is like a ‘spike wheel’, as
shown in figure 3c. Assume the thickness of each laminate is much smaller than R1, and locally the
volume fraction of material σ1I is θ . By homogenization theory, we see that the effective tensor on
the shell BR2 \BR1 is exactly given by (3.2) with (ar, at) ∈ ∂LC. In three dimensions, we consider rods
of σ1I standing on the sphere, and the remaining volume of the shell BR2 \BR1 is occupied by the
material σ0I. Further, we assume the distances between neighbouring rods are much smaller than
R2 and locally the rods form a periodic lattice. Additionally, we shall assume the cross section of
each rod is a periodic E-inclusion or Vigdergauz microstructure. The shape matrix of the periodic
E-inclusions is isotropic and the volume fraction is θ . Here, we emphasize that the shapes of these
E-inclusions depend not only on the volume fraction and shape matrix, but also on the lattice,
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n=2 n=3

(a) (b)

(c) (d)

9

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

10

8

7

6

5

4

3

2

1
0 2 4 6 8 10 2 4 6 8 10

at

ar ar

attained by
attained by

s1

Figure 3. (a) The set C to which the pair (ar , at) necessarily belong to; (b) the set of (ar , s1 = at/ar) if (ar , at) ∈ C; (c) a two-
dimensional microstructure of the composite of σ0I, σ1I (spike wheel) such that the effective tensor of the composite has the
form (3.2) and the pair (ar , at) attain a point on the lower boundary of the set C and (d) a three-dimensional microstructure
(hairy sphere) of the composite of σ0I, σ1I such that the effective tensor of the composite has the form (3.2) and the pair
(ar , at) attain a point on the lower boundary of the set C. The tapered rod (hair) on the sphere and its cross section are shown
in figure 4a,b. (Online version in colour.)

(a) (b)
0.7
0.6
0.5

0.4
0.3

0.2 0.1

Figure 4. (a) The shape of the rods on the hairy sphere in figure 3d. (b) The cross section of the rod for a unit cell [0, 1.5]× [0, 1]
and various volume fractions. The number on each curve is the volume fraction of the inclusion. (Online version in colour.)
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i.e. the unit cell. For example, for a rectangular unit cell [0, 1.5] × [0, 1], the periodic E-inclusions
are shown in figure 4 for various volume fractions. With these rods fabricated, we assemble them
around the sphere BR1 such that the final structure looks like a ‘hairy sphere’. From the properties
of periodic E-inclusions, we can show that the effective tensor on the shell BR2 \ BR1 is exactly
given by (3.2) with (ar, at) ∈ ∂LC [24].

4. The long-wavelength case
In this section, we will show that the designs presented in the last section are valid for long-
but finite-wavelength wave fields. To simplify our exposition, we will assume � = 1 in R

n. An
incoming plane wave will be modelled in this section by a Neumann condition imposed on a
far-field boundary ∂BR with R 
 R2 (‘sphere at infinity’). Thus, the time-harmonic wave field ζ (x)
satisfies

div[A(x)∇ζ (x)] + k2ζ (x) = 0 in BR

and (∇ζ (x) − q(x)) · n = 0 on ∂BR,

}
(4.1)

where q(x) = e1 cos(kk̂ · x) and n = er = x/R is the exterior normal to the sphere ∂BR. We will study
the long-wavelength regime corresponding to kR(n+6)/4 � 1. Note that, kR < kR(n+6)/4 for all n ∈ N.
We first prove that the discussion of §3a remains valid with minor modifications for problem (4.3).
Then, in the long-wavelength case (4.1), we show that the solution to (4.3) describes the near-field
response of the medium to the leading order. Using the perturbation method, we find that the
correction to the solution of (3.1) for finite wavelength is of the order of kR(n+6)/4.

We now begin our analysis for problem (4.1) by observing that, upon integrating
equation (4.1)1, we obtain ∫

BR

ζ (x) = − 1
k2

∫
∂BR

q · er. (4.2)

Consider the following auxiliary problem:

− div[A(x)∇ ξ̃ (x)] = 0 in BR,

(∇ ξ̃ (x) − e1) · er = 0 on ∂BR

and
∫

BR

ξ̃ =
∫

BR

ζ .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.3)

Following similar arguments as in §3a, we claim that the solution of problem (4.3) is given by

ξ̃ = e1 · ∇v +
∫

BR

ζ = v′er · e1 +
∫

BR

ζ , (4.4)

where v = v(r) for r < R has a continuous derivative and satisfies

(ar(r)v′′)′ + n − 1
r

[
ar(r)v′′ − at(r)

r
v′

]
= 0 for r ∈ (R1, R2),

v′′′ + n − 1
r

[
v′′ − 1

r
v′

]
= 0 for r ≤ R1 and R2 ≤ r ≤ R,

v′′(r)|r=R1− = ar(r)v′′(r)|r=R1+,

v′′(r)|r=R2+ = ar(r)v′′(r)|r=R2−

and v′′(r) = 1 on ∂BR.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

Similarly, as in §3, assuming that ar, at are constants, we can solve system (4.5) explicitly and
obtain

v′(r) = Cir
αi + Dir

βi ∀r ∈ (Ri, Ri+1), i = 0, 1, 2, (4.6)

where R0 = 0, R3 = R, Ci, Di (i = 0, 1, 2) are integration constants and αi and βi are as in (3.11). Then,
following very similar arguments as in (3.12) and (3.13), we find that the amplification factor, the
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ratio of the magnitude of the uniform field in BR1 to that of the far field on ∂BR, is given by

f = (α1 − β1)a1n
T11 + (1 − n)T21R−n , (4.7)

where T11, T21, α1, β1, a1 are the same as before. We can observe from (4.7) that in the current
situation, i.e. when R 
 1, the amplification factor is very close to the amplification factor obtained
in (3.14).

In the following, we rigorously prove that the solution ξ̃ to (4.3) is indeed a good
approximation of the solution ζ to (4.1) for R(n+6)/4k � 1. In this regard, we first establish a few
estimates concerning the solution ξ̃ to (4.3). Let

H1
∗(BR) =

{
u ∈ H1(BR),

∫
BR

u = 0
}

. (4.8)

It can easily be observed that the space H1∗(BR) is a Hilbert space endowed with the following
scalar product:

〈u, v〉 =
∫

BR

∇u · ∇v. (4.9)

Let us begin by recalling two important results that will be useful in our subsequent analysis. The
first result describes the optimal constant for the Poincaré inequality on balls for functions in the
space H1∗(BR) as obtained by Payne & Weinberger [25],

‖Φ‖L2(BR) ≤ 2R
π

‖∇Φ‖L2(BR) for Φ ∈ H1
∗(BR). (4.10)

The second result describes the optimal constant in the trace inequality on balls for functions in
the space H1∗(BR) as obtained by Auchmuty [26]

‖Φ‖L2(∂BR) ≤ C
√

R‖∇Φ‖L2(BR) for Φ ∈ H1
∗(BR), (4.11)

where here and subsequently in this section, we will denote by C a generic constant independent
of R (and k).

Observing that
∫

∂BR
e1 · er = 0, we note that problem (4.3) admits a unique solution in H1(BR).

Moreover, from classical elliptic estimates, we have

‖∇ ξ̃‖2
L2(BR) ≤ C

∣∣∣∣
∫
∂BR

(e1 · er)ξ̃
∣∣∣∣ = C

∣∣∣∣
∫
∂BR

(e1 · er)
(

ξ̃ − 1
|BR|

∫
BR

ξ̃

)∣∣∣∣
≤ C‖(e1 · er)‖L2(∂BR)

∥∥∥∥ξ̃ − 1
|BR|

∫
BR

ξ̃

∥∥∥∥
L2(∂BR)

≤ C|∂BR|1/2
∥∥∥∥ξ̃ − 1

|BR|
∫

BR

ξ̃

∥∥∥∥
L2(∂BR)

≤ CRn/2‖∇ ξ̃‖L2(BR), (4.12)

where, in the last inequality above, we have used (4.11) and the fact that the surface area of the
n-dimensional sphere of radius R is given by |∂BR| = Rn−1ςn, with ςn denoting the surface area of
the n-dimensional unit ball. From (4.12), we deduce

‖∇ ξ̃‖L2(BR) ≤ O(Rn/2). (4.13)

Next, recalling that the measure of BR is given by |BR| = Rn · ωn, where ωn is the volume of the
n-dimensional unit ball, the Poincaré–Wirtinger inequality in H1(BR) states∥∥∥∥ξ̃ − 1

|BR|
∫

BR

ξ̃

∥∥∥∥
L2(BR)

≤ 2R
π

‖∇ ξ̃‖L2(BR), (4.14)
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and using this together with (4.3)3 and (4.13), we obtain,

‖ξ̃‖L2(BR) ≤ 2R
π

‖∇ ξ̃‖L2(BR) + 1
CRn/2

∣∣∣∣
∫

BR

ξ̃

∣∣∣∣
= 2R

π
‖∇ ξ̃‖L2(BR) + 1

CRn/2

∣∣∣∣
∫

BR

ζ

∣∣∣∣
≤ O(Rn/2+1) + 1

k2CRn/2

∣∣∣∣
∫
∂BR

(e1 · er) cos(kk̂ · x)
∣∣∣∣

≤ O(Rn/2+1) + 1

k2CR
n
2 +1

∣∣∣∣
∫
∂BR

(e1 · er)(1 + O(k2R2))
∣∣∣∣

≤ O(Rn/2+1) + O(R(n+2)/2)

≤ O(R(n+2)/2), (4.15)

where (4.13) and (4.27) have been used for the second inequality and the third inequality follows
from the Taylor expansion for q (when kR � 1),

|q(x) · er − e1 · er| ≤ O(k2R2) for |x| = R. (4.16)

From (4.15) and (4.13), we have the following estimate:

‖ξ̃‖H1(BR) ≤ O(R(n+2)/2). (4.17)

Now we are ready to state the main theorem concerning the long-wavelength case.

Theorem 4.1. Let ζ and ξ̃ be the solutions to (4.1) and (4.3), respectively. Then,

‖ζ − ξ̃‖H1(BR) ≤ O(k2R(n+6)/2).

Proof. Consider the following problem:

− div[A(x)∇z(x)] = h in BR

and ∇z(x) · er = g := 1
ςnRn−1

∫
BR

h on ∂BR,

⎫⎪⎬
⎪⎭ (4.18)

for h ∈ L2(BR), where the constant g is chosen such that the following compatibility condition is
satisfied:

−
∫
∂BR

g =
∫

BR

h. (4.19)

It is well known that the problem (4.18) has a unique solution z ∈ H1∗(BR). We can therefore define
a linear operator T : H1(BR) → H1(BR) such that

Th = z.

Note that T is linear and bounded. Indeed, assuming h ∈ H1(BR) and multiplying (4.18) by Th and
using Green’s theorem, the ellipticity of A and the Cauchy–Schwartz inequality, we obtain

‖∇Th‖2
L2(BR) ≤ C‖h‖L2(BR) · ‖Th‖L2(BR) + C

R(n−1)/2
‖h‖L1(BR) · ‖Th‖L2(∂BR). (4.20)

Next from the fact that by definition, we have Th ∈ H1∗(BR) and by using (4.10) in (4.20), we get

‖∇Th‖2
L2(BR) ≤ CR‖h‖L2(BR) · ‖∇Th‖L2(BR) + C

R(n−1)/2
‖h‖L1(BR) · ‖Th‖L2(∂BR). (4.21)

By using (4.11) in (4.21), we obtain

‖∇Th‖2
L2(BR) ≤ CR‖h‖L2(BR) · ‖∇Th‖L2(BR) + C

√
R

R(n−1)/2
‖h‖L1(BR) · ‖∇Th‖L2(BR)
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or

‖∇Th‖L2(BR) ≤ CR
(

‖h‖L2(BR) + 1
Rn/2 ‖h‖L1(BR)

)

≤ CR
(‖h‖L2(BR) + C ‖h‖L2(BR)

)
≤ CR‖h‖L2(BR) ≤ CR‖h‖H1(BR). (4.22)

Using the fact that Th ∈ H1∗(BR), from (4.10) and (4.22), we obtain

‖Th‖L2(BR) ≤ CR2‖h‖H1(BR). (4.23)

Combining (4.23) and (4.22), we have

‖Th‖H1(BR) ≤ CR2‖h‖H1(BR). (4.24)

Taking now the supremum for all h ∈ H1(BR) with ‖h‖H1(BR) = 1 in (4.24), we obtain

‖T‖O = sup
‖h‖H1(BR )=1

‖Th‖H1(BR) ≤ CR2, (4.25)

where ‖T‖O denotes the operatorial norm of T. Consider now, problem (4.18) with

h = ζ and g = g0 = 1
k2|∂BR|

∫
∂BR

q · er, (4.26)

where q, ζ were defined in the context of problem (4.1). Indeed, if upon integrating (4.1), we
obtain that ∫

BR

ζ (x) = − 1
k2

∫
∂BR

q · er, (4.27)

and then we see that relations (4.27) and (4.26) imply that g = g0 and h = ζ satisfy the compatibility
condition (4.19). We continue by observing that the function w defined by

w = ζ − k2Tζ (4.28)

solves the following problem:

− div[A(x)∇w(x)] = 0 in BR,

∇w(x) · er = q(x) · er − 1
|∂BR|

∫
∂BR

q · er for |x| = R

and
∫

BR

w =
∫

BR

ζ ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.29)

where we used the definition of g0 introduced in (4.26). We can rewrite problem (4.29) as follows:

− div[A(x)∇w(x)] = 0 in BR,

∇w(x) · er = e1 · er + η(x) for |x| = R

and
∫

BR

w =
∫

BR

ζ ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.30)

where

η(x) = (q(x) − e1) · er − 1
|∂BR|

∫
∂BR

q · er for |x| = R. (4.31)

By using (4.16) in (4.31), we obtain

|η(x)| ≤ O(k2R2) for |x| = R, (4.32)
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where in equation (4.32), we have also used the fact that
∫

∂BR
e1 · er = 0. From (4.3) and (4.30), we

have that w − ξ̃ satisfies the following problem:

− div[A(x)∇(w(x) − ξ̃ (x))] = 0 in BR,

∇(w(x) − ξ̃ ) · er = η(x) for |x| = R

and
∫

BR

(w − ξ̃ ) = 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.33)

Multiplying by w − ξ̃ in (4.33) and integrating, we obtain

∫
BR

|∇(w − ξ̃ )|2 ≤ C
∫
∂BR

η(x)(w − ξ̃ ),

∫
BR

|∇(w − ξ̃ )|2 ≤ O(k2R2)R(n−1)/2
√

R
(∫

BR

|∇(w − ξ̃ )|2
)1/2

and
(∫

BR

|∇(w − ξ̃ )|2
)1/2

≤ O(k2R(n+4)/2),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.34)

where we have used Green’s theorem, the ellipticity of A and (4.11). Using the fact that w − ξ̃ ∈
H1∗(BR) and (4.10) from (4.34), we obtain

(∫
BR

|w − ξ̃ |2
)1/2

≤ O(k2R(n+6)/2). (4.35)

Combining (4.35) with (4.34), we obtain

‖w − ξ̃‖H1(BR) ≤ O(k2R(n+6)/2). (4.36)

From (4.25) and by using the fact that kR < kR(n+6)/4 � 1, we have that ‖k2T‖O = O(k2R2) � 1.
This implies that I − k2T : H1(BR) → H1(BR) is invertible, and we have

(I − k2T)−1 =
∞∑

i=0

k2iTi, (4.37)

where T0 = I and Ti(·) = Ti−1(T(·)) for all i ≥ 1. From (4.37), (4.36) and (4.28), we conclude that

ζ = (I − k2T)−1w =
∞∑

i=0

k2iTiw = w +
∞∑

i=1

k2iTiw. (4.38)

Next, by using (4.24), we obtain

‖Tiw‖ ≤ ‖T‖i
O · ‖w‖H1(BR) for i ≥ 1. (4.39)

From (4.38), (4.36), (4.25) and (4.39), we conclude that

‖ζ − ξ̃‖H1(BR) ≤ ‖w − ξ̃‖H1(BR) + ‖w‖H1(BR)‖k2T‖O
∞∑

l=0

(k2‖T‖O)l

≤ O(k2R(n+6)/2) + (‖ξ̃‖H1(BR) + O(k2R(n+6)/2))O(k2R2)
1

1 − k2‖T‖O
≤ O(k2R(n+6)/2) + (‖ξ̃‖H1(BR) + O(k2R(n+6)/2))O(k2R2)

≤ O(k2R(n+6)/2), (4.40)
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where we have used (4.17). This then proves the fact that the designs used in the zero-frequency
regime also apply to the low-frequency regime in the sense that an incoming uniform field will
be almost uniform in BR1 and will get amplified in this region by a factor approximately given
by (4.7). �

5. Summary and discussion
We have provided a recipe for the feasible design of composite material coating around the region
BR1 with the desired effect of amplifying a given uniform incoming field from an external source.
Our analysis is valid in the static and long- but finite-wavelength regimes. The analysis done in
§§3 and 4 also suggests that one can adapt the present results to the context of maximizing the L2

norm of the potential itself in the region BR1 . Finally, we remark that our analysis in §4 applies to
the case of large frequencies with the condition of a sufficiently small control area, i.e. R � 1.
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