
Vibration Suppression and Defect Detection Schemes in 1D Linear
Spring-Mass Systems ∗

Neil Jerome A. Egarguin1,2, Taoufik Meklachi3, Daniel Onofrei1, and Noam D.
Harari-Arnold1

1Department of Mathematics, University of Houston, Houston, TX, USA
2Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, 

Los Baños, Laguna, Philippines
3School of Science, Engineering, and Technology, Penn State University Harrisburg, 

Middletown, PA, USA

Abstract

Purpose In this paper, we present strategies for active vibration suppression and defect
detection in a one-dimensional network of an arbitrary number of coupled spring–mass units
connected in series. The choice of a spring–mass system is not arbitrary, as the latter is found in
many applications throughout a wide range of fields, for instance in defense detection/ shielding
studies, biomedical engineering, structures engineering, computer graphics and acoustics among
others.

Methods The system of differential equations that model the spring–mass systems was
analyzed and solved using the Laplace transform and other analytic tools. The data used in the
numerical simulations were obtained by solving the associated forward problems analytically or
numerically. Some of the simulations required numerical integration and minimization routines.

Results A scheme for active vibration suppression is given via explicit formulas for the
required control forces. The detect defection strategy is given in terms of an explicit formula
whenever only the location or mass of a lone defect is unknown and in terms of a minimiza-
tion procedure whenever more than one information about the defect(s) are unknown. Several
numerical simulations were done to validate these results.

Conclusion As we show in the paper, the success of the vibration suppression scheme we
developed depends on the speed and accuracy of the intervening active controls. Meanwhile,
the defect detection algorithm only requires measurements in a sufficiently large time interval
of the longitudinal vibrations in the first mass.

1 Introduction

For many decades, spring-mass systems have been the subject of substantial research efforts due its
practical relevance in almost all engineering disciplines, computer graphics and the medical field.
Spring-mass systems are found in structures isolation [15, 17] , intelligent material systems, and
novel devices with actuators and dampers [1, 3, 4, 19]. Furthermore, these systems are preferred
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in computer graphics and animation to simulate the motion of cloth and hair, instead of a more
physically-consistent model derived from continuum mechanics using finite elements method. In
such physics-based animation modeling, high accuracy is not always necessary and spring-mass
systems allow for easy implementation and fast simulation. For an in-depth discussion and survey,
we refer the reader to the following articles [9, 13].

The literature involving spring-mass systems is quite extensive and a comprehensive survey is
not feasible, but we will somewhat provide here a concise summary without getting into the details.
For instance, in [20], cloaking in acoustic metamaterials was addressed: the authors used an infinite
one-dimensional spring-mass system to experimentally realize negative and zero effective mass of
the system. Another paradigm where spring-mass systems are used as models is in the study of
deformable objects. In this regard, a non-rigid object is modeled as a collection of point masses
linked by springs in a mesh structure [6]. In the latter paper a novel approach is introduced to
achieve real-time simulation for global deformation of soft tissue using a spring-mass system. Some
related work can be found in these references [7,14,21]. Many of these results are aimed to enhance
real-time image-guided surgeries [12].

The first half of this paper deals with active vibration suppression for one dimensional spring
and mass systems. In the automotive industry, active and passive vibration suppression has been
successfully achieved using advanced intelligent suspension systems to improve handling and com-
fort [2,16]. Since the late seventies, spring-mass networks are also used in sound synthesis to model
the vibrations of musical instruments, and they are therefore classified as physical sound synthesis
models [11]. However, the latter paper raised some issues regarding the accuracy of the numerical
methods used. To avoid these, we will obtain exact explicit solutions of the Hookean system of
ordinary differential equations (ODEs) through the inverse Laplace transform of the displacements
and action forces.

In Section 3, active vibration suppression is discussed in the context of a spring-mass system
of an arbitrary number of masses. The right end mass’ vibration is silenced by an action force
f , and a second force g intervenes to shield the vibration suppression from being communicated
to mass 1 as sketched in Figure (1). We propose a control strategy that explicitly characterizes
the Laplace transform of the active forces f and g needed for the desired suppression effects in a
spring-mass system with unit masses and uniform spring constant and damping. In particular, we
present numerical simulations of this method for two active suppression scenarios.

Figure 1: A spring-mass system with n+1 unit masses

The other half of the paper is dedicated to defect detection in a spring-mass system. As spring-
mass systems appear in various physical applications, detecting and describing defects have been
widely-studied. For one, defects cause some changes in the reaction of a system to external forces.
For example, in [8] and [22] the effects of localized defects in periodic media, such as photonic
crystal fibers in relation to light propagation were studied. Knowing some characteristics of the
defects allows one to guide and control the propagation of light. Though, these studies were done
in the context of continuum models in electromagnetism, the mathematical tools can be adapted
for discrete systems as exhibited in [10]. A more apparent utility of defect detection is found in
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industrial settings such as in automotive and other mechanical systems as well as in emerging fields
of metamaterials and nanotechnology. An example of a defect detection scheme using data obtained
after subjecting the system to some external excitation can be found in [18]. In said paper, surface
defects on raw metal sheets in a production line were detected using infrared images obtained after
subjecting the material to deflectometry. In Section 4 we propose a method of finding the location
and/or mass of defects in a spring mass system configured as in Figure (2). In this set-up, n bodies
are connected in series by springs with uniform stiffness constant and damping coefficient. All
bodies have unit mass, except the one in position j whose mass is m 6= 1. At time t = 0 an impulse
will be applied to mass 1 and the longitudinal vibrations will be measured, in the Laplace domain.
These measurements will be used to find j. We also extend the method to the cases when there
are more than one defect and when the masses of the defective bodies are unknown.

Figure 2: A spring-mass with one defect at position j.

2 Explicit solution of Spring-mass systems

In this section, we present the fundamental tools used in solving for the the longitudinal displace-
ments and velocities in the spring-mass system when the motion is initiated by a Dirac-δ impulse
on the first mass.

The model in this study consist of a coupled spring-mass system with finite number of (say n)
nodes and two fixed ends, see Figure 1 or 2. Suppose that each node is of unit mass. The motion
is initiated by a pulse γδ(t) on node 1, where γ is a positive scaling value. When no other internal
or external force is allowed to act on the system, the corresponding longitudinal displacements xi
of mass i are solutions of the following system of ODEs:

x′′1 + dx′1 + 2kx1 − kx2 = γδ(t)

x′′2 + dx′2 + 2kx2 − kx1 − kx3 = 0
...

x′′j + dx′j + 2kxj − kxj−1 − kxj+1 = 0
...

x′′n−1 + dx′n−1 + 2kxn−1 − kxn − kxn−2 = 0

x′′n + dx′n + 2kxn − kxn−1 = 0

xi(0) = x′i(0) = 0, i = 1, 2, ..., n

(2.1)

where k is the stiffness constant and d is the damping force on the springs. Assuming that k = 1,
the Laplace transform of system (2.1) is given by

Ax̃ = b (2.2)

where
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A =



h 1 0 .. .. 0
1 h 1 0 .. 0
.. .. .. .. .. .
.. .. .. .. .. .
0 ... ..... 1 h 1
0 0 .. .. 1 h

 , b =



−γ
0
.
.
0
0


and h = −(s2 + ds + 2). The following inversion theorem plays a major role in our solution to
equation (2.2).

Theorem 2.1. [5] . Let D ≤ −2 and M be the n× n matrix

M =



D 1
1 D 1

1 D 1
. . .

. . .
. . .

1 D 1
1 D


.

Then M−1 = X is given by

Xij = −cosh(n+ 1− |j − i|)λ− cosh(n+ 1− i− j)λ
2 sinhλ sinh(n+ 1)λ

, (2.3)

where λ satisfies D = −2 coshλ = −(eλ + e−λ).

Since in equation (2.2), s > 0 then h ≤ −2 and so Theorem 2.1 can be applied to the coefficient
matrix A with D = h = −(s2 + ds+ 2). Hence,

x̃ = Rb (2.4)

where here R denotes the inverse of A computed as in Theorem 2.1 and

coshλ = −h
2

=
s2 + ds+ 2

2
. (2.5)

The above analysis explicitly gives the analytic solution of system (2.1). To obtain the time domain
solution x(t) of system (2.1), one can take the inverse Laplace transform of the expressions in (2.4).

This solution framework is applicable to both of our problems, i.e., vibration suppression and
defect location, with minor adjustments. Detailed discussions for each are given in the succeeding
sections.

3 Active vibration suppression

In this section we consider the problem of active vibration suppression pictured in Figure 1. The
goal is to design active controls f and g so that, applied on masses n and n− 1, respectively have
the effect of suppressing the vibration of mass n + 1 while mass 1 does not feel any intervention,
meaning mass 1 would “seem” to be affected only by the initial impulse γδ(t) as the only external
force in the system. In other words, in the context of an a priori known perturbation at mass 1 of
the system, the two controls f, g form an active shield for any vibration coming in the system from
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the right side of mass n. In this case, with forces f, g acting on masses n and n − 1 respectively
system (2.1) becomes

x
′′
1 + 2kx1 − kx2 + d1x

′
1 = γδ(t)

x
′′
2 + 2kx2 − kx1 − kx3 + d2x

′
2 = 0

.

.

x
′′
n−1 + 2kxn−1 − kxn−2 − kxn + dn−1x

′
n−1 = g(t)

x
′′
n + 2kxn − kxn−1 − kxn+1 + dnx

′
n = f(t)

x
′′
n+1 + 2kxn+1 − kxn + dn+1x

′
n+1 = 0

xi(0) = x
′
i(0) = 0 1 ≤ i ≤ n+ 1

(3.1)

with corresponding Laplace domain system

Anx̃ = bn (3.2)

which is an n× n system (as, by construction we set xn+1 = 0) , where

An =



h 1 0 .. .. 0
1 h 1 0 .. 0
.. .. .. .. .. .
.. .. .. .. .. .
0 ... ..... 1 h 1
0 0 .. .. 1 h

 , bn =



−γ
0
.
.
−g̃
−f̃

 and h = −(s2 + ds+ 2).

The control force f is chosen such that when applied to mass n, the vibration is prevented from
reaching mass n + 1. Meanwhile the force g is designed so that when exerted on mass n − 1, the
motion of mass 1 is restored to its original state as if f had not have intervened. These controls
are characterized in Theorem 3.1.

Theorem 3.1. Consider a coupled spring-mass system connected in series, consisting of n + 1
masses, each with mass m = 1 spring constant k = 1 and damping constant d. If the system is
excited with an initial impulse δ(t) on mass 1, the Laplace transform of the control f acting on the
nth mass necessary to make the (n+ 1)th mass still is

f̃(s) =
− sinh(3λ)

sinh(n+ 2)λ
(3.3)

while the Laplace transform of the control g applied to the (n − 1)th mass to restore mass 1 to its
state prior to the action of control f is given by

g̃(s) =
sinh(2λ)

sinh(n+ 2)λ
, (3.4)

where cosh(λ) = s2+ds+2
2 .

Proof. Let y = (y1, y2, ..., yn+1)
T be the displacements of the masses with only the initial impulse

acting on mass 1 (without the controls f and g). Its Laplace transform, ỹ = Ly, then satisfies the
system of displacements:

An+1ỹ = bn+1, (3.5)

5



where An+1 is defined as An but with dimension (n+1)×(n+1), bn+1 =
(
−γ, 0....0, 0

)T
and γ = 1.

The objective is to find f̃ and g̃ in system (3.2) such that x̃1 = ỹ1. First, we start by solving for ỹ1
in (3.5). Let R′ = A−1n+1, then we have

ỹ = R′bn+1

which implies
ỹ1 = −R′1,1.

Using (2.3) gives

ỹ1 =
sinh(n+ 1)λ

sinh(n+ 2)λ
= x̃1. (3.6)

Now that x̃1 is evaluated and x̃n is set to 0, which is an immediate consequence of the condition
x̃n+1 = 0, we proceed by writing the first and nth rows of the system x̃ = Rbn as follows:

x̃1 = −R1,1 − g̃R1,n−1 − f̃R1,n

x̃n = −Rn,1 − g̃Rn,n−1 − f̃Rn,n.

The solution of the above linear system of f̃ and g̃ are given by:

f̃ =
Rn,n−1x̃1 −Rn,1R1,n−1 +Rn,n−1R1,1

Rn,nR1,n−1 −Rn,1Rn,n−1

g̃ =
R1,n

2 −R1,1
2 −Rn,nx̃1

Rn,nR1,n−1 −Rn,1Rn,n−1
.

Plugging-in the Rij coefficients from (2.3), the interventions f̃ and g̃ take the forms

f̃(s) =
− sinh(3λ)

sinh(n+ 2)λ

g̃(s) =
sinh(2λ)

sinh(n+ 2)λ

where λ is defined by the relation cosh(λ) = −h
2 = s2+ds+2

2 .

To verify that the uniquely computed controls perfectly quiet mass n + 1 while keeping mass
1 unaware of what happened, we substitute f̃ and g̃ in the Laplace transform of the system (3.1)
given by

An+1x̃ = b′n+1,

where An+1 is as defined in (3.5) and b′n+1 =
(
−γ, 0....f̃ , g̃, 0

)T
. We then have x̃ = R′b′n+1. Straight-

forward algebra shows that x̃n+1 = 0 (the vibration suppression of mass n+1 is successfully per-
formed) and x̃1 = ỹ1 (shielding of the vibration suppression from being communicated to mass 1 is
also verified).

In what follows we will offer some numerical simulations to support the results discussed above
and to show how exactly controls analytically predicted by formulas (3.3) and (3.4) work in covertly
silencing any vibration present in mass n+ 1 thus rendering their own action as well as vibrations
at mass n+ 1 invisible through measurements at the location of the initial input, i.e., mass 1.

For the subsequent numerics we further assume a γδ(t) impulse on mass 1 (”interrogator”
location), with γ = 1. Mass n is the location where the control f is acting to prevent the propagating
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pulse from interacting with the end mass n+ 1 (the target subject to cloak). The control force f ,
acting alone, would cause the system to behave differently, hence mass 1 would feel the response.
Fortunately, a new control g on mass n−1 will successfully restore the displacement profile of mass
1 as if no interventions took place. In what follows for the numerical support of our general results,
we will consider a coupled spring-mass system with n = 5 and respectively n = 20 nodes and two
fixed ends. The controls f and g are computed in the two systems of 5 and 20 masses to illustrate
different scenarios and we assumed that the spring constant k = 1 and the damping coefficient
d = 0.1 in all the springs.

3.1.1 System of 5 springs. We have from (3.3) and (3.4), for n = 4:

f̃(s) =
− sinh 3λ

sinh 6λ
(3.7)

g̃(s) =
sinh 2λ

sinh 6λ
. (3.8)

By performing the substitution

λ = cosh−1
(
s2 + ds+ 2

2

)
,

we are able to invert the Laplace transforms and obtain explicit formulas for the controls
f and g. The plots of these controls are shown in Figure 3. The next plots illustrate that

Figure 3: (a) Plots of controls f and g.

indeed cloaking is achieved, i.e., the two control forces f and g are making the last mass
motionless while their intervention is completely ‘invisible’ to an observer measuring the
vibrations echos felt by the first mass. Indeed, Figure 4 compares the vibrations x1 before
and after the application of the suppression control f alone. It is evident that the action of f
alone, while rendering the last mass motionless, altered the vibrations of x1 when compared
to the case of no controls thus making the action visible to an observer at mass 1. On the
other hand, after the application of the second control g, besides rendering the last mass
motionless we also observe that the vibrations of the first mass are restored to the state prior
to the action of the two controls, thus making the action of the two controls invisible to an
observer measuring the vibrations of the first mass. See Figure 5.

3.1.2 System of 20 masses. In this subsection we study the case of 20 masses, which is also a test for
the algorithm’s effectiveness against the numerical challenges that comes with a high number
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(a) x1 without the controls f and g (b) x1 with suppression control f but without the
cloaking control g

Figure 4: Plots illustrating the effects of the suppression control f .

(a) x1 without the controls f and g (b) x1 with both controls f and g

Figure 5: Plots illustrating the effects on x1 of the controls f and g acting together while last mass
is motionless.

of masses as posed in [11]. In this case, we numerically compute the inverse Laplace transform
of f̃ and g̃. Thus, similar to the 5-mass case presented before, the Laplace transform of f
and g are given by the expressions:

f̃(s) =
− sinh 3λ

sinh 21λ

g̃(s) =
sinh 2λ

sinh 21λ
.

The inverse Laplace transform of f̃ and g̃, computed numerically are shown in Figure 6. Due
to the presence of more masses in the model the expected time delay can be visually observed
for the two active controls since they begin their action immediately after the pulse applied
at mass 1 propagates to the last mass. Now, we illustrate the effects of these controls to the
system. Figure 7 compares the vibrations in x1 prior to the application of any control and
after the action of the suppression control f .

In Figure 8 it can be observed that indeed after the application of the second control g, the
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Figure 6: (a) f exerted on mass 19. (b)g exerted on mass 18.

(a) x1 without the controls f and g (b) x1 with suppression control f but without the
cloaking control g

Figure 7: Plots illustrating the effects of the suppression control f .

vibrations on x1 were restored to its state prior to the action of both controls.

Another consequence of Theorem 2.1 is the possibility of simulating a vibration suppression
scheme in a one dimensional spring mass system by using only one control. Unlike in the previous
section, we will perform a complete isolation of mass n without trying to restore the displacement
of mass 1 with the help of an extra control g. This question could be relevant to the problem of
designing a good vibration suppression scheme in a car suspension system.

For this application, we only suppress the vibration from reaching mass n + 1 by a forcing
control f actively and instantaneously engaged on mass n, see Figure 9. Our purpose here is to
attain a robust annihilation of the vibrations felt at mass n+ 1 of the system by implementing an
efficient evaluation process to compute the necessary control force f .
The main result for this application is stated in the Corollary 3.2 that gives the Laplace transform

of the required control f for the vibration suppression of the last mass in a spring-mass system of
n+ 1 number of masses.
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(a) x1 without the controls f and g (b) x1 with both controls f and g

Figure 8: Plots illustrating the effects on x1 of the controls f and g acting together while last mass
is motionless.

Mass 1 simulates the tire 
under a road excitation 

pulse

Mass n+1 simulates  
the car passenger 

subject to isolation

The active suspension box containing
sensors, dampers and actuators

Simulation of a smart suspension system

Figure 9: Illustration of the model of a smart suspension system in a car

Corollary 3.2. Consider a coupled spring-mass system connected in series, consisting of (n + 1)
masses, each with mass m = 1 with uniform spring constant k = 1 and under a damping constant
d. If the system is excited with an initial impulse δ(t) on mass 1, the Laplace transform of the
control f acting on the nth mass necessary to make the (n+ 1)th still is:

f̃(s) = − sinh(λ)

sinh(nλ)
(3.9)

where

cosh(λ) =
s2 + ds+ 2

2
.

Proof. We will proceed by using the Theorem 2.1 to analytically compute the inverse of the
tridiagonal matrix An to solve for x̃n in terms of f̃ in the system Anx̃ = bn as defined in (3). The
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condition on mass n+ 1 to be still implies that mass n to be still as well, hence x̃n = 0.

An =



h 1 0 .. .. 0
1 h 1 0 .. 0
.. .. .. .. .. .
.. .. .. .. .. .
0 ... ..... 1 h 1
0 0 .. .. 1 h

 , bn =



−1
0
.
.
0

−f̃

 and h = −(s2 + ds+ 2) (3.10)

In fact,
x̃n = −Rn1 − f̃Rnn = 0,

which implies:

f̃ = −Rn1
Rnn

.

Formula (2.3) enables us to evaluate both Rn1 and Rnn and obtain f̃ in a simplified form:

f̃ = − sinh(λ)

sinh(nλ)
.

4 Defect Detection

In this section, we develop an algorithm to find the location of a defect in a spring-mass system.
We consider a system of n nodes each of which has unit mass, except for some defective nodes,
i.e., the defects, which may have different mass. We start with a detailed solution of the case of
a single defect with unknown location but a priori known mass m = m1, then extend the results
to cases such as a single defect of unknown mass and location, and multiple defects with known or
unknown masses. In all the systems used in the numerical simulations, the spring constant is k = 1
and the damping coefficient is d = 0.1.

4.1 One defect of unknown location

Consider a system of n masses with exactly one defect, say in position j with mass m. Adjacent
masses in this system are connected by springs of the same stiffness constant k and damping
coefficient d. We apply an impulse of magnitude γ on the first mass to initiate vibrations in the
system. The goal is to determine j and possibly m using some measurements of the displacement of
the first mass x1 over a time interval. With these assumptions, we derive the following modification
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of system (2.1): 

x′′1 + dx′1 + 2kx1 − kx2 = γδ(t)

x′′2 + dx′2 + 2kx2 − kx1 − kx3 = 0
...

m x′′j + dx′j + 2kxj − kxj−1 − kxj+1 = 0
...

x′′n−1 + dx′n−1 + kxn−1 − kxn − kxn−2 = 0

x′′n + dx′n + 2kxn − kxn−1 = 0

xi(0) = x′i(0) = 0, i = 1, 2, ..., n

. (4.1)

Taking k = 1, the corresponding system in the Laplacian domain is the following vector equation:

Âx̃ =


−γ
0
...
0

 (4.2)

where

Â =



h 1
1 h 1

1 h 1
. . .

. . .
. . .

1 −
(
ms2 + ds+ 2

)
1

. . .
. . .

. . .

1 h 1
1 h


with h = −(s2 + ds+ 2) and the quantity −(ms2 + ds+ 2) is in the jth row.

Let M =



h 1
1 h 1

1 h 1
. . .

. . .
. . .

1 h 1
1 h


as in Theorem 2.1 with D = h. Consider E = Â −M

and observe that E is the matrix with the only nonzero entry given by Ejj = (1 − m)s2. With
b = (−γ, 0, 0, ..., 0)T and by Theorem 2.1, equation (4.2) can be solved as follows:

(M + E)x̃ = b

x̃+REx̃ = Rb,
(4.3)

where R = M−1. It then follows that for i = 1, ..., n:

x̃i +Rij(1−m)s2x̃j = −γRi1
x̃i = −γRi1 −Rij(1−m)s2x̃j (4.4)
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In particular, if i = j, we have

x̃j(s) =
−γRj1

1 +Rjj(1−m)s2
. (4.5)

Also, putting in i = 1 in (4.4) and using (4.5) and the fact that R1j = Rj1 we get the following
expression for x̃1:

x̃1(s) = −γR11 −R1j(1−m)s2 · −γRj1
1 +Rjj(1−m)s2

. (4.6)

From hereon, we consider the particular case when γ = 1 and so (4.6) becomes

x̃1(s) = −R11 +R1j(1−m)s2 · Rj1
1 +Rjj(1−m)s2

. (4.7)

By computing the Laplace transform of experimental time domain data x1 obtained by actual
measurements of the vibrations in the spring mass system, one can solve for j in equation (4.7).
However, this equation can be simplified by looking at the asymptotic behavior of Rjj as s becomes
large. From (2.5), we have for sufficiently large s:

λ = cosh−1
(
s2 + ds+ 2

2

)
≈ cosh−1

(
s2

2

)
= ln

(
s2

2
+

√
s4

4
− 1

)
≈ ln s2. (4.8)

Using (4.8) in the expansion for Rjj given in (2.3) yields

Rjj = −cosh((n+ 1)λ)− cosh((n+ 1− 2j)λ)

2 sinh(λ) sinh((n+ 1)λ)

≈ −s
2(n+1) + s−2(n+1) − s2(n+1−2j) − s−2(n+1−2j)

(s2 − s−2)(s2(n+1) − s−2(n+1))

≈ −s
2(n+1) − s2(n+1−2j)

s2s2(n+1)
= −1− s−4j

s2

≈ − 1

s2
. (4.9)

Using this last result in (4.7) gives

x̃1(s) = −R11 +
R2

1j(1−m)s2

Rjj(1−m)s2

 1
1

Rjj(1−m)s2
+ 1


≈ −R11 +

R2
1j

Rjj

 1
1

m− 1
+ 1


= −R11 +

m− 1

m
·
R2

1j

Rjj
. (4.10)

This last estimate for x̃1(s) can be used to find j for a sufficiently large value of s. Using (2.3),
(4.10) can be written as

cosh(jλ) ≈ −2mx̃1(s) sinh((n+ 1)λ) + (m+ 1) sinh(nλ) + |m− 1| sinh((n+ 2)λ)√
2m
[
C1 cosh(2(n+ 1)λ)− C2 cosh((2n+ 3)λ)− C3 cosh((n+ 1)λ) + C4 coshλ+ cosh(2nλ) + C5

]
(4.11)
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where the coefficients in the denominator are given by

C1 = m(x̃1(s))
2 +m− 1

C2 = (m− 1)x̃1(s)

C3 = (m+ 1)x̃1(s)

C4 = 2mx̃1(s)

C5 = m2[−(x̃1(s))
2 − 2 +m].

(4.12)

Using the asymptotics in (4.8), the hyperbolic functions in (4.11) can be expressed as sums of
powers of s:

cosh(pλ) ≈ s2p + s−2p

2
and sinh(pλ) ≈ s2p − s−2p

2
, p ∈ R. (4.13)

Then using (4.13) and the fact that x̃1(s) decays for large s, it can be shown that as s increases the
numerator of (4.11) tends to +∞ while the denominator decays to 0 via positive values. Hence,
the right hand side of (4.11) is greater than 1 for large enough s, allowing us to write the following
formula for j:

j ≈

cosh−1

 −2mx̃1(s) sinh((n+ 1)λ) + (m+ 1) sinh(nλ) + |m− 1| sinh((n+ 2)λ)√
2m
[
C1 cosh(2(n+ 1)λ)− C2 cosh((2n+ 3)λ)− C3 cosh((n+ 1)λ) + C4 coshλ+ cosh(2nλ) + C5

]


λ
.

(4.14)

4.1.1 We illustrate the process described above. Consider a system of 20 masses with exactly one
defect at j = 15 of massm = 1.01. Numerically, the time domain solution of the corresponding
system (4.1) in this context can be obtained and Figure 10 shows the displacement x1 of the
first mass as a function of time. Then the Laplace transform of this time domain solution
is calculated and used as the “simulated data” (to be replaced in reality by time actual
measurements of displacement x1) in (4.14) to obtain an approximation for j. Figure 11
shows that, as expected, the computed values of j approaches 15 as s becomes large. In
fact, at s = 50, the computed value of j is around 15.0898, incurring a small relative error of
around 0.60%.

Figure 10: The displacement x1 of the first mass in the system with n = 20, j = 15 and m = 1.01.
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Figure 11: The approximations for the value of j for a given s in the system with n = 20, j = 15
and m = 1.01. Notice that the approximations approaches the location j = 15 of the defect as s
increases.

Figure 10 indicates that, in reality, the time duration for the actual measurements of x1 is finite
and may be small depending on the value of the damping coefficient d. Also, note that although
(4.14) gives an explicit way of approximating the location of the defect in a system, it requires a
knowledge of the value of m. Moreover, the formula is quite complex as many function evaluations
are performed. This formula can be simplified for the case when the defect is large, that is, when
m� 1. With this new assumption and for large s, (4.7) can be written as

x̃1(s) ≈ −R11 +
R2
j1

Rjj
. (4.15)

Again, using (2.3) the relation (4.15) can be rewritten as

cosh jλ ≈ coshλ− x1(s)√
(x̃1(s))2 − 2x̃1(s) coshλ+ 1

. (4.16)

Clearly, the numerator of (4.16) increases without bounds as s increases. Meanwhile, with the use
of (2.5) and the Initial Value Theorem for Laplace transforms, one can show that the denominator
is approximately equal to 1 for large s. Thus, the right hand side of (4.16) is greater than 1 for
sufficiently large s and so

j ≈
cosh−1

(
coshλ− x1(s)√

(x̃1(s))2 − 2x̃1(s) coshλ+ 1

)
λ

(4.17)

is a well-defined approximation. Now, this formula for j involves less calculations and prior knowl-
edge of the exact value of m is not necessary. All that is required for (4.17) to work is that the
mass of the defect is far from the uniform mass 1. We illustrate this new procedure for a five- and
a 20-mass system.

4.1.2 Consider the system of five masses with defect at j = 3 and m = 4. Numerically the time
domain solution of the corresponding system (4.1) can be obtained. Figure 12 shows the plot
of the displacement of the first mass. Again, the Laplace transform x̃1 of this solution is
computed and used as “simulated data ” input in (4.17). Figure 13 shows the plot of the
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approximates obtained as a function of s. Again, fast convergence to j = 3 can be observed.
In fact, when s = 50, the computed value of j is approximately 3.018423, with relative error
of around 0.61%.

Figure 12: Plot of the movement x1 of the first mass in the system with n = 5, j = 3, and m = 4.

Figure 13: Plot of the approximations for the value of j for a given s.

4.1.3 We now try the formula for a larger system. Consider 20 masses with defect at j = 3 and
m = 5. Similar calculations as above will produce the results shown in Figures 14 and 15.
It is worth noting from Figure 15 that the convergence of j(s) to the actual position of the
defect is still very fast. Here at s = 50, the computed approximate for j is 3.01429, with
relative error of just below 0.48%.

4.2 Multiple defects with unknown location and/or mass

Now we develop a scheme for the case when there are more than one unknown information about
the defect/s in the system. Here we deal with systems with at most two defects though the solution
schemes can be extended to cases with more defects. Let x̃∗1 be the Laplace transform of the time
domain solution for the displacement of the first mass in the system. This function will be used
again as the input “simulated data” for our numerical procedure. The solution described below
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Figure 14: Plot of the movement x1 of the first mass in the system with n = 20, j = 3, and m = 5.

Figure 15: Plot of the approximations for the value of j for a given s.

involves the minimization of the L2 residual function

r(·) =

∫ +∞

0
|x̃1(s, ·)− x̃∗1(s)|

2 ds, (4.18)

where x̃1 is the approximation to x̃∗1 obtained by solving the corresponding system of ODEs using
the Inversion Theorem 2.1, treated as a function of s and the unknown problem parameters. In the
following examples, this procedure is implemented for the different cases of multiple unknown defect
parameters. In all numerical simulations below, the integration in (4.18) is performed numerically
via Matlab’s intrinsic integral function. In doing so, the integral’s upper bound is replaced by 300,
since both terms in the integrand decays fast to zero.

4.2.1 One defect with unknown location and mass. We begin with the case when there is exactly
one defect of unknown location and mass. In (4.7), we saw that using the Inversion Theorem
2.1 in solving the Laplace domain system (4.2) yields

x̃1(s, j,m) = −R11 +R1j(1−m)s2 · Rj1
1 +Rjj(1−m)s2

, (4.19)

which can treated as a function of the unknowns j and m. Since there are only two unknowns,
a visual inspection of the 3D plot of the residual function r can be done to find its minimizers.
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To illustrate this, we consider a system of n = 20 masses, with exactly one defect at location
10 of mass 3. In lieu of actual measurements, the input data x̃∗1 is numerically obtained by
first solving (4.1) explicitly and then computing the solution’s Laplace transform. The 3D
plot of the residual function

r(j,m) =

∫ +∞

0
|x̃1(s, j,m)− x̃∗1(s)|

2 ds

for various values of j and m are shown in Figure 16(a). From this graph we obtain the
location and mass of the defect by observing the minimizer of r. Figures 16(b) and (c) show
2D projections of the graph of r suggesting that indeed the minimum occurs at the point
with j = 10 and m = 3.

4.2.2 Two defects with unknown locations but known masses. Now suppose that the system has
exactly two defects at locations j1 and j2 with known masses m1 and m2, respectively. These
new assumptions will introduce minor modifications to system (4.1) giving rise to the following
Laplace domain system:

Âx̃ =


−1
0
...
0

 (4.20)

where

Â =



h 1
1 h 1

. . .
. . .

. . .

1 −
(
m1s

2 + ds+ 2
)

1
. . .

. . .
. . .

1 −
(
m2s

2 + ds+ 2
)

1
. . .

. . .
. . .

1 h 1
1 h


with h = −(s2 + ds+ 2) and the quantities −(m1s

2 + ds+ 2) and −(m2s
2 + ds+ 2) are in the

jth1 and jth2 row, respectively. This system can be solved using similar techniques as in (4.3)-
(4.7), except that this time the matrix E will have two nonzero entries Ej1j1 = (1 −m1)s

2

and Ej2j2 = (1−m2)s
2. Performing the calculations will give for i = 1, 2, ..., n:

x̃i(s) +Rij1(1−m1)s
2x̃j1(s) +Rij2(1−m2)s

2x̃j2(s) = −R1i. (4.21)

In particular, using 1, j1 and j2 as the value of i in (4.21) gives the system:
x̃1(s) = −R11 −R1j1(1−m1)s

2x̃j1(s)−R1j2(1−m2)s
2x̃j2(s)

x̃j1(s) =
−R1j1 −Rj1j2(1−m2)s

2x̃j2(s)

1 +Rj1j1(1−m1)s2

x̃j2(s) =
−R1j2 −Rj1j2(1−m1)s

2x̃j1(s)

1 +Rj2j2(1−m2)s2

. (4.22)
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(a) 3D plot of r

(b) 2D projection of the graph of r showing the j-axis (c) 2D projection of r showing the m-axis.

Figure 16: Different views of the the graph of plot of the L2 residual function r.

Solving for x̃1(s) in (4.22) yields

1

2 (4.23)

Since the locations of the defects are unknown, we shall treat x̃1 as function of s, j1 andj2,
and compare it with experimental data x̃∗1.

In the example below, we consider a system of 20 masses with exactly two defects at unknown
locations j1 = 10 and j2 = 15. We assume that the masses m1 = 3 and m2 = 7 of the defects
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are known. As before we define the L2-residual function r as

r(j1, j2) =

∫ +∞

0
|x̃1(s, j1, j2)− x̃∗1(s)|

2 ds.

Different views of the 3D plot of r are shown in Figure 17. The 3D rendering of the graph
in Figure 17-(a) suggests that r has s a unique minimum. The two-dimensional projections
of this graph indicate that this minimum occurs somewhere near the point with j1 = 10 and
j2 = 15.

(a) 3D plot of r

(b) 2D projection of the graph showing the j1-axis (c) 2D projection of the graph showing the j2-axis.

Figure 17: Different views of the plot of the L2 residual function r.
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4.2.3 Two defects with unknown locations and masses. Now we consider the case when the system
has exactly two defects of unknown locations and masses. In (4.23) we derived a formula for
x̃1, but this time j1, j2,m1 and m2 are all unknown. This makes the residual function

r(j1,m1, j2,m2) =

∫ +∞

0
|x̃1(s, j1,m1, j2,m2)− x̃∗1(s)|

2 ds.

a function of four variables and hence a graphical inspection of the minimum is not possible.
For cases like these, numerical optimization schemes can be employed.

We perform this procedure for four systems of different lengths. The minimization of the
residual function r was carried out using Matlab’s built-in Genetic Algorithm. The results are
shown in Table 1. In all of the systems considered, j1 was computed accurately up to machine
precision. The corresponding masses m1, were also calculated accurately with relative errors
ranging between 0.8% and 3.3%. However the minimization algorithm doesn’t perform that
well in estimating the parameters of the second defect. Thus, a separate study on designing
minimization algorithms better suited to the problem at hand is highly recommended.

Table 1: Results obtained by using Matlab’s Genetic Algorithm in minimizing r with respect to
j1,m1, j2 and m2.

System 1 System 2 System 3 System 4

System Parameters
n 5 10 20 20
j1 2 3 8 8
j2 4 7 15 15
m1 3 3 5 5
m2 0.5 2 2 15

Estimates from Mathlab’s
Genetic Algorithm

j1 2 3 8 8
j2 4 4 17 16
m1 2.9760 2.9009 5.0113 5.0646
m2 0.6579 1.3364 3.2586 14.2290

5 Conclusion

In summary, this paper tackled two problems involving Hookean spring-mass systems. In the first
half, we introduced a method to compute an active vibration suppression control for a spring-mass
system of arbitrary length. We used an alternative approach in solving (2.1) that overcomes the
numerical issues raised in [11] that occurs whenever n is large. This was done by solving the
problem in the corresponding Laplace domain. In such case, our approach only required a robust
numerical integration of the inverse Laplace transform. However, in some applications, a more
practical approach that gives a fast and reasonable solution is preferred over a very accurate but
computationally expensive method. Hence, modifying the formulas derived here by using some
known approximations may be worth looking into.

The second half of the paper deals with identifying the location and size of defects in a system
using Laplace domain measurements x̃1(s). In the case of exactly one defect of unknown loca-
tion, the procedure only requires direct calculations involving x̃1(s). The formulas were simplified
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by using asymptotic estimates with respect to the variable s. When there are more than one
unknown defect parameter, we perform the minimization of the L2 residual function defined in
(4.18). Designing a robust algorithm transforming discrete vibration measurements x1(t) to the
corresponding Laplacian data x̃1(s) will be a nice follow-up research as it can provide a direct link
between the physical experiment setting and the method we developed. Also, a study on finding a
better minimization algorithm for the residual function is highly recommended.

Extensions of the work presented here to non-Hookean systems, non-homogeneous materials and
springs with varying damping coefficients are very important and will be considered in forthcoming
reports.
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