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Abstract. We analyze cloaking due to anomalous localized resonance in the qua-

sistatic regime in the case when a general charge density distribution is brought near

a slab superlens. If the charge density distribution is within a critical distance of the

slab, then the power dissipation within the slab blows up as certain electrical dissipation

parameters go to zero. The potential remains bounded far away from the slab in this

limit, which leads to cloaking due to anomalous localized resonance. On the other hand,

if the charge density distribution is further than this critical distance from the slab, then

the power dissipation within the slab remains bounded and cloaking due to anomalous

localized resonance does not occur. The critical distance is shown to strongly depend on

the the rate at which the dissipation outside of the slab goes to zero.
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1. Introduction. In this paper, we discuss anomalous localized resonance phenom-

ena observed at the interface between positive index and negative index materials. Such

phenomena have been at the center of an interesting cloaking strategy [14, 6, 15, 23, 16,

22, 21, 5, 20, 29, 1, 2, 3, 18, 4, 27].

As illustrated in Figure 1, the (2D) geometry we consider consists of a central layer

in S ≡ [0, a] × (−∞,+∞) bordered by a layer to the left in C ≡ (−∞, 0) × (−∞,+∞)

and a layer to the right in M ≡ (a,+∞) × (−∞,+∞). We work in the nonmagnetic

quasistatic regime, i.e., the regime in which the magnetic permeability equals 1 and

relevant wavelengths and attenuation lengths are much larger than other dimensions in

the problem (such as a, the thickness of the slab S). In this regime the complex electric

potential V satisfies the Laplace equation

−∇ · [ε(x, y)∇V (x, y)] = ρ in R2, (1.1)

where ε is the dielectric constant (relative permittivity) and ρ is a given charge density

distribution. (The potential V is also subject to certain continuity conditions and condi-

tions at infinity — these are discussed in Section 2.) We assume that the charge density

distribution ρ is real valued; we also take ρ ∈ P, where

P ≡ {ρ ∈ L2(M) ∩ L∞(M) : ρ has compact support in M}. (1.2)

Throughout this paper we also assume

0 < | supp ρ| <∞, (1.3)

where |U | denotes the Lebesgue measure of the set U . Note that this restriction on the

support of ρ excludes dipolar sources.

For the purposes of the current paper we assume the layers are occupied by three

different materials such that the imaginary parts of their dielectric constants are small

(corresponding to small losses) and the real parts of their dielectric constants are equal

but with opposite signs. In particular we take the dielectric constant ε(x, y) to be

ε(x, y) ≡


εc = 1 + iµ if x < 0,

εs = −1 + iδ if 0 ≤ x ≤ a,
εm = 1 if x > a,

(1.4)

where 0 < δ < 1 and µ = δ + λδβ for some constants λ ∈ R and β > 0. In the limit

δ → 0+ the moduli (1.4) are that of a quasistatic two-dimensional superlens (“poor man’s

superlens”). The question we address in this paper is to determine those ρ for which the

power dissipation in this superlens blows up as δ → 0+. As we shall explain shortly this

is closely tied with cloaking due to anomalous resonance. Curiously we will see that the

answer depends on the value of β, thus showing the sensitivity of the energy dissipation

rate to perturbations. We will say that λ is feasible if

λ > 0 for 0 < β < 1, λ ≥ −1 for β = 1, or λ 6= 0 for β > 1. (1.5)

We define 0 < δµ(β, λ) < 1 such that µ ≥ 0 for 0 < δ ≤ δµ (which is required physically

— the restrictions we placed on λ ensure that such a δµ exists). Note that the materials

to the left and right of the slab are both vacuum if β = 1 and λ = −1. Given a charge
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Fig. 1. We consider a slab geometry with a dielectric constant as

illustrated in the figure — the slab (shaded light gray) is in the
region S = [0, a] × (−∞,+∞). The charge density ρ has compact

support in the region x > a. For certain charge densities ρ that are

close enough to a, the energy dissipation in the slab (in particular
in the darkly shaded region a − ξ < x < a) tends to infinity as a

sequence δj tends to 0.

density ρ(x, y) ∈ P with compact support in M, we define

d0 ≡ min{x : (x, y) ∈ supp(ρ)} and d1 ≡ max{x : (x, y) ∈ supp(ρ)} (1.6)

(see Figure 1). Since ρ has compact support in M, we have

supp ρ ⊆ [d0, d1]× [h0, h1] (1.7)

for some constants h0 < h1. In order to enforce charge conservation, we require∫ d1

d0

∫ h1

h0

ρ(x, y) dy dx = 0. (1.8)

The physical charge density is <(ρe−iωt) and the physical time-harmonic electric field is

given by E = <
(
−∇V e−iωt

)
.

We say anomalous localized resonance (ALR) occurs if the following two properties

hold as δ → 0+ (see [17]):

(1) |V | → ∞ in certain localized regions with boundaries that are not defined by

discontinuities in the relative permittivity and

(2) V approaches a smooth limit outside these localized regions.

For example, when ρ is a dipole, εc = εm = 1, and when ALR occurs, as the loss in the

lens (represented by δ) tends to zero the potential diverges and oscillates wildly in regions

that contain the boundaries of the lens. It is important to note that the boundaries of the

resonant regions move as the dipole is moved. Outside the resonant regions the potential

converges to what we expect from perfect lensing (see [24, 25]). This behavior and its

relation to sub-wavelength resolution in imaging (superlensing) were first discovered in

[19] and were analyzed in more depth in [17].

In [17], Milton, Nicorovici, McPhedran, and Podolskiy showed that if ρ is a dipole

and εc = εm = 1, then ALR occurs if a < d0 < 2a, where d0 is the location of the

dipole. In this case there are two locally resonant strips — one centered on each face of
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the slab. As mentioned above, outside these regions the potential converges to a smooth

function that satisfies mirroring properties of a perfect lens. In particular, to an observer

far enough to the right of the lens it will appear only as if there is a dipole at d0; to an

observer far enough to the left of the lens it will appear only as if there is a dipole located

at −d0 (see [17]). In neither case can the observer determine whether or not a lens is

present. (However, if either observer is close to the lens, the presence of the lens will

be obvious due to the resonance.) If d0 > 2a, then there is no resonance and again the

potential converges to a smooth function that satisfies the mirroring properties expected

of a perfect lens. That is, to an observer far enough to the right of the lens (beyond the

dipole) it will appear as if there is a dipole at d0 and no lens, while to an observer to the

left of the lens it will appear as if there is a dipole at d0−a and no lens — see [24, 17, 31].

Cloaking due to ALR (CALR) can be understood from an energetic perspective. First,

consider the quantity

E(δ) ≡ δ
∫ a

0

∫ ∞
−∞
|∇V |2 dy dx; (1.9)

E(δ) is proportional to the time-averaged electrical power dissipated in the slab. Sup-

pose ρ is independent of δ such that, in the limit δ → 0+, we have E(δ) → ∞ and

|V |/
√
E(δ) → 0 for all (x, y) ∈ R2 with |x| > b for some b > 0. This blow-up in the

power dissipation is not physical, as it implies the fixed source ρ must produce an infinite

amount of power in the limit δ → 0+ (see, e.g., [14, 2]). The power dissipation was proved

to blow up as δ → 0+ for finite collections of dipolar sources close enough to the slab in

[17, 14]; see also Bergman’s work in [4].

To make sense out of this we rescale the source ρ by defining ρr ≡ ρ/
√
E(δ). Since

(1.1) is linear, the associated potential will be Vr ≡ V/
√
E(δ) and, thanks to (1.9), the

rescaled time-averaged electrical power dissipation will be

Er(δ) ≡ δ
∫ a

0

∫ ∞
−∞
|∇Vr|2 dy dx = δ

∫ a

0

∫ ∞
−∞

|∇V |2
E(δ)

dy dx = 1.

Thus the source ρr produces constant power independent of δ. Also, the rescaled potential

satisfies |Vr| = |V |/
√
E(δ) → 0 as δ → 0+ for |x| > b, implying that the source ρr

becomes invisible in this limit to observers beyond |x| = b. This idea was introduced by

Milton and Nicorovici [14]; also see [11, 2, 3].

Cloaking due to anomalous localized resonance in the quasistatic regime was first

analyzed in [14]. In that paper the authors used separation of variables and rigorous

analytic estimates to prove that if εc = εm = 1 and a fixed field is applied to the

system (e.g., a uniform field at infinity), then a polarizable dipole located in the region

a < d0 < 3a/2 causes anomalous localized resonance and is cloaked in the limit δ → 0+;

if εc 6= εm = 1 (here εc has no relation to the value we chose in (1.4)), then the cloaking

region becomes a < d0 < 2a.

In [14], Milton and Nicorovici also derived analogous results for circular cylindrical

lenses. In that case they assumed the relative permittivity was εc for 0 < r < rc,

εs = −1 + iδ for rc < r < rs, and εm = 1 for rs < r. With r0 denoting the distance

of the polarizable dipole from the origin, the cloaking region was found to be rs < r0 <

r∗ = r2
s/rc if εc 6= εm and rs < r0 < r# =

√
r3
s/rc if εc = εm. In particular they proved
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that an arbitrary number of polarizable dipoles within the cloaking region will be cloaked

— see [23] for numerical verification of this result. They also extended their results to

the finite-frequency and three-dimensional cases for the Veselago slab lens [28] (where

εc = εm = 1).

To summarize, suppose εc = εm = 1 and the polarizable dipole is absent and a

uniform electric field at infinity is applied to the slab lens configuration. The lens will

not perturb this external field in the limit δ → 0+, and, hence, is invisible to external

observers [19, 17]. When the polarizable dipole is placed in this uniform field but outside

of the cloaking region (so d0 > 3a/2), it will become polarized and create a dipole field

of its own which interacts with the lens. If d0 > 2a as well there will be no resonance

in the limit δ → 0+; to an external observer, the lens will be invisible but the dipole

will be clearly visible in this limit. If 3a/2 < d0 < 2a, resonance will occur as δ → 0+

but it will be localized to strips around the boundaries of the lens — in particular the

resonant fields will not interact with the dipole. The dipole will still be visible in this

limit but to an observer outside of the resonance region (and outside the lens) the lens

will be invisible. Finally, if d0 < 3a/2 (so the polarizable dipole is within the cloaking

region), the resonant field will interact with the polarizable dipole and effectively cancel

the effect of the external field on it. In other words, the net field at the location of the

polarizable dipole will be zero, and, hence, its induced dipole moment will be zero (in the

limit as δ → 0+) — both the lens and the dipole will be invisible to external observers.

See Figure 3 in [14] and the figures in [23] for dramatic illustrations of this in the circular

cylindrical case.

Nicorovici, McPhedran, Enoch, and Tayeb studied CALR for the circular cylindrical

superlens in the finite-frequency case in [22]. For physically plausible values of δ they

discovered that the cloaking device (the superlens) can effectively cloak a tiny cylindrical

inclusion located within the cloaking region but that the superlens does not necessarily

cloak itself — they deemed this phenomenon the “ostrich effect.” In the quasistatic (long

wavelength) limit, however, the lens can effectively cloak both the inclusion and itself

even at rather large values of δ, which was also pointed out in the case of a polarizable

dipole in [14].

In [5] Bouchitté and Schweizer considered an annular lens with inner and outer radii

of 1 and R, respectively, and relative permittivity εs = −1 + iδ embedded in vacuum.

They proved that a small circular inclusion of radius γ(δ) (with γ(δ)→ 0 as δ → 0+) is

cloaked in the limit δ → 0+ if it is located within the annulus R < |x0| < R∗ = R3/2,

where x0 is the position of the circular source. If |x0| > R∗, then the source is visible but

the annular superlens is not. Both of these results are consistent with the results in [14].

Bruno and Lintner considered a similar scenario in [6], where they showed numerically

that a small dielectric disk is not perfectly cloaked. They verified (numerically) that an

annular superlens embedded in vacuum by itself is invisible to an external applied field in

the zero loss limit (assuming the source is at a position further than R∗ from the origin)

— a fact that was first shown analytically by Nicorovici, McPhedran, and Milton in [19];

however, they also showed that elliptical superlenses can cloak polarizable dipoles that

are near enough to the lens but that such lenses are not invisible themselves. That is,
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the polarizable dipole is cloaked but it is obvious to external observers that something is

being hidden — this is another example of the “ostrich effect” introduced in [22].

Kohn, Lu, Schweizer, and Weinstein used variational principles to derive resonance

results in the quasistatic regime in core/shell geometries (where the superlens resides in

the shell) that are not necessarily radial in [11]. They assumed the source was supported

on the boundary of a disk in R2, and obtained results similar to those described above.

In [2, 3], Ammari, Ciraolo, Kang, Lee, and Milton used properties of certain Neumann-

Poincaré operators to prove results analogous to those in [14]. The most general results

they derived hold for very general core/shell geometries and charge density distributions

ρ with compact support in the quasistatic regime. In the circular cylindrical case their

requirements are more explicit and involve gap conditions on the Fourier coefficients of

the Newtonian potential of ρ. Although these gap conditions may be difficult to deal

with for a given source, they verified that their results are consistent with those in [14]

when ρ is a dipole or quadrupole. Their results can be summarized as follows. First,

if the support of ρ is completely contained within the cloaking region (rs < r0 < r∗ if

εc 6= εm = 1 and rs < r0 < r# if εc = εm = 1), and if ρ satisfies the gap property, then

CALR occurs. Second, weak CALR (defined by lim supδ→0+ E(δ) =∞ and |V | < C for

all δ where C > 0 is independent of δ) occurs if the support of ρ is completely inside the

cloaking region and the Newtonian potential does not extend harmonically to all of R2.

Third, if <(εs) 6= −1, then CALR does not occur. Fourth, CALR does not occur for any

isotropic constant values of εc and εs when the core and shell are concentric spheres in

R3. Using a folded geometry approach (extending that of Leonhardt and Philbin in [12]

and Leonhardt and Tyc in [13]), in [1] Ammari, Ciraolo, Kang, Lee, and Milton proved

that CALR can occur in 3D when the core and shell are concentric spheres and the shell

has a certain anisotropic relative permittivity — see [16] for the analogous problem in

2D.

In [21], Nicorovici, McPhedran, Botten, and Milton asked whether or not one can

enlarge the cloaking region by spatially overlapping the cloaking regions of identical

circular cylindrical superlenses. Curiously they found that doing so reduces the cloaking

effect (at least in the quasistatic regime). The cloaking region can be extended by

arranging the disks in such a way that their corresponding cloaking regions just touch.

We also point out the works [15, 29]. In [15], Milton and Nicorovici utilized a cor-

respondence (first discovered although not fully exploited by Yaghjian and Hansen in

[30]) between the perfect Veselago lens at a fixed frequency in the long time limit and

the lossy Veselago lens in the quasistatic limit to show that transverse magnetic dipole

sources that generate bounded power eventually become cloaked if they are within the

cloaking region (a < d0 < 3a/2). In [29] Xiao, Huang, Dong, and Chan obtained similar

results in the case when both the permittivity and permeability of the Veselago lens have

a positive imaginary part.

Finally, in [18], Nguyen proved that arbitrary inhomogeneous objects are magnified

by properly constructed superlenses in both the quasistatic and finite-frequency regimes

in two and three dimensions.
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In this paper we consider the scenario sketched in Figure 1 and described by (1.1)–

(1.8). We study the behavior of

Eξ(δ) ≡ δ
∫ a

a−ξ

∫ ∞
−∞
|∇V |2 dy dx,

where 0 < ξ < a is a small parameter. The quantity Eξ(δ) is proportional to the time-

averaged electrical power dissipated in the strip Rξ ≡ {(x, y) ∈ R2 : a − ξ < x < a},
illustrated by the darkened strip in Figure 1; Eξ(δ) is also a lower bound on the quantity

defined in (1.9). In particular, we derive conditions on ρ that determine whether or not

lim supδ→0+ Eξ(δ) =∞ (weak CALR), limδ→0+ Eξ(δ) =∞ (strong CALR), or Eξ(δ) < C

for a constant C > 0 as δ → 0+ (no CALR).

In order to do this, we begin by taking the Fourier transform of (1.1) in the y-variable

and calculating Eξ(δ) explicitly in terms of ρ̂(x, k) (the Fourier transform of ρ in the

y-variable). We then derive upper and lower bounds on Eξ(δ) to obtain our results.

The result for unbounded energy is contained in Corollary 4.4. Essentially, if there is a

d∗ ∈ [d0, d1] such that

lim sup
k→∞

∣∣∣∣∣ed∗k
∫ d1

d0

ρ̂(x, k)e−kx dx

∣∣∣∣∣ > 0

and a < d∗ < τ(β)a, where

τ(β) =


β + 2

β + 1
for 0 < β < 1,

3

2
for β ≥ 1,

then lim supδ→0+ Eξ(δ) = ∞. As far as we are aware, there are two novelties to our

result. First, the blow-up in energy occurs only if ρ is within a critical distance of

the slab that depends non-trivially on β. Second, unlike in [2] (Theorem 5.3) and [3]

(Theorem 4.1), we do not assume that the support of ρ is completely contained within

the critical distance. In fact, there are examples of charge density distributions ρ that

cause a blow-up in energy if only part of the support of ρ is within the critical distance

— see Sections 4.1.1 and 4.1.2. (It seems the results in [2] and [3] would hold even if only

part of the support of ρ is within the critical distance to the lens — see the Introduction

in [3].) In Theorem 5.6 we show that limδ→0+ Eξ(δ) = 0 if ρ is supported outside the

critical distance.

The remainder of this paper is organized as follows. In Section 2 we derive an expres-

sion for the potential. In Section 3 we compute the power dissipation Eξ(δ). In Section 4

we obtain some lower bounds that are used to prove our result about the blow-up of

Eξ(δ) as δ → 0+. We then analytically and numerically illustrate our results for two

charge density distributions. In Section 5 we prove that Eξ(δ) remains bounded (and, in

fact, goes to 0) as δ → 0+ if ρ is farther than the critical distance from the slab. Finally,

in Section 6 we show that the potential remains bounded far enough away from the slab

in the limit as δ → 0+ regardless of the position of the source.
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2. Derivation of the Potential. The potential V ∈ L2
loc(R2) solves the following

problem in the quasistatic regime:

−∇ · [ε(x, y)∇V (x, y)] = ρ(x, y) in R2,

V (x, y), ε
∂V

∂x
(x, y) continuous across x = 0, a for almost every y ∈ R,

∂V

∂x
(x, y)→ 0 as |x| → ∞ for almost every y ∈ R,

V (x, ·) ∈ H1(R) for almost every x ∈ R,
∂V

∂x
(x, ·) ∈ L2(R) for almost every x ∈ R,

(2.1)

where ε is given in (1.4). In this section, we will take the Fourier transform with respect to

the y-variable of the problem (2.1). Since V ∈ L2
loc(R2), the PDE (2.1) can be understood

in a distributional sense (since L2
loc functions are distributions — see [8]). The continuity

conditions in (2.1) ensure continuity of the potential and the normal component of the

electric displacement field D = −ε∇V across the left and right edges of the slab. These

continuity conditions are typical in quasistatic problems — see, e.g., Section 4.4.2 in

[9] and [17]. The condition at infinity in (2.1) ensures that the x-component of the

electric field, namely −∂V/∂x, vanishes as x→ −∞ and x→∞. It turns out that this

condition is sufficient for our purposes (for the problem stated in (2.1) one can show that

the y-component of the electric field, namely −∂V/∂y, goes to 0 as |x| → ∞ as well).

We only consider |x| → ∞, rather than x2 + y2 → ∞, since the slab extends infinitely

in the y-direction. The last two requirements are regularity results that we impose to

ensure that we can perform the computations in this section.

In the remainder of this section, we sketch a proof of the following theorem; a complete

proof can be found in [27].

Theorem 2.1. There exists a nonempty class of potentials

V ≡ {V ∈ L2
loc(R2) : V satisfies (2.1)}. (2.2)

We recall the following definitions:
C ≡ {(x, y) ∈ R2 : x < 0};
S̊ ≡ {(x, y) ∈ R2 : 0 < x < a};
M≡ {(x, y) ∈ R2 : a < x}.

(2.3)

We then define 
Vc(x, y) ≡ χC(x, y)V (x, y),

Vs(x, y) ≡ χS̊(x, y)V (x, y),

Vm(x, y) ≡ χM(x, y)V (x, y),

(2.4)

where

χU (x, y) =

{
1 if (x, y) ∈ U,
0 if (x, y) 6∈ U,

(2.5)

is the characteristic function of the set U ⊂ R2.
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Finally, we will use the convention that the Fourier transform of a function f(x, y)

with respect to the variable y is defined by

f̂(x, k) ≡
∫ ∞
−∞

f(x, y)e−iky dy. (2.6)

If f is a distribution, it is well known that

∂̂f

∂x
(x, k) =

∂f̂

∂x
(x, k) and

∂̂f

∂y
(x, k) = ikf̂(x, k); (2.7)

see, e.g., [8].

Remark 2.2. As we will see, for each V ∈ V, V̂ (x, k) is determined for all k ∈ R
except k = 0, where it remains finite. In particular, the quantity Eξ(δ) is the same for

each potential in V. The class of potentials V contains every solution to (2.1) since the

Fourier transform is injective on L2(R). (Because V (x, ·) ∈ H1(R) and ∂V
∂x (x, ·) ∈ L2(R)

for V ∈ V, V̂ (x, k) is well defined and the analysis of the next two sections holds.

Solutions to (2.1) are then obtained through the inverse Fourier transform.) Although

an infinite slab is unphysical, it is a good approximation to a long, thin slab when edge

effects are neglected. Thus one of the potentials in our class of solutions should reasonably

approximate the physical potential; hence our expression of power dissipation given in

Section 3 should be a good approximation to the power dissipated by a long, thin slab.

We apply the Fourier transform with respect to y in (1.1) and by straightforward

calculations (see [27] for the complete derivation) find that the general form of the Fourier

transform of Vc is

V̂c(x, k) = Ake|k|x (2.8)

for arbitrary constants Ak.

The continuity conditions at the left boundary of the central slab, i.e., at x = 0,

together with some algebraic manipulations lead us to the general form of the Fourier

transform of Vs, namely

V̂s(x, k) =
Ak
2χc

[
(χc + 1)e|k|x + (χc − 1)e−|k|x

]
, (2.9)

where

χc ≡ εs/εc. (2.10)

Next we will show the details of the derivation for the solution in the third layer, M.

From (2.1) we note that in the set M the potential satisfies

∆Vm(x, y) = −ρ(x, y) for x > a,

lim
x→a+

Vm(x, y) = lim
x→a−

Vs(x, y) for almost every y ∈ R,

lim
x→a+

εm
∂Vm
∂x

(x, y) = lim
x→a−

εs
∂Vs
∂x

(x, y) for almost every y ∈ R,

lim
x→∞

∂Vm
∂x

(x, y) = 0 for almost every y ∈ R.
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After taking the Fourier transform with respect to y we find that V̂m(x, k) satisfies

∂2V̂m
∂x2

(x, k)− k2V̂ (x, k) = −ρ̂(x, k) for x > a,

lim
x→a+

V̂m(x, k) = lim
x→a−

V̂s(x, k) for all k ∈ R,

lim
x→a+

εm
∂V̂m
∂x

(x, k) = lim
x→a−

εs
∂V̂s
∂x

(x, k) for all k ∈ R,

lim
x→∞

∂V̂m
∂x

(x, k) = 0 for all k ∈ R.

(2.11)

We make the change of variables z = x− a so that (2.11) becomes

∂2V̂m

∂z2
(z, k)− k2V̂m(z, k) = −ρ̂(z, k) for z > 0,

lim
z→0+

V̂m(z, k) = lim
z→0−

V̂s(z, k) = Akψ
+
k for all k ∈ R,

lim
z→0+

∂V̂m

∂z
(z, k) = lim

z→0−
χm

∂V̂s

∂z
(z, k) = Akψ

−
k for all k ∈ R,

(2.12)

where ρ̂(x, k) = ρ̂(x− a, k); V̂j(x, k) = V̂j(x− a, k) for j = m, s;

ψ+
k =

1

2χc

[
(χc + 1) e|k|a + (χc − 1) e−|k|a

]
; (2.13)

ψ−k =
|k|χm
2χc

[
(χc + 1) e|k|a − (χc − 1) e−|k|a

]
; (2.14)

χm = εs/εm.

(We have eliminated the condition at infinity for now — we will return to it later.)

The Laplace transform of V̂m(z, k) is defined by

u(s, k) ≡
∫ ∞

0

V̂m(z, k)e−sz dz; (2.15)

see, e.g., [26]. We need to solve the ODE in (2.12) for the cases k = 0 and k 6= 0

separately.

Case 1: k = 0

Here the Laplace-transformed version of (2.12) is

s2u(s, 0)− sA0ψ
+
0 −A0ψ

−
0 = −L

{
ρ̂(z, 0)

}
(s, 0),

where L{g} denotes the Laplace transform of the function g — see (2.15). Thus

u(s, 0) =
A0

s
− [L{ρ̂(z, 0)} (s, 0)] · 1

s2

where we have used (2.13) and (2.14) to simplify the expression for u(s, 0). Since V̂m = 0

for z < 0 (see (2.3)–(2.5)), we can use the convolution theorem for Laplace transforms

(see [26]) to find

V̂m(z, 0) = A0 −
∫ z

0

(z − z′)ρ̂(z′, 0) dz′ ⇒ V̂m(x, 0) = A0 −
∫ x−a

0

(x− a− z′)ρ̂(z′, 0) dz′.
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Next we make the change of variables z′ = x′ − a in the above integral to find

V̂m(x, 0) = A0 −
∫ x

a

(x− x′)ρ̂(x′ − a, 0) dx′ = A0 +

∫ x

a

(x′ − x)ρ̂(x′, 0) dx′.

We now impose the condition as x→∞; see (2.11). We need to require

lim
x→∞

∂V̂m
∂x

(x, 0) = lim
x→∞

{
∂

∂x

[
A0 +

∫ x

a

(s− x)ρ̂(s, 0) ds

]}
= 0.

By the Leibniz Rule (see, e.g., [10, 27]), this is equivalent to the requirement

lim
x→∞

[
−
∫ x

a

ρ̂(s, 0) ds

]
= 0.

For x > d1, by (1.8) we have∫ x

a

ρ̂(s, 0) ds =

∫ d1

d0

ρ̂(s, 0) ds =

∫ d1

d0

∫ ∞
−∞

ρ(s, y) dy ds =

∫ d1

d0

∫ h1

h0

ρ(s, y) dy ds = 0.

Thus the condition at ∞ is automatically satisfied for any choice of A0. (Throughout

this section, we have assumed that ρ̂(x, k) is continuous at k = 0 — in fact, in Lemma 3.1

we will see that ρ̂(x, k) is infinitely differentiable on R as a function of k for almost all

x ∈ R.)

Case 2: k 6= 0

Here the Laplace-transformed version of (2.12) is

s2u(s, k)− sAkψ+
k −Akψ−k − k2u(s, k) = −L

{
ρ̂(z, k)

}
(s, k).

Therefore

u(s, k) = Akψ
+
k

s

s2 − k2
+Akψ

−
k

1

s2 − k2
−
L
{
ρ̂(z, k)

}
(s, k)

s2 − k2
.

Recalling that V̂m(z, k) = 0 for z < 0 (see (2.3)–(2.5)), by the convolution theorem for

Laplace transforms we have

V̂m(z, k) = Akψ
+
k cosh (|k|z) +Akψ

−
k

sinh (|k|z)
|k| −

∫ z

0

sinh [|k|(z − z′)]
|k| ρ̂(z′, k) dz′.

This is equivalent to

V̂m(x, k) =Akψ
+
k cosh [|k|(x− a)] +Akψ

−
k

sinh [|k|(x− a)]

|k|

−
∫ x−a

0

sinh [|k|(x− a− z′)]
|k| ρ̂(z′, k) dz′.

We make the change of variables z′ = x′ − a in the above integral to find

V̂m(x, k) =Akψ
+
k cosh [|k|(x− a)] +

Akψ
−
k

|k| sinh [|k|(x− a)]

+
1

|k|

∫ x

a

sinh [|k|(x′ − x)] ρ̂(x′, k) dx′,

(2.16)

where we have used the fact that ρ̂(x− a, k) = ρ̂(x, k).
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We now impose the limit condition at infinity — see (2.11). We use the Leibniz Rule

to find

lim
x→∞

∂V̂m
∂x

(x, k) = lim
x→∞

(
Ak
{
|k|ψ+

k sinh [|k|(x− a)] + ψ−k cosh [|k|(x− a)]
}

−
∫ x

a

ρ̂(x′, k) cosh [|k|(x′ − x)] dx′

)

= lim
x→∞

{
|k|e|k|x

[
Akψ

+
k e−|k|a

2
+
Akψ

−
k e−|k|a

2|k| − 1

2|k|

∫ d1

d0

ρ̂(s, k)e−|k|s ds

]

+ |k|e−|k|x
[
−Akψ

+
k e|k|a

2
+
Akψ

−
k e|k|a

2|k| − 1

2|k|

∫ d1

d0

ρ̂(s, k)e|k|s ds

]
︸ ︷︷ ︸

→ 0 as x→∞

}

= lim
x→∞

{
|k|e|k|x

[
Ake−|k|a

2|k|
(
|k|ψ+

k + ψ−k
)
− 1

2|k|

∫ d1

d0

ρ̂(s, k)e−|k|s ds

]}
.

This limit will be 0 if and only if we choose

Ak ≡
Ik

e−|k|a
(
|k|ψ+

k + ψ−k
) , (2.17)

where

Ik ≡
∫ d1

d0

ρ̂(s, k)e−|k|s ds. (2.18)

By (1.4) and (2.10) we have

χc − 1

χc + 1
=

2i + δ − µ
δ + µ

,

so by (2.9) the potential in the set S̊ is

V̂s(x, k) =


A0 if k = 0,

Ik
|k|g

[
e|k|x +

(
2i− λδβ
2δ + λδβ

)
e−|k|x

]
if k 6= 0,

(2.19)

where

g ≡
2χce

−|k|a
(
ψ+
k + 1

|k|ψ
−
k

)
χc + 1

= iδ

[
1− (δ + 2i)(2i− λδβ)

δ(2δ + λδβ)
e−2|k|a

]
(2.20)

and A0 is an arbitrary complex constant. In the next section we will see that the power

dissipation is independent of A0. Finally, it can be shown that

|g|2 ≥ 8e−4|k|a
∣∣∣∣ χc
χc + 1

∣∣∣∣2 = 8

[
1 + δ2

(δ + µ)2

]
e−4|k|a > 0 (2.21)

for all k ∈ R and all 0 < δ ≤ δµ (see [27] for details).
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Remark 2.3. We may add the term Cδ(k), where δ is the Dirac delta distribution

and C is a constant, to V̂ . This corresponds to adding a constant to the potential V .

However, adding a constant to the potential will not affect any of the results presented

in this paper.

3. Derivation of the Power Dissipation. We begin this section by recording some

important properties of Ik, defined in (2.18). We omit the proof of the following lemma

since it is is given in [27].

Lemma 3.1. Suppose ρ ∈ P (where P is defined in (1.2)) and that Ik is defined as in

(2.18). Then

(1) for almost every s ∈ [d0, d1], ρ̂(s, k) is infinitely continuously differentiable as a

function of k for all k ∈ R;

(2) for each k ∈ R,

|Ik|2 ≤ (d1 − d0) ‖ρ‖2L2(M) e−2|k|d0 ;

(3) if ρ is real valued, then I−k = Ik; this implies that |Ik|2 is an even function of k

for k ∈ R;

(4) the function Ik is continuous at k for each k ∈ R;

(5) lim
k→0

Ik = I0 = 0;

(6) lim
k→0
|Ik|/|k| = |C0| <∞, where

C0 =

∫ d1

d0

−sρ̂(s, 0) ds+

∫ d1

d0

∂ρ̂

∂k
(s, 0) ds

= −
∫ d1

d0

∫ h1

h0

sρ(s, y) dy ds−
∫ d1

d0

∫ h1

h0

iyρ(s, y) dy ds;

moreover, there is a positive constant CI such that |Ik|/|k| ≤ CI for all k ∈ R.

For 0 < ξ < a, the time-averaged electrical power dissipation in the strip Rξ is defined

as

Eξ(δ) ≡ δ
∫ a

a−ξ

∫ ∞
−∞
|∇V (x, y)|2 dy dx = δ

∫ a

a−ξ

∫ ∞
−∞

(∣∣∣∣∂V∂x
∣∣∣∣2 +

∣∣∣∣∂V∂y
∣∣∣∣2
)

dy dx, (3.1)

where V (x, y) is the (complex) electric potential in the slab S due to the charge density

ρ and |z| =
√

(z′)2 + (z′′)2 denotes the modulus of the complex number z = z′ + iz′′.

Recall that in the quasistatic regime the potential V solves (2.1) with ε given by (1.4).

As shown in [27], V ∈ H1(S̊); thus the quantity in (3.1) is well defined and finite.

Using the definition in (3.1), we compute the power dissipation in the strip Rξ (see

Figure 1) as follows. Note that for any function f : R2 → C such that∫ ∞
−∞
|f(x, y)|2 dy <∞,

we have the Plancherel Theorem, namely∫ ∞
−∞
|f(x, y)|2 dy =

1

2π

∫ ∞
−∞
|f̂(x, k)|2 dk. (3.2)
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Using (3.2) together with classical properties of the Fourier transform in (2.7), from (3.1)

we obtain

Eξ(δ) = δ

∫ a

a−ξ

[∫ ∞
−∞

∣∣∣∣∂Vs∂x
(x, y)

∣∣∣∣2 dy +

∫ ∞
−∞

∣∣∣∣∂Vs∂y (x, y)

∣∣∣∣2 dy

]
dx

=
δ

2π

∫ a

a−ξ

∫ ∞
−∞

∣∣∣∣∣∂V̂s∂x
(x, k)

∣∣∣∣∣
2

dk +

∫ ∞
−∞
|k|2|V̂s(x, k)|2 dk

 dx. (3.3)

Now, (2.19), (2.21), and Lemma 3.1 imply that V̂s and ∂V̂s/∂x are finite at and near

k = 0; thus we can omit the point k = 0 from the integrals in (3.3) without changing the

value of Eξ(δ). Inserting (2.19) into (3.3) gives (after some straightforward computations)

Eξ(δ) =
2δ

2π

∫ a

a−ξ

{∫
k 6=0

|Ik|2
|g|2

[
e2|k|x +

e−2|k|x (λ2δ2β + 4
)

(2δ + λδβ)2

]
dk

}
dx

=
δ

π

∫
k 6=0

|Ik|2
|g|2

{∫ a

a−ξ

[
e2|k|x +

e−2|k|x (λ2δ2β + 4
)

(2δ + λδβ)2

]
dx

}
dk

=
δ

2π

∫
k 6=0

|Ik|2
|k||g|2 e2|k|a

[(
1− e−2|k|ξ

)
+

(
λ2δ2β + 4

)
(2δ + λδβ)2

e−4|k|a
(

e2|k|ξ − 1
)]

dk

=
δ

π

∫
k>0

|Ik|2
k|g|2 e2ka

[(
1− e−2kξ

)
+

(
λ2δ2β + 4

)
(2δ + λδβ)2

e−4ka
(
e2kξ − 1

)]
dk (3.4)

≥ Ẽξ(δ) ≡
∫
k≥k̃

F dk, (3.5)

where k̃ > 0 is arbitrary,

F ≡
(
δ|Ik|2
πk|g|2

)
e2kaL, (3.6)

and

L ≡
(
1− e−2kξ

)
+

(
λ2δ2β + 4

)
(2δ + λδβ)2

e−4ka
(
e2kξ − 1

)
. (3.7)

4. Lower Bound on Power Dissipation. In this section we derive some asymptotic

estimates on the function F defined in (3.6). From (2.20) we have

|g|2 = δ2

{(
1 +

4 + λδβ+1

2δ2 + λδβ+1
e−2ka

)2

+

[
2(δ − λδβ)

2δ2 + λδβ+1
e−2ka

]2
}
. (4.1)

Upon inspection of (3.4) and (3.6) we see (heuristically) that if |g|2 = O(δ2) as δ → 0+,

we may be able to show that the power dissipation blows up as δ → 0+. To this end we

define

k0(δ) ≡ 1

2a
ln

[
1

δ(δ + µ)

]
=

1

2a
ln

(
1

2δ2 + λδβ+1

)
. (4.2)
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Note that k0(δ)→∞ as δ → 0+. From (3.5) and recalling (2.20) and (3.6)–(3.7) we see

that

Eξ(δ) ≥
∫ ∞
k0(δ)

F dk (4.3)

for all 0 < δ ≤ δ0(β, λ) where 0 < δ0 ≤ δµ is such that k0(δ) > 0 for 0 < δ ≤ δ0. (Recall

that δµ(β, λ) is defined so that µ = δ + λδβ ≥ 0 for all δ ≤ δµ.)

Lemma 4.1. Suppose β > 0, λ is feasible (see (1.5)), and C1 > 25. Then there exists

0 < δg(β, λ, C1) ≤ δµ(β, λ) such that if 0 < δ ≤ δg and k ≥ k0(δ) then

|g|2 ≤ C1δ
2.

Proof. Note that (4.1) is equivalent to

|g|2 = δ2

[
1 +

2
(
4 + λδβ+1

)
2δ2 + λδβ+1

e−2ka +
16 + 4δ2 + λ2δ2β

(
4 + δ2

)
(2δ2 + λδβ+1)

2 e−4ka

]
.

All three terms in the above equation are positive for all 0 < δ ≤ δµ. Also, since

k ≥ k0(δ), e−2ka ≤ e−2k0a = 2δ2 + λδβ+1. Then for 0 < δ ≤ δµ we have

|g|2 ≤ δ2
[
25 + 2λδβ+1 + 4δ2 + λ2δ2β

(
4 + δ2

)]
.

We then choose δg(β, λ, C1) ≤ δµ(β, λ) small enough to ensure that the term in brackets

is less than or equal to C1 for all 0 < δ ≤ δg. �

Lemma 4.2. Suppose β > 0, λ is feasible, 0 < ξ < a, and let 0 < CL < 1 be a constant.

Then there exists 0 < δL(β, λ, ξa , CL) ≤ δµ(β, λ) such that if 0 < δ ≤ δL and k ≥ k0(δ),

then L ≥ CL.

Proof. From (3.7) we have

L =
(
1− e−2kξ

)
+

λ2δ2β + 4

(2δ + λδβ)
2 e−4ka

(
e2kξ − 1

)
≥ 1− e−2kξ ≥ 1− e−2k0ξ = 1−

(
2δ2 + λδβ+1

) ξ
a ≥ CL

for 0 < δ ≤ δL(β, λ, ξa , CL), where 0 < δL ≤ δµ is such that
(
2δ2 + λδβ+1

) ξ
a ≤ 1−CL for

0 < δ ≤ δL. �
For 0 < δ ≤ min{δ0, δg, δL} we apply the bounds from Lemmas 4.1 and 4.2 to (4.3) and,

recalling (3.6)–(3.7) and (4.1), find

Eξ(δ) ≥
CL
πC1δ

∫ ∞
k0(δ)

|Ik|2
k

e2ka dk. (4.4)

Our goal is to show that Eξ(δ) tends to infinity as a sequence δj tends to 0.
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Since |Ik|2 is a continuous function of k (by Lemma 3.1), from (4.4) and the Mean

Value Theorem for Integrals we have, for 0 < δ ≤ min{δ0, δg, δL}, that

Eξ(δ) ≥
CL
πC1δ

∫ k0(δ)+ 1

ln( e
δ )

k0(δ)

|Ik|2
k

e2ka dk

≥
(
CL
πC1

)(
e2k0(δ)a

δ [k0(δ) + 1]

)∫ k0(δ)+ 1

ln( e
δ )

k0(δ)

|Ik|2 dk

=

(
CL
πC1

)[
e2k0(δ)a

δ ln
(

e
δ

)
[k0(δ) + 1]

]
|Ik0(δ)+t(δ)|2 (4.5)

for some 0 ≤ t(δ) ≤ 1/ ln (e/δ) ≤ 1. Note that t(δ) → 0 as δ → 0+. So now we must

show the lower bound (4.5) tends to infinity as a sequence δj tends to 0.

Theorem 4.3. Let ρ ∈ P, β > 0, and λ be feasible. Assume there exist constants

d∗ ∈ [d0, d1] and Λ ∈ (0,∞] such that lim supk→∞ |Ikekd∗ | = Λ. Then there exists a

sequence {δj}∞j=1 with δj → 0 as j →∞ and there exist positive constants C ′ = CLe−2d∗

2πC1
,

C2 = C′aΛ2λ(d∗−a)/a

2 , C3 = lnλ, and C4 = C′aΛ2

4 such that

Eξ(δj) ≥


C2δ

(β+1)( d∗−aa )−1

j

(ln δj − 1) [C3 + (β + 1) ln δj ]
for 0 < β < 1,

C4δ
2( d∗−aa )−1

j

(ln δj − 1) ln δj
for β ≥ 1.

(4.6)

(The constants C2 and C3 are well defined since we require λ > 0 if 0 < β < 1 — see

(1.5).) Moreover, if limk→∞ |Ikekd∗ | = Λ, then for δ small enough we have

Eξ(δ) ≥


C2δ

(β+1)( d∗−aa )−1

(ln δ − 1) [C3 + (β + 1) ln δ]
for 0 < β < 1,

C4δ
2( d∗−aa )−1

(ln δ − 1) ln δ
for β ≥ 1.

(4.7)

Proof. If 0 < δ ≤ min{δ0, δg, δL}, then (4.5) holds. Since 0 ≤ t(δ) ≤ 1 and k0(δ) + 1 ≤
2k0(δ) for δ small enough (equivalently k0(δ) large enough), (4.5) implies

Eξ(δ) ≥
(

CL
2πC1

)[
e2k0(δ)a

δ ln
(

e
δ

)
k0(δ)

] ∣∣∣[Ik0(δ)+t(δ)]e
[k0(δ)+t(δ)]d∗

∣∣∣2 e−2[k0(δ)+t(δ)]d∗

≥ C ′e−2k0(δ)(d∗−a)

δ ln
(

e
δ

)
k0(δ)

∣∣∣Ik′(δ)ek′(δ)d∗ ∣∣∣2 , (4.8)

where k′(δ) ≡ k0(δ) + t(δ).

Since lim sup
k→∞

|Ikekd∗ | = Λ there exists a sequence {kj}∞j=1 with kj → ∞ as j → ∞
and

lim
j→∞

|Ikjekjd∗ | = Λ.
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We choose a sequence {δj}∞j=1 such that δj → 0+ as j → ∞ and kj = k0(δj) (where

k0(δ) = − 1
2a ln(2δ2 + λδβ+1) is defined in (4.2)).

Since |Ikekd∗ | is a continuous function of k and t(δj)→ 0 as j →∞ (i.e., as δj → 0+),

we have

lim
j→∞

|Ik′je
k′jd∗ | = Λ,

where k′j = k0(δj) + t(δj) = kj + t(δj)→∞ as j →∞. Thus, for j large enough (i.e., δj

small enough), |Ik′je
k′jd∗ | ≥ Λ

2 . Hence for large enough j we have

Eξ(δj) ≥
(
C ′Λ2

4

)
e−2k0(δj)(d∗−a)

δj ln
(

e
δj

)
k0(δj)

=

(
C ′Λ2

4

) (2δ2
j + λδβ+1

j

)(d∗−a)/a

δj ln
(

e
δj

)
k0(δj)

. (4.9)

Now (4.6) is obtained by applying the inequality

2δ2
j + λδβ+1

j ≥
{
λδβ+1
j for 0 < β < 1,

δ2
j for β ≥ 1,

which holds for j large enough, to (4.9).

Similarly, if the stronger condition limk→∞ |Ikekd∗ | = Λ holds, since k′(δ) → ∞ as

δ → 0+ we have |Ik′(δ)ek
′(δ)d∗ | ≥ Λ

2 and

Eξ(δ) ≥
(
C ′Λ2

4

) (
2δ2 + λδβ+1

)(d∗−a)/a

δ ln
(

e
δ

)
k0(δ)

(4.10)

for δ small enough; this is the continuous analog of (4.9) and is a direct consequence of

(4.8). Finally, (4.7) is obtained by inserting the inequality

2δ2 + λδβ+1 ≥
{
λδβ+1 for 0 < β < 1,

δ2 for β ≥ 1,

which holds for δ small enough, into (4.10). �
The next corollary follows immediately.

Corollary 4.4. Let ρ ∈ P, β > 0, and λ be feasible. Assume there exist constants

d∗ ∈ [d0, d1] and Λ ∈ (0,∞] such that

(a) lim sup
k→∞

|Ikekd∗ | = Λ; or

(b) lim
k→∞

|Ikekd∗ | = Λ.

If d∗ < τ(β)a, where τ is the continuous function

τ(β) ≡


β + 2

β + 1
if 0 < β < 1,

3

2
if β ≥ 1,

(4.11)

then lim supδ→0+ Eξ(δ) = ∞ if (a) holds (weak CALR) and limδ→0+ Eξ(δ) = ∞ if (b)

holds (strong CALR).
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Remark 4.5. According to the previous corollary, the region of influence, i.e., the

region in which the charge density ρ should be placed to cause the anomalous localized

resonance near the inner right edge of the slab, is the interval (a, τ(β)a). In particular

we can take d1 < τ(β)a to guarantee that ρ is completely inside this region (assuming

the support of ρ is small enough so that d0 > a as well). This region of influence is

the same as that found in the cloaking paper by Milton and Nicorovici [14] and also in

the superlensing paper by Milton, Nicorovici, McPhedran, and Podolskiy in [17] in the

particular case when ρ is a dipole source. Also see Bergman’s work [4].

4.1. Numerical Discussion. In this section, we study the behavior of two charge den-

sity distributions ρ. In particular, we show they satisfy the conditions of Theorem 4.3

that lead to weak CALR, i.e., they satisfy lim supk→∞ |Ikekd∗ | = Λ. We also provide

plots illustrating the blow-up of the dissipated electrical power as δ → 0+ for these

charge density distributions.

4.1.1. Rectangle. The first charge density distribution we consider has support in a

rectangle centered at (x0, y0). The left and right edges of the rectangle are at d0 = x0−d
and d1 = x0 +d, respectively, where d > 0. The bottom and top edges are at h0 = y0−h
and h1 = y0 + h, respectively, where h > 0. These parameters are chosen so d0 > a. We

define the charge density distribution as

ρ(x, y) =


Q for (x, y) ∈ [d0, d1]× (y0, h1],

−Q for (x, y) ∈ [d0, d1]× [h0, y0),

0 otherwise,

where Q 6= 0. Since ρ ∈ L1(M) ∩ L2(M), we can use calculus and (2.6) and (2.18) to

find

ρ̂(x, k) = −4Q

k
[sin(y0k) + i cos(y0k)] sin2

(
hk

2

)
and

|Ik| =
4|Q|
k2

sin2

(
hk

2

)
e−d0k

(
1− e−2dk

)
.

If we take kj = (2j−1)π
h for j = 1, 2, . . . and d∗ = d0 + α for α > 0 we have

|Ikjed∗kj | =
4|Q|
k2
j

eαkj
(
1− e−2dkj

)
→∞ as j →∞.

This implies lim supk→∞ |Iked∗k| =∞, so ρ satisfies the conditions of Theorem 4.3. Thus

there is a sequence δj → 0 as j →∞ such that Eξ(δj)→∞ as j →∞ if d0 +α < τ(β)a;

according to Theorem 5.6 in the next section, if d0 > τ(β)a, then Eξ(δ)→ 0 as δ → 0+.

Since α > 0 is arbitrary, the limit superior of the power dissipation blows up as the

dissipation in the lens tends to 0 as long as any part of the charge density distribution ρ

is within the region of influence (a, τ(β)a).

In Figure 2 we plot Eξ(δ) for the rectangular charge density ρ studied above for various

values of β and δ. The support of ρ is centered at (6, 6), and has width and height 2; thus

d0 = h0 = 5 and d1 = h1 = 7. We take 0 < β < 1 and a = d1/τ(β) = d1[(β+ 1)/(β+ 2)],
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Fig. 2. (Rectangular ρ) In all of these subfigures we take a = d1/τ(β)

so ρ is completely within the region of influence. (a) A plot of Eξ(δ)

versus β and δ — the z-axis scale is 107; (b) a plot of Eξ(δ) for

δ = 10−16 as a function of β — the y-axis scale is 108; (c) a plot of
Eξ(δ) for β = 0.8 as a function of δ — the y-axis scale is 107.

so the support of ρ is completely inside the region of influence (see (4.11) and the remark

following it). Figure 2(a) is a plot of the power dissipation Eξ(δ) as a function of β and δ.

We observe the divergence of Eξ(δ) as δ → 0+ for 0 < β < 1; in particular the divergence

appears to be more severe for larger values of β. In Figure 2(b) we fix δ = 10−16 and

plot Eξ(δ) as a function of β. Note the strong dependence of the divergence of Eξ(δ) on

the relative dissipation parameter β. Finally, in Figure 2(c) we plot Eξ(δ) as a function

of δ for β = 0.8.
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4.1.2. Circle. We now consider a charge density distribution with support in a circle

of radius R centered at (x0, y0). In this case we have d0 = x0 − R, d1 = x0 + R,

h0(x) = y0−
√
R2 − (x− x0)2, and h1(x) = y0 +

√
R2 − (x− x0)2. Again we choose the

parameters so that d0 > a. We define the charge density distribution as

ρ(x, y) =


Q for d0 ≤ x ≤ d1, y0 < y ≤ h1(x),

−Q for d0 ≤ x ≤ d1, h0(x) ≤ y < y0,

0 otherwise,

where Q 6= 0. Again, ρ ∈ L1(M) ∩ L2(M), so (2.6) and (2.18) imply

ρ̂(x, k) = −4Q

k
[sin(y0k) + i cos(y0k)] sin2

[
k

2

√
R2 − (x− x2

0)

]
and

|Ik| =
4|Q|
k

∫ d1

d0

sin2

[
k

2

√
R2 − (x− x2

0)

]
e−kx dx.

Claim: If d∗ = x0 + α for α > 0, then lim supk→∞ |Iked∗k| =∞.

Proof of Claim. Let {kj}∞j=1 be the sequence whose jth term is given by

kj =
2

R

(π
2

+ 2πj
)
.

Then

|Ikj | ≥
4|Q|
kj

∫ x0+γj

x0

sin2

[
kj
2

√
R2 − (x− x2

0)

]
e−kjx dx, (4.12)

where γj = R
j for j = 1, 2, . . ..

For x ∈ [x0, x0 + γj ] we have

kj
2

√
R2 − γ2

j ≤
kj
2

√
R2 − (x− x0)2 ≤ kjR

2
. (4.13)

We also have

kj
2

√
R2 − γ2

j =
(π

2
+ 2πj

)√
1− 1

j2
=
π

2
− ζj + 2πj,

where

ζj ≡
π
2 + 2πj

j2
(

1 +
√

1− 1
j2

) =
(π

2
+ 2πj

)(
1−

√
1− 1

j2

)
.

Note ζj → 0+ as j → ∞ so that 0 < ζj < π/2 for j large enough. In combination with

(4.13) this implies

2πj <
π

2
− ζj + 2πj ≤ kj

2

√
R2 − (x− x0)2 ≤ kjR

2
=
π

2
+ 2πj (4.14)
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for j large enough. Since sin θ is monotone increasing for θ ∈ (0, π/2), (4.12) and (4.14)

imply

|Ikj | ≥
4|Q|
kj

sin2
(π

2
− ζj + 2πj

)∫ x0+γj

x0

e−kjx dx

=
4|Q|
k2
j

sin2
(π

2
− ζj

)
e−x0kj

(
1− e−γjkj

)
.

Hence for j large enough we have

|Ikjed∗kj | ≥
4|Q|
k2
j

sin2
(π

2
− ζj

)
eαkj

(
1− e−γjkj

)
≥ |Q|

(
1− e−4π

) eαkj

k2
j

;

this expression goes to ∞ as j →∞. Thus lim supk→∞ |Iked∗k| =∞. �
Again we note that ρ need not be completely within the region of influence for the

limit superior of the power dissipation to blow-up as the dissipation in the lens goes

to 0. In particular, according to the above analysis, ρ only needs to be slightly more

than halfway inside the region of influence for the blow-up to occur. However, numerical

results seem to indicate that the power dissipation due to this charge density distribution

blows up even if ρ is just inside the region of influence (as is the case for the rectangular

charge density distribution analyzed in Section 4.1.1).

In Figure 3 we plot Eξ(δ) as a function of β and δ for the circular charge distribution

discussed above. We assume ρ is centered at (6, 6) so d0 = 5 and d1 = 7 as in the

rectangular case. The only other difference between Figures 3 and 2 are the values of δ

we used to construct the plots.

5. Upper Bound Power Dissipation. In this section, we discuss what happens

when d0 > τ(β)a ≥ (3/2)a. Recall that ρ has compact support, so supp(ρ) ⊆ [d0, d1] ×
[h0, h1] for some constants h0 < h1. The power dissipation is given exactly by

Eξ(δ) =

∫
k>0

F dk;

see (3.4) and (3.6)–(3.7). We will now prove a series of lemmas that will lead to an upper

bound on Eξ(δ).

Lemma 5.1. Suppose β > 0 and λ is feasible, and let k0(δ) be defined as in (4.2). Then

for every 0 < δ ≤ δ0

|g|2 ≥


9e−4ka δ2

(2δ2 + λδβ+1)
2 for 0 ≤ k ≤ k0(δ),

e−ka
δ2

(2δ2 + λδβ+1)
1
2

for k ≥ k0(δ).
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Fig. 3. (Circular ρ) In all of these subfigures we take a = d1/τ(β)

so ρ is completely within the region of influence. (a) A plot of Eξ(δ)

versus β and δ — the z-axis scale is 105; (b) a plot of Eξ(δ) for

δ = 10−12 as a function of β — the y-axis scale is 105; (c) a plot of

Eξ(δ) for β = 0.8 as a function of δ — the y-axis scale is 105.

Proof. From (4.1) we have

|g|2 = δ2

{(
1 +

4 + λδβ+1

2δ2 + λδβ+1
e−2ka

)2

+

[
2(δ − λδβ)

2δ2 + λδβ+1
e−2ka

]2
}

≥ δ2

(
1 +

4 + λδβ+1

2δ2 + λδβ+1
e−2ka

)2

. (5.1)
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For 0 < δ ≤ δ0 ≤ δµ < 1 (which implies µ = δ + λδβ ≥ 0) we have 4 + λδβ+1 ≥ 4− δ2 ≥
4− δ2

µ ≥ 3. Then, from (5.1), for fixed δ ≤ δ0, and for all k ∈ R we have

|g|2 ≥ δ2

(
3

2δ2 + λδβ+1
e−2ka

)2

= 9e−4ka δ2

(2δ2 + λδβ+1)
2 .

In particular this bound holds for 0 ≤ k ≤ k0(δ).

To prove the second part of the lemma we note (5.1) implies |g|2 ≥ δ2 when 0 < δ ≤ δµ.

If k ≥ k0(δ) holds as well we have

e−ka
δ2

(2δ2 + λδβ+1)
1
2

≤ e−k0(δ)a δ2

(2δ2 + λδβ+1)
1
2

= δ2 ≤ |g|2.

�
Combining the computations from Lemmas 3.1 and 5.1 we find, for 0 < δ ≤ δ0, that

(3.4) implies

Eξ(δ)≤
δ

π

∫ k0(δ)

0

(d1 − d0) ‖ρ‖2L2(M) e−2kd0e4ka
(
2δ2 + λδβ+1

)2
9kδ2

e2kaLdk

+
δ

π

∫ ∞
k0(δ)

(d1 − d0) ‖ρ‖2L2(M) e−2kd0eka
(
2δ2 + λδβ+1

) 1
2

kδ2
e2kaLdk

=C5δ

∫ k0(δ)

0

e−2k(d0−3a)

k

(
2δ + λδβ

)2
Ldk

+ 9C5δ
− 1

2

∫ ∞
k0(δ)

e−2k(d0− 3
2a)

k

(
2δ + λδβ

) 1
2 Ldk,

where

C5 ≡
(d1 − d0) ‖ρ‖2L2(M)

9π
.

Using (3.7) we can rewrite the above upper bound as

Eξ(δ) ≤ T1 + T2 + T3 + T4, (5.2)

where

T1 ≡ C5δ(2δ + λδβ)2

∫ k0(δ)

0

e−2k(d0−3a)

(
1− e−2kξ

k

)
dk; (5.3a)

T2 ≡ C5δ(λ
2δ2β + 4)

∫ k0(δ)

0

e−2k(d0−3a)e−4ka

(
e2kξ − 1

k

)
dk; (5.3b)

T3 ≡ 9C5δ
− 1

2 (2δ + λδβ)
1
2

∫ ∞
k0(δ)

e−2k(d0− 3
2a)

(
1− e−2kξ

k

)
dk; (5.3c)

T4 ≡ 9C5δ
− 1

2 (2δ + λδβ)−
3
2 (λ2δ2β + 4)

∫ ∞
k0(δ)

e−2k(d0− 3
2a)e−4ka

(
e2kξ − 1

k

)
dk. (5.3d)

We derive estimates of these integrals in the next four lemmas. Recall that 0 < δ0 ≤ δµ
is such that k0(δ) > 0 for 0 < δ ≤ δ0; we will assume 0 < δ ≤ δ0 for the remainder of

this section.
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Lemma 5.2. Suppose β > 0, λ is feasible, 0 < ξ < a, and d0 ≥ τ(β)a. Then

lim
δ→0+

T1 =


C6λ

[2+(d0−3a)/a] if 0 < β < 1 and d0 = τ(β)a,

C6(2 + λ)[2+(d0−3a)/a] if β = 1 and d0 = τ(β)a,

C62[2+(d0−3a)/a] if β > 1 and d0 = τ(β)a,

0 if d0 > τ(β)a,

where

C6 = ξC5(d0 − 3a)−1.

Proof. We begin by noting that (4.11) implies that (3/2)a ≤ τ(β)a < 2a for all β > 0.

Next, the function k−1(1 − e−2kξ) tends to 0 as k goes to infinity and is continuous

and decreasing for k ∈ [0,∞) as long as we define it to be equal to 2ξ at k = 0. Thus

k−1(1− e−2kξ) ≤ 2ξ for all k ≥ 0. If d0 6= 3a, then this implies

T1 ≤ 2ξC5δ(2δ + λδβ)2

∫ k0(δ)

0

e−2k(d0−3a) dk (5.4)

=
2ξC5

2(d0 − 3a)
δ(2δ + λδβ)2

[
1− e−2k0(δ)(d0−3a)

]
= C6δ(2δ + λδβ)2 − C6δ(2δ + λδβ)2e−2k0(δ)(d0−3a). (5.5)

The first term in (5.5) goes to 0 as δ → 0+. The second term is equal to

C6δ(2δ + λδβ)2(2δ2 + λδβ+1)(d0−3a)/a. (5.6)

If 0 < β < 1 we rewrite this as

C6(2δ1−β + λ)2(2δ1−β + λ)(d0−3a)/aδ[1+2β+(β+1)(d0−3a)/a].

This expression goes to 0 as δ → 0+ if and only if

1 + 2β + (β + 1)

(
d0 − 3a

a

)
> 0⇔ d0 >

(
β + 2

β + 1

)
a = τ(β)a,

and it goes to C6λ
[2+(d0−3a)/a] as δ → 0+ if and only if d0 = τ(β)a.

If β ≥ 1 we rewrite (5.6) as

C6(2 + λδβ−1)2(2 + λδβ−1)(d0−3a)/aδ[3+2(d0−3a)/a].

This term goes to 0 as δ → 0+ if and only if

3 + 2(d0 − 3a)/a > 0⇔ d0 >
3

2
a = τ(β)a,

and if d0 = τ(β)a it goes to C62[2+(d0−3a)/a] if β > 1 and C6(2 + λ)[2+(d0−3a)/a] if β = 1.

If d0 = 3a, then from (5.4) we have

T1 ≤ 2ξC5δ(2δ + λδβ)2k0(δ) = a−1ξC5δ(2δ + λδβ)2 ln

(
1

2δ2 + λδβ+1

)
;

this expression goes to 0 as δ → 0+ for all β > 0. �

Lemma 5.3. Suppose β > 0, λ is feasible, 0 < ξ < a/2, and d0 ≥ τ(β)a. Then

lim
δ→0+

T2 = 0.
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Proof. We begin by noting that the function k−1(e2kξ−1) is continuous for k ∈ [0,∞)

if we define it to be equal to 2ξ at k = 0. Also, since d0 ≥ τ(β)a ≥ (3/2)a, we have

e−2k(d0−3a)e−4ka ≤ e−ka for all k ≥ 0. This implies the integral∫ ∞
0

e−2k(d0−3a)e−4ka

(
e2kξ − 1

k

)
dk

converges to a positive constant C as long as 0 < ξ < a/2. Then (5.3b) implies that

T2 ≤ CC5δ(λ
2δ2β + 4)→ 0 as δ → 0+.

�

Lemma 5.4. Suppose β > 0, λ is feasible, 0 < ξ < a, and d0 > (3/2)a. Then

lim
δ→0+

T3 =

{
C7λ

[ 12 +(d0− 3
2a)/a] if 0 < β < 1 and d0 = τ(β)a,

0 if d0 > τ(β)a,

where

C7 =
9C5ξ

d0 − 3
2a

> 0.

Proof. As in the proof of Lemma 5.2 we have k−1(1− e−2kξ) ≤ 2ξ for all k ≥ 0. Thus

(5.3c) implies

T3 ≤ 18C5ξδ
− 1

2 (2δ + λδβ)
1
2

∫ ∞
k0(δ)

e−2k(d0− 3
2a) dk

=
18C5ξ

2(d0 − 3
2a)

δ−
1
2 (2δ + λδβ)

1
2

[
− e−2k(d0− 3

2a)
∣∣∣∞
k0(δ)

]
= C7δ

− 1
2 (2δ + λδβ)

1
2 e−2k0(δ)(d0− 3

2a)

= C7δ
− 1

2 (2δ + λδβ)
1
2 (2δ2 + λδβ+1)(d0− 3

2a)/a. (5.7)

If 0 < β < 1, note that τ(β)a > (3/2)a — this implies that the above analysis holds

as long as d0 ≥ τ(β)a. We rewrite (5.7) as

C7(2δ1−β + λ)
1
2 (2δ1−β + λ)(d0− 3

2a)/aδ[− 1
2 + β

2 +(β+1)(d0− 3
2a)/a].

This expression will go to 0 as δ → 0+ if and only if

−1

2
+
β

2
+ (β + 1)

(
d0 − 3

2a

a

)
> 0⇔ d0 > τ(β)a,

and if d0 = τ(β)a it goes to C7λ
{1/2+[d0−(3/2)a]/a} as δ → 0+.

If β ≥ 1 we note that the analysis leading to (5.7) can only be applied if d0 > τ(β)a =

(3/2)a. In this case we rewrite (5.7) as

C7(2 + λδβ−1)
1
2 (2 + λδβ−1)(d0− 3

2a)/aδ2(d0− 3
2a)/a,

which goes to 0 as δ → 0+ if and only if 2[d0−(3/2)a]/a > 0⇔ d0 > τ(β)a = (3/2)a. �

Lemma 5.5. Suppose β > 0, λ is feasible, 0 < ξ < a, and d0 ≥ τ(β)a. Then

lim
δ→0+

T4 = 0.
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Proof. We have, from (5.3d), that

T4 = 9C5δ
− 1

2 (2δ + λδβ)−
3
2 (λ2δ2β + 4)

∫ ∞
k0(δ)

e−2k(d0− 3
2a)e−4ka

(
e2kξ − 1

k

)
dk

= 9C5δ
− 1

2 (2δ + λδβ)−
3
2 (λ2δ2β + 4)

∫ ∞
k0(δ)

e−k(2d0+a)

(
e2kξ − 1

k

)
dk

≤ 9C5
δ−

1
2 (2δ + λδβ)−

3
2 (λ2δ2β + 4)

k0(δ)

∫ ∞
k0(δ)

e−k(2d0+a−2ξ) dk

=

[
9C5(λ2δ2β + 4)

2d0 + a− 2ξ

] [
δ−

1
2 (2δ + λδβ)−

3
2

k0(δ)

]
e−k0(δ)(2d0+a−2ξ)

= C8(λ2δ2β + 4)

[
δ−

1
2 (2δ + λδβ)−

3
2

k0(δ)

]
(2δ2 + λδβ+1)(2d0+a−2ξ)/(2a), (5.8)

where

C8 ≡
9C5

2d0 + a− 2ξ
> 0.

If 0 < β < 1 we rewrite (5.8) as[
C8(λ2δ2β + 4)

k0(δ)

]
(2δ1−β + λ)−

3
2 (2δ1−β + λ)(2d0+a−2ξ)/(2a)δ[− 1

2−
3
2β+(β+1)(2d0+a−2ξ)/(2a)].

This expression will go to 0 as δ → 0+ if and only if

−1

2
− 3

2
β +

(β + 1)(2d0 + a− 2ξ)

2a
≥ 0⇔ d0 ≥

(
β

β + 1

)
a+ ξ.

We note that [β/(β + 1)] a + ξ < τ(β)a since 0 < β < 1 and ξ < a. Thus if 0 < β < 1

and d0 ≥ τ(β)a we have T4 → 0 as δ → 0+.

If β ≥ 1 we rewrite (5.8) as[
C8(λ2δ2β + 4)

k0(δ)

]
(2 + λδβ−1)−

3
2 (2 + λδβ−1)(2d0+a−2ξ)/(2a)δ[−2+(2d0+a−2ξ)/a].

This expression goes to 0 as δ → 0+ if and only if

−2 + (2d0 + a− 2ξ)/a ≥ 0⇔ d0 ≥
a

2
+ ξ.

Since β ≥ 1 and 0 < ξ < a we have a/2 + ξ < (3/2)a = τ(β)a; thus if β ≥ 1 and

d0 ≥ τ(β)a we have T4 → 0 as δ → 0+. �
We summarize our result from this section in the following theorem.

Theorem 5.6. Let β > 0 and λ feasible be fixed. Suppose also that 0 < ξ < a/2 and

ρ ∈ P. If d0 > τ(β)a, then limδ→0+ Eξ(δ) = 0.

Proof. If the hypotheses of the theorem hold and if δ ≤ δ0, then (5.2) and Lemmas 5.1–

5.5 imply

0 ≤ Eξ(δ) ≤ T1 + T2 + T3 + T4 → 0 as δ → 0+.

�
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Fig. 4. (Rectangular ρ) In all of these subfigures we take a = d0/τ(β)

so ρ is completely outside the region of influence. (a) A plot of Eξ(δ)

versus β and δ — the z-axis scale is 10−6; (b) a plot of Eξ(δ) for

δ = 10−16 as a function of β — the y-axis scale is 10−6; (c) a plot
of Eξ(δ) for β = 0.5 as a function of δ — the y-axis scale is 10−6.

Figures 4 and 5 are supporting numerical plots; they are the same as Figures 2 and 3,

respectively, except in this case we have taken a = d0/τ(β) so ρ just touches the region

of influence (in order to accomplish this we have taken β = 0.5 in Figures 4(c) and 5(c)

rather than β = 0.8 as in Figures 2(c) and 3(c)).

6. Boundedness of the Potential. In this section, we derive bounds on the poten-

tial in regions far away from the slab. In particular, we prove that the potentials Vc and
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Fig. 5. (Circular ρ) In all of these subfigures we take a = d0/τ(β) so

ρ is completely outside the region of influence. (a) A plot of Eξ(δ)

versus β and δ — the z-axis scale is 10−5; (b) a plot of Eξ(δ) for

δ = 10−12 as a function of β — the y-axis scale is 10−6; (c) a plot
of Eξ(δ) for β = 0.5 as a function of δ — the y-axis scale is 10−6.

Vm to the left and right of the slab, respectively, are bounded by constants that are inde-

pendent of δ (for |x| large enough). As discussed in the Introduction, this is the second

requirement for cloaking by anomalous localized resonance to occur. At this point we

do not address questions regarding which portions of the (rescaled) charge distribution

ρ/
√
Eξ(δ) will be cloaked. For example, if the (rescaled) rectangular charge distribution

from Section 4.1.1 is halfway inside the cloaking region (so x0 = τ(β)a), we have not
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yet determined whether it will be completely cloaked or if only the leading half will be

cloaked.

We begin with some some technical results. The proofs of the next two lemmas are

straightforward and can be found in [27].

Lemma 6.1. Let ψ+
k and ψ−k be defined as in (2.13) and (2.14), respectively. Then for

each k ∈ R and all 0 < δ ≤ δµ,

||k|ψ+
k + ψ−k |2 ≥ 2|k|2e−2|k|a.

Lemma 6.2. Let ψ+
k and ψ−k be defined as in (2.13) and (2.14), respectively. Then there

exists 0 < δψ−(β, λ) ≤ δµ such that∣∣∣∣ψ+
k −

1

|k|ψ
−
k

∣∣∣∣2 ≤ 5

2
(δ + µ)2e2|k|a

for all k ∈ R and all 0 < δ ≤ δψ− .

6.1. The Potential Vc. Note that Vc is harmonic for x < 0 by (2.1) and (1.4). In

addition, since V ∈ L2
loc(R2), V ∈ L1

loc(R2) as well. Hence the Weyl Theorem (see,

e.g., Theorem 18.G in [32]) implies that V is infinitely differentiable for x < 0 (after

modification on a set of measure 0), so we can examine pointwise values of Vc. The next

lemma states that, far enough away from the slab, the potential Vc is bounded for all

δ ≤ δµ.

Lemma 6.3. Suppose ρ ∈ P. Then there is a positive constant C9 such that Vc(x, y) ≤ C9

for all x < −3a and for all 0 < δ ≤ δµ.

Proof. From (2.8) and (2.17) we have

|V̂c(x, k)|2 = |Ak|2e2|k|x =
|Ik|2e2|k|x

e−2|k|a||k|ψ+
k + ψ−k |2

. (6.1)

In combination with Lemma 6.1, this implies that

|V̂c(x, k)|2 ≤ |Ik|
2

2|k|2 e2|k|(x+2a) (6.2)

for x < 0, for all k ∈ R, and for all 0 < δ ≤ δµ. In particular, note that the expression in

(6.2) is an even function of k if ρ is real-valued due to Lemma 3.1. Then for x < 0 (6.2)

implies that∫ ∞
−∞
|V̂c(x, k)|2 dk ≤ 1

2

∫ ∞
−∞

|Ik|2
|k|2 e2|k|(x+2a) dk

=

∫ ∞
0

|Ik|2
|k|2 e2|k|(x+2a) dk

=

∫ 1

0

|Ik|2
k2

e2k(x+2a) dk +

∫ ∞
1

|Ik|2
k2

e2k(x+2a) dk

=

∫ 1

0

|Ik|2
k2

e2k(x+2a) dk + (d1 − d0)‖ρ‖2L2(M)

∫ ∞
1

e2k(x+2a−d0)

k2
dk,

(6.3)
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thanks to Lemma 3.1. Since
|Ik|2
k2
≤ C2

I

for k ≥ 0 by Lemma 3.1, the first integral in (6.3) converges for any x ∈ R. The second

integral in (6.3) converges if and only if x ≤ d0 − 2a (note that d0 − 2a > −a since

d0 > a). Then if x < −2a we have, from (6.3), that∫ ∞
−∞
|V̂c(x, k)|2 dk ≤

∫ 1

0

C2
I dk+(d1−d0)‖ρ‖2L2(M)

∫ ∞
1

1

k2
dk = C2

I +(d1−d0)‖ρ‖2L2(M).

Then the Plancherel Theorem (3.2) implies that for each x < −2a we have∫ ∞
−∞
|Vc(x, y)|2 dy =

1

2π

∫ ∞
−∞
|V̂c(x, k)|2 dk ≤ 1

2π

[
C2
I + (d1 − d0)‖ρ‖2L2(M)

]
. (6.4)

Since Vc(x, y) is harmonic for x < −2a, it satisfies the mean value property (see, e.g.,

Chapter 2 in [7]): for any point (x, y) with x < −3a we have

V (x, y) =
1

|Ba((x, y))|

∫
Ba((x,y))

V (x′, y′) dy′ dx′,

where Ba((x, y)) is the ball of radius a centered at the point (x, y); note that all points

(x′, y′) ∈ Ba((x, y)) satisfy x′ < −2a since x < −3a. Finally by the Cauchy–Schwarz

inequality and (6.4) we have

|Vc(x, y)| = 1

|Ba((x, y))|

∣∣∣∣∣
∫
Ba((x,y))

V (x′, y′) dy′ dx′

∣∣∣∣∣
≤ 1

|Ba((x, y))|

∫
Ba((x,y))

|V (x′, y′)|dy′ dx′

≤ 1

|Ba((x, y))|

[∫
Ba((x,y))

|V (x′, y′)|2 dy′ dx′

] 1
2
[∫

Ba((x,y))

dy′ dx′

] 1
2

≤ 1

|Ba((x, y))| 12

[∫ x+a

x−a

∫ ∞
−∞
|V (x′, y′)|2 dy′ dx′

] 1
2

≤
∫ x+a

x−a

1

2π3/2a

[
C2
I + (d1 − d0)‖ρ‖2L2(M)

]
dx′

= C9,

where C9 = π−3/2
[
C2
I + (d1 − d0)‖ρ‖2L2(M)

]
. �

6.2. The Potential Vm. We will now show that |Vm(x, y)| is bounded for x large

enough. In particular, we at least assume that x > d1. We begin with a lemma that is

very similar to Lemma 3.1. For x > d1 we define

Jk(x) ≡
∫ d1

d0

ρ̂(s, k)e−|k|(x−s) ds. (6.5)

The proof of the following lemma can be found in [27].

Lemma 6.4. Suppose ρ ∈ P (where P is defined in (1.2)) and that, for x > d1, Jk(x) is

defined as in (6.5). Then, for every x > d1, Jk(x) satisfies the following properties:
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(1) for all k ∈ R, |Jk(x)|2 ≤ (d1 − d0)‖ρ‖2L2(M)e
−2k(x−d1);

(2) if ρ is real-valued, then |Jk(x)|2 is an even function of k for k ∈ R;

(3) Jk(x) is continuous at k for each k ∈ R;

(4) lim
k→0

Jk(x) = J0(x) = 0;

(5) for each x > d1,

lim
k→0

|Jk(x)|
|k| = |C0| <∞,

where C0 is defined in Lemma 3.1; moreover, there is a positive constant CJ ,

independent of x, such that |Jk(x)|/|k| ≤ CJ for all x > d1 and all k ∈ [0, 1].

Lemma 6.5. Suppose ρ ∈ P. Then there is a positive constant C10 such that |Vm(x, y)| ≤
C10 for all x > a+ max{d1, 4a} and for all δ ≤ δψ− (where δψ− is defined in Lemma 6.2).

Proof. Based on our choice of Ak and Ik in (2.17) and (2.18), respectively, for x > d1

we have

V̂m(x, k) = e−|k|x
(
Akψ

+
k e|k|a

2
− Akψ

−
k e|k|a

2|k|

)
+
Jk(x)

2|k| ; (6.6)

see (2.16). Then (2.17), the triangle inequality, and the fact that (p + q)2 ≤ 2p2 + 2q2

for real numbers p and q imply, for x > d1, that

|V̂m(x, k)|2 =

∣∣∣∣e−|k|x(Akψ+
k e|k|a

2
− Akψ

−
k e|k|a

2|k|

)
+
Jk(x)

2|k|

∣∣∣∣2
≤ e−2|k|(x−a)

2
|Ak|2

∣∣∣∣ψ+
k −

1

|k|ψ
−
k

∣∣∣∣2 +
|Jk(x)|2

2|k|2 .

Then (6.1), Lemma 6.1, and Lemma 6.2 imply, for 0 < δ ≤ δψ− , that

|V̂m(x, k)|2 ≤ e−2|k|(x−a)

2

|Ik|2e4|k|a

2|k|2
∣∣∣∣ψ+
k −

1

|k|ψ
−
k

∣∣∣∣2 +
|Jk(x)|2

2|k|2

≤ 5e−2|k|(x−3a)|Ik|2
8|k|2 (δ + µ)2e2|k|a +

|Jk(x)|2
2|k|2

≤ 5

8
(δ + µ)2 |Ik|2

|k|2 e−2|k|(x−4a) +
|Jk(x)|2

2|k|2 . (6.7)

Note that the expression in (6.7) is even as a function of k by Lemmas 3.1 and 6.4. Then

we have∫ ∞
−∞
|V̂m(x, k)|2 dk≤ 5

8
(δ + µ)2

∫ ∞
−∞

|Ik|2
|k|2 e−2|k|(x−4a) dk +

∫ ∞
−∞

|Jk(x)|2
2|k|2 dk

=
5

4
(δ + µ)2

[∫ 1

0

|Ik|2
k2

e−2k(x−4a) dk +

∫ ∞
1

|Ik|2
k2

e−2k(x−4a) dk

]
+

∫ 1

0

|Jk(x)|2
k2

dk +

∫ ∞
1

|Jk(x)|2
k2

dk.
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Then Lemmas 3.1 and 6.4 imply∫ ∞
−∞
|V̂m(x, k)|2 dk ≤ 5

4
(δ + µ)2C2

0

∫ 1

0

e−2k(x−4a) dk + C2
J

+ (d1 − d0) ‖ρ‖2L2(M)

[
5

4
(δ + µ)2

∫ ∞
1

e−2k(x−4a+d0)

k2
dk +

∫ ∞
1

e−2k(x−d1)

k2
dk

]
.

(6.8)

If x > max{d1, 4a}, then all of the integrals in (6.8) converge. In particular, the

integral from 0 to 1 and both of the integrals from 1 to∞ converge to numbers less than

or equal to 1 in that case. Therefore (6.8) becomes∫ ∞
−∞
|V̂m(x, k)|2 dk ≤ 5

4
(δ + µ)2C2

0 + C2
J + (d1 − d0) ‖ρ‖2L2(M)

[
5

4
(δ + µ)2 + 1

]
≡ C̃10.

If we define b ≡ a + max{d1, 4a}, for example, then for x > b each point (x′, y′) ∈
Ba((x, y)) satisfies x′ > max{d1, 4a}. Since Vm is harmonic in the region where x′ > d1,

it satisfies the mean value property there. Using this in combination with the Plancherel

Theorem (just as in the proof of Lemma 6.3) gives

|Vm(x, y)| ≤
∫ x+a

x−a

C̃10

2π3/2a
dx′ ≡ C10,

where C10 = π−3/2C̃10. �
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