
Cloaking via change of variables for the Helmholtz
equation

ROBERT V. KOHN
Courant Institute, NYU

DANIEL ONOFREI
University of Utah

MICHAEL S. VOGELIUS
Rutgers University

AND

MICHAEL I. WEINSTEIN
Department of Applied Physics and Applied Mathematics

Columbia University

Abstract

The transformation optics approach to cloaking uses a singular change of coordi-
nates, which blows up a point to the region being cloaked. This paper examines
a natural regularization, obtained by (i) blowing up a ball of radiusρ rather than
a point, and (ii) including a well-chosen lossy layer at the inner edge of the
cloak. We assess the performance of the resulting near-cloak as the regulariza-
tion parameterρ tends to 0, in the context of (Dirichlet and Neumann) boundary
measurements for the time-harmonic Helmholtz equation. Since the goal is to
achieve cloaking regardless of the content of the cloaked region, we focus on es-
timates that are uniform with respect to the physical properties of this region. In
three space dimensions our regularized construction performs relatively well: the
deviation from perfect cloaking is of orderρ. In two space dimensions it does
much worse: the deviation is of order 1/| logρ|. In addition to proving these
estimates, we give numerical examples demonstrating theirsharpness. Some au-
thors have argued that perfect cloaking can be achieved without losses by using
the singular change-of-variable-based construction. In our regularized setting the
analogous statement is false: without the lossy layer, there are certain resonant
inclusions (depending in general onρ) that have a huge effect on the boundary
measurements.c© 2000 Wiley Periodicals, Inc.

1 Introduction

We say a region of space is cloaked for a particular class of measurements
if its contents – and even the existence of the cloak – are invisible using such
measurements.

A change-of-variable-based scheme for cloaking was proposed by Pendry, Schurig,
and Smith in [21] for measurements that can be modelled usingthe time-harmonic
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Maxwell equations. Essentially the same scheme was discussed earlier by Green-
leaf, Lassas, and Uhlmann in [7] for electric impedance tomography. Recent re-
views with many references to the rapidly growing literature on cloaking and other
applications of “transformation optics” can be found in [12, 13, 23, 29]; see also
[28] for an enlightening treatment, [14] for information about earlier work along
similar lines, and [3, 5] for an application to scalar wave propagation (the focus of
the present paper). For discussion of the literature most related to the present work,
see Section 2.7.

The change-of-variable-based scheme proposed in [7, 21] israther singular.
This makes it difficult to analyze; in particular, multiple proposals have emerged
about the appropriate notion of a “weak solution” of Maxwell’s equations in such
a singular setting [8, 25, 26, 28]. The proposals could all becorrect, if they rep-
resent the limiting behavior of different regularizations. However there has been
relatively little work on the limiting behavior of any regularization. Such work has
mainly been restricted to uniform inclusions (whose properties remain fixed as the
regularization varies), analyzed via separation of variables [5, 9, 22, 25, 29, 30].

This paper develops a different viewpoint, which avoids singular structures and
weak solutions. We shall study change-of-variable-based “near-cloaks,” defined
using a natural regularization of the singular scheme. Briefly: the framework of
[7, 21] uses a singular change of variable, which blows up a point to a finite-size
region. Our near-cloaks replace this with a regular change of variable, which blows
up a small ball to a finite-size region.

The key issues from our perspective are (a) specifying the precise structure of
the near-cloak, and (b) assessing its performance. We shalladdress these issues for
the scalar Helmholtz equation

(1.1)
N

∑
i, j=1

∂
∂xi

(

Ai j (x)
∂u
∂x j

)

+ ω2q(x)u = 0 in Ω

where Ω is a bounded domain inRN, N = 2 or 3. This PDE describes time-
harmonic solutionsU = ue−iωt of the scalar wave equationq(x)Utt −∇ ·(A(x)∇U)=
0.

Any analysis of cloaking must specify the class of measurements being con-
sidered. We shall focus on “boundary measurements,” i.e. the correspondence
between Dirichlet and Neumann data (u and(A∇u) ·ν) at ∂Ω.

Our main results are summarized in Section 2. They encompassthe following
key points:

(i) If there are no constraints on the material properties ofthe objects to be
cloaked, then change-of-variable-based cloaking from boundary measure-
ments requires the use of lossy materials.

(ii) The change-of-variable-based scheme works much better in 3D than in 2D.
In fact, our near-cloaks come withinρ of perfect cloaking in 3D, but only
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within 1/| logρ | of perfect cloaking in 2D. Hereρ is our regularization pa-
rameter – the radius of the small ball that is blown up to a finite-size region
– and the deviation from perfect cloaking is measured by the difference
between the Neumann-to-Dirichlet map and that of a uniform body.

Our viewpoint was introduced in [15], which focused on electric impedance
tomography. This viewpoint was recently adopted by Liu [17], who studied near-
cloaking achieved by change of variables when a homogeneousDirichlet boundary
condition is imposed at the inner edge of the cloak; his performance estimates are
similar to ours (see point (ii) above). Other regularizations – of a more direct “trun-
cation” nature, and sometimes involving other boundary conditions – are consid-
ered in [5, 9, 10, 11, 22, 25, 29, 30]. The recent articles [10,11] note the possibility
of resonance, which is directly related to point (i) above.

2 Main Ideas

2.1 Cloaking with respect to boundary measurements

As stated in the Introduction, we shall focus on “boundary measurements,”
i.e. the correspondence between Dirichlet and Neumann data. In the context of
Helmholtz’s equation (1.1), this means we consider the map

ΛA,q : H−1/2(∂Ω) → H1/2(∂Ω) ,

defined by

(2.1) ΛA,q(ψ) = u
∣

∣

∂Ω whereu∈ H1(Ω) solves (1.1) with∑Ai j
∂u
∂xj

νi = ψ .

This map is well-defined and invertible providedAi j (x) is a uniformly elliptic
symmetric-matrix-valued function andω2 avoids a discrete set of eigenvalues.
Throughout this paper we shall impose this restriction onω2 relative to the homo-
geneous medium,A = I , q = 1. The Sobolev spaceH1/2(∂Ω) consists functions
with “ 1

2 derivative inL2” and H−1/2(∂Ω) is its dual. These are the natural spaces
for Dirichlet and Neumann data of finite-energy solutions, sinceφ ∈ H1/2(∂Ω) if
and only ifφ is the restriction to∂Ω of some function inH1(Ω).

Fixing Ω, we shall say thatA(x) and q(x) “look uniform” if the associated
boundary measurements are identical to those obtained whenA= I , q= 1, in other
words if ΛA,q = ΛI ,1.

Rather than define “cloaks of arbitrary geometry”, let us explain what it means
for a specific structureAc(x),qc(x) defined in the shell 1< |x| < 2 to cloak the unit
ball B1 = {|x| < 1}. Given a domainΩ containingB2, we say thatAc,qc cloaksB1

if whenever

(2.2) A(x),q(x) =







I ,1 for x∈ Ω\B2

Ac,qc in B2\B1

arbitrary inB1
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then ΛA,q = ΛI ,1. In other words,Ω looks uniform regardless of the content of
the “cloaked region”B1. To make the definition complete one must specify the
meaning of “arbitrary” in (2.2): for example one might ask that A andq be real-
valued inB1, with A(x) uniformly elliptic. It is easy to see that the above definition
depends only on the “cloak”Ac,qc, not on the choice ofΩ. In particular, if cloaking
is achieved forΩ = B2 then it is also achieved for any larger domain.

2.2 The “pushforwards” F∗(A) and F∗(q)

The change-of-variable-based cloaking scheme relies on the following basic
fact.

Let F : Ω → Ω be a differentiable, orientation-preserving, surjectiveand invertible
map such that F(x) = x at ∂Ω. Then u(x) solves∇x · (A(x)∇xu)+ ω2q(x)u = 0 if
and only if w(y) = u(F−1(y)) solves∇y · (F∗A(y)∇yw)+ ω2F∗q(y)w = 0 with

(2.3) F∗A(y) =
DF(x)A(x)DFT(x)

detDF(x)
, F∗q(y) =

q(x)
detDF(x)

, x = F−1(y) .

Moreover A,q and F∗A,F∗q give the same boundary measurements:

(2.4) ΛA,q = ΛF∗A,F∗q .

In (2.3)DF is the matrix whose(i, j)th element is∂Fi/∂x j . Note thatA andF∗A are
symmetric-matrix-valued functions, whileq andF∗q are scalar-valued functions;
our use of the same symbolF∗ for both cases is a convenient abuse of notation.

The proof of the preceding statement is elementary. The weakform of the PDE
∇x · (A(x)∇xu)+ ω2q(x)u = 0 is the assertion that

∫

Ω

[

∑
i, j

Ai j (x)
∂u
∂x j

∂φ
∂xi

−ω2q(x)u(x)φ(x)

]

dx= 0

for all φ that vanish at∂Ω. Changing variables toy = F(x), this becomes the
statement that

∫

Ω

[

∑
i, j

(F∗A)i j (y)
∂w
∂y j

∂ψ
∂yi

−ω2F∗q(y)w(y)ψ(y)

]

dy= 0

with ψ(y) = φ(x). As φ varies over test functions vanishing at∂Ω so doesψ , so
we conclude that∇y · (F∗A(y)∇yw) + ω2F∗q(y)w = 0. In fact the two PDE’s are
equivalent, since the argument is reversible. To see thatA,q andF∗A,F∗q give the
same boundary measurements, it suffices to note that the above two integrals agree
for any smooth functionφ (and the associatedψ(y) = φ(x)) whether it vanishes or
not on∂Ω. Integration by parts now gives that∑(F∗A)i j

∂w
∂yj

νi(y) = ∑Ai j
∂u
∂xj

νi(x).

Sincey = F(x) = x on ∂Ω (and thereforew = u on ∂Ω) it follows that ΛA,q =
ΛF∗A,F∗q.
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2.3 A lossless regularization of the singular cloaking scheme

SupposeΩ contains the ballB2. For any (small)ρ > 0, consider the change of
variablesFρ defined by

(2.5) Fρ(x) =











x for x∈ Ω\B2
(

2−2ρ
2−ρ + 1

2−ρ |x|
)

x
|x| for ρ ≤ |x| ≤ 2

x
ρ for |x| ≤ ρ

.

Its key properties are that

• Fρ is continuous and piecewise smooth,
• Fρ expandsBρ to B1, while mappingB2 to itself; and
• F(x) = x outsideB2.

The arguments in [7, 21] applied to Helmholtz suggest thatB1 should be cloaked
by Ac = (F0)∗I ,qc = (F0)∗1, whereF0 = limρ→0 Fρ is the singular transformation
that blows up the origin to the ballB1. We might therefore think that ifρ is small
then(Fρ)∗I ,(Fρ)∗1 should nearly cloakB1, in the sense that if

(2.6) A(y),q(y) =







I ,1 for y∈ Ω\B2

(Fρ)∗I ,(Fρ)∗1 in B2\B1

arbitrary inB1

thenΛA,q ≈ Λ1,1.

Such a statement is true at frequency 0; this is the main result of [15]. It is
however not true whenω 6= 0; we shall explain why not in Section 2.5.

2.4 Reduction to the study of small inclusions

To assess the whetherAc = (Fρ)∗I ,qc = (Fρ)∗1 achieves approximate cloaking,
we must study the boundary operator associated with (2.6). By the change of
variable principle, this is the same as the boundary operator associated with

(2.7) (F−1
ρ )∗A(x),(F−1

ρ )∗q(x) =

{

I ,1 for x∈ Ω\Bρ
arbitrary inBρ .

Here we have used the fact that(F−1
ρ )∗ ◦ (Fρ)∗ = id, and so ifA,q are arbitrary in

B1, then their transforms(F−1
ρ )∗A and(F−1

ρ )∗q are similarly arbitrary inBρ . Thus:

(Fρ)∗I ,(Fρ)∗1 approximately cloakB1 if and only if

an inclusion of radiusρ with arbitrary content has little(2.8)

effect on the boundary map of an otherwise uniform domain.
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2.5 Failure of the lossless regularization

The lossless regularized scheme discussed in Sections 2.3–2.4 doesnotachieve
approximate cloaking. To explain why not, it suffices by (2.8) to show that a small
inclusion in an otherwise uniform domain can have a large effect on the boundary
operator.

We use separation of variables, focusing on the 2D case for simplicity. Let
Ω = B2, and consider

Aρ ,qρ =

{

I ,1 in B2\Bρ
Ãρ , q̃ρ in Bρ

whereÃρ > 0 andq̃ρ are real-valued constants. The general solution of the associ-
ated Helmholtz equation can be expressed in polar coordinates as

u =
∞

∑
k=−∞

αkJk

(

ωr
√

q̃ρ/Ãρ

)

eikθ for r ≤ ρ ,

u =
∞

∑
k=−∞

[

βkJk(ωr)+ γkH
(1)
k (ωr)

]

eikθ for ρ < r ≤ 2 ,

for appropriate choices ofαk, βk and γk. When we solve a Neumann problem,
the three unknowns at modek (αk,βk,γk) are determined by three linear equations:
agreement with the Neumann data atr = 2 and satisfaction of the two transmission
conditions atr = ρ . However, for anyω 6= 0 and anyk, this linear system has
determinant zero at selected values ofÃρ and q̃ρ . (We shall show this in Section
4, where we also study the asymptotics of such special valuesof Ãρ , q̃ρ asρ → 0
for k = 0 andk = 1.) When the linear system is degenerate (for somek), the
homogeneous Neumann problem has a nonzero solution, and theboundary map
ΛAρ ,qρ is not even well-defined. In brief: no matter how small the value of ρ , for
any ω 6= 0 there arecloak-bustingchoices ofÃρ and q̃ρ for which the ball with
such an inclusion is resonant at frequencyω .

2.6 Our near-cloaks

The standard way to deal with resonance is to introduce a mechanism for damp-
ing or loss. There are many alternatives, most of which amount to considering an
open rather than a closed system (for example, use of a scattering boundary condi-
tion permits energy to be lost at infinity).

In this paper we choose a particular damping mechanism, which permits us
to remain focused on boundary measurements for the Helmholtz equation (1.1).
Specifically: we takeq to be complex, choosing the geometry in such a way that it
maintains the equivalence between near-cloaking and insensitivity to small inclu-
sions.

Our construction (nearly) cloaksB1/2 by surrounding it with two concentric
shells: an isotropic but lossy one of thickness 1/2, coated by an anisotropic but



CLOAKING VIA CHANGE OF VARIABLES 7

lossless shell similar to the one in Section 2.3. Besides theregularization parameter
ρ , it also has a damping parameterβ > 0. The analogue of (2.6) is

(2.9) A(y),q(y) =















I ,1 for y∈ Ω\B2

(F2ρ)∗I ,(F2ρ)∗1 in B2\B1

(F2ρ)∗I ,(F2ρ)∗(1+ iβ ) in B1\B1/2
arbitrary real, elliptic inB1/2.

To be clear: inB1/2 we permitq(y) to be anyL∞ real-valued function, and we
permit A(y) to be any real symmetric-matrix-valued function that is uniformly
bounded and uniformly positive definite. (See Section 2.7 for comments on the
hypothesis thatA > 0 in the cloaked region.) WhenA,q are arbitrary in this sense
in B1/2, their pullbacks(F−1

2ρ )∗A,(F−1
2ρ )∗q are similarly arbitrary inBρ . So the

boundary operator associated withA(y),q(y) is the same as that of
(2.10)

Aρ ,qρ = (F−1
2ρ )∗A(x),(F−1

2ρ )∗q(x) =







I ,1 for x∈ Ω\B2ρ
I ,1+ iβ in B2ρ \Bρ

arbitrary real, elliptic inBρ

(this is the analogue of (2.7)). We shall show in Section 3 that whenβ is chosen
properly – specifically, whenβ ∼ ρ−2 – this construction approximately cloaks
B1/2 in the sense that

(2.11) ‖ΛA,q−ΛI ,1‖ = ‖ΛAρ ,qρ −ΛI ,1‖ ≤Ce(ρ)

where the left hand side uses the operator norm1 on maps fromH−1/2(∂Ω) to
H1/2(∂Ω) and

(2.12) e(ρ) =

{

1/| logρ | in space dimension 2
ρ in space dimension 3.

We emphasize that this near-cloaking is achievedregardless of the content of the
cloaked region, i.e. the constantC in (2.11) is entirely independent of the values
of A(y) andq(y) in B1/2 (provided they are real, withA symmetric and positive
definite).

The estimate (2.11) is essentially optimal. In fact, we shall show in Section 4
that there exist (constant) values ofÃρ > 0 andq̃ρ and Neumann dataψ such that
when

Aρ(x),qρ (x) =







I ,1 for x∈ Ω\B2ρ
I ,1+ iβ in B2ρ \Bρ
Ãρ , q̃ρ in Bρ

then
∥

∥(ΛAρ ,qρ −ΛI ,1)ψ
∥

∥

H1/2

‖ψ‖H−1/2
∼ e(ρ).

1To be completely explicit:‖ΛA,q −ΛI ,1‖ = sup‖ψ‖
H−1/2≤1‖ΛA,qψ −ΛI ,1ψ‖H1/2; thus, it mea-

sures the worst-case difference between the Dirichlet dataassociated with coefficientsA,q andI ,1
when the associated PDE’s are solved using the same (normalized) Neumann data.
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Note that our near-cloak is not very successful in space dimension 2, since 1/| logρ |
decays very slowly asρ → 0. It is much more successful in space dimension 3.
The reason for such dimension-dependent behavior lies in the different decay of the
fundamental solution of the Laplacian in dimensions 2 and 3.(In space dimension
N > 3, arguments similar to the ones presented here would give a corresponding
estimate withe(ρ) = ρN−2.)

2.7 Discussion

Our presentation used the radial transformationF2ρ defined by (2.5), but our
analysis of the scheme involves only the study of the inclusion problem (2.10).
By replacingF2ρ by a more general change of variable, one easily gets a similar
scheme for cloaking a non-spherical cavity.

We explained in Section 2.5 that the lossless version of our regularization must
fail, if the goal is to achieve cloaking without regard to thephysical properties of
the region being cloaked. The papers [5, 9, 10, 22, 25, 29, 30]take a different
viewpoint: translated into our terminology they assume that the properties of the
cloaked region remain fixed asρ → 0. It appears that perfect cloaking is achieved
without losses for 3D Maxwell and 3D Helmholtz; however the results we present
in Section 4 indicate that this should not be the case for 2D Helmholtz (see the
discussion associated with Figure 4.2).

Our near-cloaks use loss parameterβ ∼ ρ−2. Numerically we can say a little
more: theoptimal choice ofβ is aboutcρ−2 with c≈ 2.5 in 2D andc≈ 4 in 3D
(see the discussion of Figures 4.4 and 4.5 in Section 4). Whenβ is significantly
smaller near-cloaking is not achieved, because the loss is not sufficient to hide
certain “cloak-busting” inclusions. Whenβ is larger the performance of the near-
cloak is slightly worse, however near-cloaking is apparently achieved even in the
limit β → ∞. This limit corresponds, at least heuristically, to the imposition of a
Dirichlet boundary condition at the inner edge of the cloak,the case considered
in [17]. Thus our results are closely related to those of [17], however we achieve
near-cloaking using a finite value of the loss parameter.

Much of the literature on cloaking focuses on scattering rather than bound-
ary measurements. It would be interesting to know whether our near-cloaks work
equally well in that setting, e.g. whether there is an estimate analogous to (2.11)
for the scattering of plane waves fromΩ (embedded in uniform space withA = I ,
q = 1). We conjecture that this is the case.2 (The results in [17] provide such an
estimate whenβ = ∞.)

In assessing the performance of our near-cloak, we focus on the worst-case be-
havior. In particular, our estimate (2.11) applies regardless of the material proper-
ties of the cloaked region, provided only thatA(y) is real-valued, positive-definite,
and finite there, andq(y) is real-valued function. The constant in the estimate does

2A treatment of the scattering problem in much the same spiritas the present paper has recently
been completed by Nguyen [20].
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not depend on the upper or lower bounds forA or q in the cloaked region. The
recent paper [4] argues that by takingA < 0 in part of the cloaked region, one
can defeat the effect of the (singular, lossless) change-of-variable-based cloak. We
doubt that our lossy near-cloak would be defeated by such a scheme. But to discuss
a situation where the real part ofA changes sign it is necessary to include losses (A
must be complex). As the losses tend to zero and ellipticity is lost, the local fields
may become increasingly oscillatory (this is case, for example, in the “anomalous
localized resonances” of [19]). Since our analysis assumesthatA,q are real in the
cloaked region, we assumeA> 0 to know that the PDE has a well-defined solution.

Is our approach the best way to achieve near-cloaking without singular materi-
als? Not necessarily. The papers [9, 30] suggest that a truncation-based regulariza-
tion combined with a different choice of boundary conditionat the inner edge of
the cloak may do better. But these papers keep the material inthe cloaked region
fixed as the regularization parameter tends to zero. It wouldbe interesting to exam-
ine whether their lossless near-cloaks can be defeated by special “cloak-busting”
inclusions, as discussed in Section 2.5.

Is the change-of-variable-based approach optimal? Or might there be an en-
tirely different approach to (approximate) cloaking – using materials less singular
than(F2ρ)∗I , (F2ρ)∗1, and achieving an error estimate much better thane(ρ)? This
question remains open. The recent paper [27] used separation of variables and a
genetic algorithm to optimize cloaking of afixed, constantinclusion with respect
to scattering measurements, obtaining a better result withless complexity than the
change-of-variable-based scheme. But their cloak would probably not work as
well for non-constant inclusions. Moreover, since it was obtained by numerical
optimization, the example in [27] lacks the intuitiveness and universality of the
change-of-variable-based scheme.

This paper focuses entirely on change-of-variable-based cloaking. But we note
in passing the existence of other promising schemes for achieving similar goals,
including one based on optical conformal mapping [16], another using anomalous
localized resonance [19], and a third based on special (object-dependent) coatings
[1].

3 The effect of a small inclusion

The goal of this section is to prove (2.11). We begin by givingthe result a
more formal statement. Throughout this section,Ω is a bounded domain inRN

(N = 2 or 3), whose boundary isC2 (so we may use elliptic estimates), with 0∈ Ω
(our inclusions will be centered at 0). We are interested in Helmholtz’s equation at
frequencyω : givenψ ∈ H−1/2(∂Ω), let u0 be the solution of

(3.1)







∆u0 + ω2u0 = 0 in Ω
∂u0

∂ν
= ψ on ∂Ω .
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We suppose that−ω2 is not an eigenvalue of the Neumann Laplacian. The bound-
ary value problem (3.1) is therefore well-posed, and

‖u0‖H1(Ω) ≤C‖ψ‖H−1/2(∂Ω) .

Now consider the solutionuρ of

(3.2)







div(Aρ∇uρ)+ ω2qρ uρ = 0 in Ω
∂uρ

∂ν
= ψ on ∂Ω

,

whereAρ andqρ have the form:














Aρ = I , qρ = 1 in Ω\B2ρ

Aρ = 1, qρ = 1+ iβ in B2ρ \Bρ

Aρ ,qρ arbitrary real, elliptic inBρ

.

Hereβ is a positive constant, and the “arbitrary real, elliptic”Aρ andqρ in Bρ are
assumed to be positive definite, symmetric-matrix-valued and real-valued functions
respectively, inL∞(Bρ) (qρ need not be of one sign). We assume thatΩ contains
a neighborhood ofB2ρ (this is a smallness condition onρ). The existence and
uniqueness ofuρ is easy to see using the positivity ofβ (see Section 3.1). We
claim that ifβ is chosen appropriately thenuρ is close tou0:

Theorem 3.1. Suppose−ω2 is not an eigenvalue of the Laplacian onΩ with Neu-
mann boundary condition. Let u0 and uρ be the solutions of (3.1) and (3.2) re-
spectively, and supposeβ = d0ρ−2 for some positive constant d0. Then there exist
constantsρ0 and C (independent ofψ) such that for anyρ < ρ0,

(3.3) ‖uρ −u0‖H1/2(∂Ω) ≤Ce(ρ)‖ψ‖H−1/2(∂Ω)

where e(ρ) is defined by (2.12). In other words, the difference between the two
boundary operatorsΛAρ ,qρ and ΛI ,1 has norm at most Ce(ρ), when viewed as an

operator from H−1/2(∂Ω) to H1/2(∂Ω). The constantsρ0 and C depend onω and
d0, but they are completely independent of the values of Aρ and qρ in Bρ .

Our strategy for proving this theorem is as follows:

• In Section 3.1we use the energy identity and the positivity ofβ to control
theL2 norm ofuρ in B2ρ \Bρ . We also deduce, by a duality argument, an
estimate for the restriction ofuρ to ∂B2ρ .

• In Section 3.2we prove a general result comparing the Helmholtz equation
in Ω to the same equation in the punctured domainΩ \B2ρ . It is obvious
that if the latter problem is solved using Dirichlet datau0|∂B2ρ at the edge
of the “hole” , and normal flux dataψ on ∂Ω, then the solution isu0. The
main estimate of Section 3.2 is an associated stability result: it asserts that
if Dirichlet data at the edge of the hole are close tou0, then the solution of
Helmholtz in the punctured domain is close tou0 at ∂Ω.
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• In Section 3.3we show how the estimates in Sections 3.1 and 3.2 combine
to prove Theorem 3.1.

• The discussion of Section 3.2 uses the well-posedness of Helmholtz’s equa-
tion in the punctured domainΩ \ B2ρ (with Neumann data at∂Ω and
Dirichlet data at∂B2ρ ). This well-posedness result is not surprising (if the
hole is small its effect should be small) but we do not know a convenient
reference. So we give a self-contained proof inSection 3.4.

• The arguments in Sections 3.2 and 3.4 use some estimates for solutions
of Laplace’s equation in the exterior of a small ball. Those estimates are
not difficult, but we do not know a suitable reference. So we give a self-
contained proof inSection 3.5.

3.1 Some estimates based on the positivity ofβ
We noted above that the well-posedness of (3.2) follows easily from the posi-

tivity of β . The proof, which is standard, uses the energy identity. Thefollowing
Lemma uses a variant of that argument to bound theL2 norm of uρ in the shell
ρ < |x| < 2ρ by ‖u0−uρ‖H1/2(∂Ω).

Lemma 3.2. The solutions of (3.1) and (3.2) satisfy

ω2β
∫

B2ρ\Bρ
|uρ |

2 dx≤C‖ψ‖H−1/2(∂Ω)‖uρ −u0‖H1/2(∂Ω) ,

where C is an absolute constant (depending only onΩ).

Proof. Multiplying (3.2) by ūρ (the complex conjugate ofuρ ) and integrating by
parts gives

−

∫

Ω
Aρ∇uρ ∇ūρ dx+ ω2

∫

Ω
qρ uρ ūρ dx= −

∫

∂Ω
(Aρ∇uρ) ·ν ūρ dσx .

The first term on the left hand side is real. Therefore taking the imaginary part of
each side (and remembering thatAρ = I near∂Ω) we get

ω2β
∫

B2ρ\Bρ
|uρ |

2 dx = −Im

(

∫

∂Ω

∂uρ

∂ν
· ūρ dσx

)

= −Im

(

∫

∂Ω
ψ(ūρ − ū0) dσx

)

.(3.4)

For the second equality we have used that∂uρ/∂ν = ψ , and the fact that
∫

∂Ω
ψ ū0 dσx =

∫

Ω
|∇u0|

2 dx−ω2
∫

Ω
|u0|

2 dx

is real. The assertion of the lemma is an immediate consequence of (3.4). �

The functionsu0 anduρ solve the same PDE inΩ\B2ρ , with the same Neumann
data at the outer boundary∂Ω. We will compare them in Sections 3.2 and 3.3 using
elliptic estimates on this punctured domain. So it is crucial to controluρ at ∂B2ρ .
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We achieve such control (in theH−1/2 norm) by combining the last result with a
duality argument.

Lemma 3.3. The solutions of (3.1) and (3.2) satisfy

‖uρ(ρ ·)‖2
H−1/2(∂B2)

≤C
[(1+ β )ω2ρ2+1]2

ω2β
ρ−N‖ψ‖H−1/2(∂Ω)‖uρ −u0‖H1/2(∂Ω) ,

where C is an absolute constant (depending only onΩ).

Proof. We use the fact that

‖uρ(ρ ·)‖H−1/2(∂B2)
= sup

‖φ‖
H1/2(∂B2)

≤1

∣

∣

∣

∣

∫

∂B2

uρ(ρx)φ(x)dσx

∣

∣

∣

∣

.

Now, for anyφ ∈ H1/2(∂B2) there existsw∈ H2(B2) such that

(a) w = 0 on∂B2 ,
∂w
∂ν

= φ on ∂B2 ,

(b) ‖w‖H2(B2) ≤C‖φ‖H1/2(∂B2)
,

(c) w vanishes insideB1 .

Using thisw we have
∫

∂B2

uρ(ρx)φ(x)dσx =

∫

∂B2

uρ(ρx)
∂w
∂ν

dσx ,

whence after integration by parts
∫

∂B2

uρ(ρx)φ(x) dσx = ρ
∫

B2

∇uρ(ρx)∇w dx+
∫

B2

uρ(ρx)∆w dx

= −ρ2
∫

B2

∆uρ(ρx)w dx+
∫

B2

uρ(ρx)∆w dx .

Sincew vanishes inB1 and∆uρ +(1+ iβ )ω2uρ = 0 in B2ρ \Bρ , we conclude that
∣

∣

∣

∣

∫

∂B2

uρ(ρx)φ(x)d σx

∣

∣

∣

∣

≤ ω2(1+ β )ρ2
(

∫

1<|x|<2
|uρ |

2(ρx)

)
1
2

‖w‖L2(B2)

+

(

∫

1<|x|<2
|uρ |

2(ρx)

)
1
2

‖w‖H2(B2)

≤ C[ω2(1+ β )ρ2+1]‖uρ(ρ ·)‖L2(1<|x|<2)‖φ‖H1/2(∂B2)
.

Maximizing overφ subject to‖φ‖H1/2(∂B2)
≤ 1 and using the relation

‖uρ(ρ ·)‖L2(B2\B1)
= ρ−N/2‖uρ‖L2(B2ρ\Bρ)

we conclude that

(3.5) ‖uρ(ρ ·)‖H−1/2(∂B2)
≤C[ω2(1+ β )ρ2 +1]ρ−N/2‖uρ‖L2(B2ρ\Bρ) .

Squaring both sides and combining the result with Lemma 3.2 leads easily to the
desired estimate. �
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3.2 Estimates for Helmholtz on the punctured domain

As noted above,u0 anduρ solve the same PDE inΩ\B2ρ , with the same Neu-
mann data at the outer boundary∂Ω. If in addition their values are similar at
the inner boundary∂B2ρ , thenu0 should be globally close touρ . The following
Lemma makes this rigorous. For notational simplicity we take the inclusion to be
Br rather thanB2ρ .

Lemma 3.4. Suppose−ω2 is not an eigenvalue of the Laplacian onΩ with Neu-
mann boundary condition. There are constants r0 and C with the following prop-
erty: suppose r< r0, suppose u0 solves (3.1) with boundary dataψ ∈ H−1/2(∂Ω),
and suppose ur solves

(3.6)











∆ur + ω2ur = 0 in Ω\Br

ur = ϕ on ∂Br
∂ur

∂ν
= ψ on ∂Ω

using the same Neumann dataψ as for u0 on∂Ω, and Dirichlet dataϕ ∈H1/2(∂Br),
then

(3.7) ‖ur −u0‖H1/2(∂Ω) ≤Ce(r)‖(ϕ −u0)(r ·)‖H−1/2(∂B1)
,

where e(r) is given by (2.12). The constants r0 and C depend onω andΩ, but they
are entirely independent ofψ , ϕ , and r.

Proof. We shall show in Section 3.4 that if Helmholtz’s equation is well-posed on
Ω, then it is also well-posed onΩ\Br whenr is sufficiently small and∂Br carries
a homogeneous Dirichlet condition. In particular, ifw solves

(3.8) (∆ + ω2)w = F in Ω\Br ,
∂w
∂ν

= f on ∂Ω , w = 0 on∂Br ,

then

(3.9) ‖w‖H1(Ω\Br)
≤C

(

‖F‖L2(Ω\Br)
+‖ f‖H−1/2(∂Ω)

)

,

with C independent ofr.
We want to estimateur −u0 using (3.9). It isn’t zero at∂Br , but we can fix this

by subtracting a harmonic function. We shall show in Section3.5 that there is a
solution of∆V = 0 in Ω\Br with V = ϕ −u0 on ∂Br satisfying

‖
∂

∂ν
V‖L2(∂Ω) ≤ Ce(r)‖(ϕ −u0)(r ·)‖H−1/2(∂B1)

‖V‖H1/2(∂Ω) ≤ Ce(r)‖(ϕ −u0)(r ·)‖H−1/2(∂B1)
(3.10)

‖V‖L2(Ω\Br)
≤ Ce(r)‖(ϕ −u0)(r ·)‖H−1/2(∂B1)
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(see Proposition 3.8). The functionwr = ur −u0−V satisfies (3.8) withF =−ω2V
and f = −∂V/∂ν . So the estimate (3.9) gives

‖ur −u0‖H1/2(∂Ω) ≤ ‖wr‖H1/2(∂Ω) +‖V‖H1/2(∂Ω)

≤ C‖wr‖H1(Ω\Br)
+‖V‖H1/2(∂Ω)

≤ C

(

‖ω2V‖L2(Ω\Br)
+‖

∂
∂ν

V‖H−1/2(∂Ω) +‖V‖H1/2(∂Ω)

)

≤ Ce(r)‖(ϕ −u0)(r ·)‖H−1/2(∂B1)
,

which is the desired estimate. �

3.3 Proof of Theorem 3.1

Theorem 3.1 follows by elementary manipulation from Lemmas3.3 and 3.4:

Proof of Theorem 3.1.Lemma 3.4 withr = 2ρ andϕ = uρ |∂B2ρ gives

‖uρ −u0‖H1/2(∂Ω) ≤Ce(ρ)‖(uρ −u0)(ρ ·)‖H−1/2(∂B2)
.

Therefore by the triangle inequality

‖uρ −u0‖H1/2(∂Ω) ≤Ce(ρ)
(

‖u0(ρ ·)‖H−1/2(∂B2)
+‖uρ(ρ ·)‖H−1/2(∂B2)

)

.

The first term is easy to estimate, using the well-posedness of the PDE onΩ and
elliptic regularity:

‖u0(ρ ·)‖H−1/2(∂B2)
≤C‖u0(ρ ·)‖L∞(∂B2) ≤C‖ψ‖H−1/2(∂Ω).

To estimate the second term we apply Lemma 3.3. Sinceβ = d0ρ−2 by hypothesis,
the conclusion of Lemma 3.3 is

(3.11) ‖uρ(ρ ·)‖H−1/2(∂B2)
≤C2ρ (2−N)/2‖ψ‖

1/2
H−1/2(∂Ω)

‖uρ −u0‖
1/2
H1/2(∂Ω)

whereC2 depends only ond0, ω , andΩ. The right hand side is bounded, forε > 0,
by

C2ρ
2−N

2

(

ρ (2−N)/2e(ρ)

4ε
‖ψ‖

H− 1
2 (∂Ω)

+
ε

ρ (2−N)/2e(ρ)
‖uρ −u0‖

H
1
2 (∂Ω)

)

= C2
ρ2−Ne(ρ)

4ε
‖ψ‖

H− 1
2 (∂Ω)

+C2
ε

e(ρ)
‖uρ −u0‖

H
1
2 (∂Ω)

.

Combining these results we get

‖uρ −u0‖
H

1
2 (∂Ω)

≤Ce(ρ)‖ψ‖
H− 1

2 (∂Ω)

+C2e(ρ)
ρ2−Ne(ρ)

4ε
‖ψ‖

H− 1
2 (∂Ω)

+C2ε‖uρ −u0‖
H

1
2 (∂Ω)

.
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We now chooseε so thatC2ε < 1. Then the last term on the right hand side can be
absorbed by the left hand side, and we conclude that

‖uρ −u0‖
H

1
2 (∂Ω)

≤Ce(ρ)‖ψ‖
H− 1

2 (∂Ω)
+Ce(ρ)ρ2−Ne(ρ)‖ψ‖

H− 1
2 (∂Ω)

with C independent ofρ , ψ , and the values ofAρ andqρ in Bρ . WhenN = 2,
ρ2−Ne(ρ) = e(ρ)→ 0 asρ → 0. WhenN = 3, ρ2−Ne(ρ) = 1 is constant. In either
case we get

‖uρ −u0‖
H

1
2 (∂Ω)

≤Ce(ρ)‖ψ‖
H− 1

2 (∂Ω)
,

which is the desired conclusion. �

3.4 Uniform well-posedness for the punctured domain

This section provides the proof of (3.9). Actually we shall prove a slightly
stronger statement, in which‖F‖L2(Ω\Br)

is replaced by a weaker norm (see equa-
tion (3.16)). A concise statement of our well-posedness result is given at the end
of the section (see Proposition 3.5).

We are concerned with the PDE

(3.12)







∆w0+ ω2w0 = F in Ω
∂w0

∂ν
= f at ∂Ω

and its analogue (3.8) in the punctured domainΩ\Br . Sinceω is real, it suffices to
consider the case whenF, f andw0 are real-valued. (The corresponding estimates
for complex-valued solutions are immediate, by considering the real and imaginary
parts separately.)

We begin by reviewing the equivalence of well-posedness andthe “inf-sup con-
dition.” For any domainΩ, it is well-known (and fairly easy to prove) that the
condition

(3.13) inf
w∈H1(Ω)
‖w‖H1=1

sup
v∈H1(Ω)
‖v‖H1≤1

∣

∣

∣

∣

∫

Ω
∇w ·∇vdx−ω2

∫

Ω
wvdx

∣

∣

∣

∣

≥ c0 > 0

is necessary and sufficient for the wellposedness of the boundary value problem
(3.12) (see for instance [2]). To be quite precise, (3.13) isnecessary and sufficient
for the existence of a bounded inverseH1(Ω)′ → H1(Ω) to the linear operator
associated with the bilinear form

B(w,v) =

∫

Ω
∇w ·∇vdx−ω2

∫

Ω
wvdx ,

which in turn yields a (unique) weak solution of (3.12) satisfying

‖w0‖H1(Ω) ≤C0

(

‖F‖H1(Ω)′ +‖ f‖H−1/2(∂Ω)

)

.

HereH1(Ω)′ is the dual ofH1(Ω). Elliptic regularity implies thatw0 is a strong
solution of (3.12) providedF and f are sufficiently regular. The requirement that
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−ω2 not be an eigenvalue for the Laplacian onΩ with Neumann boundary condi-
tion is equivalent to this notion of wellposedness.

The situation for a punctured domainΩ\Br with wr = 0 at∂Br is similar (and
equally standard). IfH1

∗ (Ω\Br) denotes the space

H1
∗ (Ω\Br) = H1(Ω\Br)∩{ w|∂Br

= 0 }

equipped with theH1-norm, then the “inf-sup” condition

(3.14) inf
w∈H1

∗ (Ω\Br)
‖w‖H1=1

sup
v∈H1

∗ (Ω\Br)
‖v‖H1≤1

∣

∣

∣

∣

∫

Ω\Br

∇w ·∇vdx−ω2
∫

Ω\Br

wvdx

∣

∣

∣

∣

≥ c1 > 0

is necessary and sufficient for the unique solvability of theboundary value problem

(3.15) (∆ + ω2)wr = F in Ω\Br ,
∂wr

∂ν
= f on ∂Ω , wr = 0 on∂Br ,

with the associated estimate

(3.16) ‖wr‖H1(Ω\Br)
≤C1

(

‖F‖H1
∗ (Ω\Br )′

+‖ f‖H−1/2(∂Ω)

)

.

Our task is now clear. To prove (3.16), we must show that ifΩ satisfies the
inf-sup condition (3.13) thenΩ\Br satisfies the inf-sup condition (3.14) whenr is
sufficiently small, with a constantc1 that remains uniform asr → 0.

So suppose (3.13) holds, and consider anyw∗ ∈H1
∗ (Ω\Br) such that‖w∗‖H1 =

1. Extendw∗ by 0 to all of Ω, and call the extension ˜w. Thenw̃ ∈ H1(Ω), with
‖w̃‖H1(Ω) = 1. So by (3.13) there existsv∈ H1(Ω) with

∣

∣

∣

∣

∫

Ω
∇w̃·∇vdx−ω2

∫

Ω
w̃vdx

∣

∣

∣

∣

≥
c0

2
and‖v‖H1(Ω) ≤ 1 .

Let P denote orthogonal projection ontoH1(Ω)∩{w = 0 onBr}, using theH1(Ω)
inner-product, and definev∗ ∈ H1

∗ (Ω\Br) by

v∗ = P(v)|Ω\Br
.

Sincev∗ is (the restriction of) a projection

(3.17) ‖v∗‖H1(Ω\Br)
≤ ‖v‖H1(Ω) ≤ 1 .

Decomposing
∫

Ω\Br
∇w∗ ·∇v∗dx−ω2∫

Ω\Br
w∗v∗ dxas

∫

Ω\Br

∇w∗ ·∇vdx−ω2
∫

Ω\Br

w∗v dx

+

∫

Ω\Br

∇w∗ ·∇(v∗−v)dx−ω2
∫

Ω\Br

w∗(v∗−v)dx ,

we have
∣

∣

∣

∣

∫

Ω\Br

∇w∗ ·∇vdx−ω2
∫

Ω\Br

w∗vdx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω
∇w̃·∇vdx−ω2

∫

Ω
w̃vdx

∣

∣

∣

∣

≥
c0

2
,
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from which it follows that

(3.18)

∣

∣

∣

∣

∫

Ω\Br

∇w∗ ·∇v∗ dx−ω2
∫

Ω\Br

w∗v∗ dx

∣

∣

∣

∣

≥
c0

2
−

∣

∣

∣

∣

∫

Ω\Br

∇w∗ ·∇(v∗−v) dx−ω2
∫

Ω\Br

w∗(v∗−v)dx

∣

∣

∣

∣

.

Our essential task is thus to show that the expression in absolute values on the
right hand side of (3.18) is small. For anyφ∗ ∈ H1

∗ (Ω\Br) let φ̃ ∈ H1(Ω)∩{ w =
0 onBr } denote its extension (by zero) to all ofΩ. Then

(3.19)
∫

Ω\Br

∇(v∗−v) ·∇φ∗dx+

∫

Ω\Br

(v∗−v)φ∗ dx

=

∫

Ω
∇(P(v)−v)∇φ̃ dx+

∫

Ω
(P(v)−v)φ̃ dx= 0 ,

and as a consequence (usingφ∗ = w∗)
∫

Ω\Br

∇w∗ ·∇(v∗−v)dx−ω2
∫

Ω\Br

w∗(v∗−v)dx

= −(ω2 +1)
∫

Ω\Br

w∗(v∗−v)dx .

Inserting this into (3.18), we get

(3.20)

∣

∣

∣

∣

∫

Ω\Br

∇w∗ ·∇v∗ dx−ω2
∫

Ω\Br

w∗v∗ dx

∣

∣

∣

∣

≥
c0

2
− (ω2 +1)

∣

∣

∣

∣

∫

Ω\Br

w∗(v∗−v)dx

∣

∣

∣

∣

.

We shall show below (see Lemma 3.7) the existence of constantsC andr0 such
that

(3.21) ‖v∗−v‖L2(Ω\Br )
≤Ce(r)1/2‖v‖H1(Ω\Br)

provided 0< r < r0 .

Accepting this for a moment, the rest of the argument is easy.Combining (3.20)
with (3.21), and recalling that‖w∗‖H1(Ω\Br)

= 1 and‖v‖H1(Ω) ≤ 1, we get
∣

∣

∣

∣

∫

Ω\Br

∇w∗ ·∇v∗dx−ω2
∫

Ω\Br

w∗v∗ dx

∣

∣

∣

∣

≥
c0

2
− (ω2+1)‖w∗‖L2(Ω\Br )

‖v∗−v‖L2(Ω\Br)

≥
c0

2
−Ce(r)1/2‖v‖H1(Ω\Br )

≥
c0

2
−Ce(r)1/2 ≥

c0

4
> 0

providedr is sufficiently small (less thane−(4C/c0)
2
for N = 2, and less than(c0/4C)2

for N = 3). Thus the “inf-sup” condition (3.14) holds, with a positive constant
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c1 independent ofr. In summary, once (3.21) has been established we will have
proved

Proposition 3.5. Suppose−ω2 is not an eigenfrequency for the Laplacian onΩ
with Neumann boundary condition. Then there exists r0 > 0 such that the prob-
lem (3.15) has a unique solution for all0 < r < r0 and all F ∈ H1

∗ (Ω \ Br)
′,

f ∈ H−1/2(∂Ω). Furthermore, the solution to (3.15) satisfies (3.16) with acon-
stant C1 that is independent of r.

The rest of this subsection is devoted to proving (3.21). Theproof, presented in
Lemma 3.7, makes use of the following correctly-scaled trace estimate.

Lemma 3.6. SupposeΩ contains B2r0, r0 < 1. Assume the spatial dimension is
N = 2 or 3, and let e(r) be defined by (2.12). Then there is a constant C such that

(3.22) ‖w‖L2(∂Br) ≤C

(

rN−1

e(r)

)1/2

‖w‖H1(Ω\Br )
,

for any0 < r < r0 and any w∈ H1(Ω\Br).

Proof. We may suppose thatw vanishes outsideB2r0. (The general case is easily
reduced to this one, by replacingw with wχ whereχ is a smooth function such that
χ = 1 onBr0 andχ = 0 off B2r0.) Our plan is to decomposew as

w = w−
1

|∂Br |

∫

∂Br

wdσ +
1

|∂Br |

∫

∂Br

wdσ ,

and to prove that

‖w−
1

|∂Br |

∫

∂Br

wdσ‖L2(∂Br) ≤ Cr1/2‖w‖H1(Ω\Br)
, and(3.23)

‖
1

|∂Br |

∫

∂Br

wdσ‖L2(∂Br) ≤ C

(

rN−1

e(r)

)1/2

‖w‖H1(Ω\Br)
.(3.24)

The desired result (3.22) is an immediate consequence of these inequalities.
To prove (3.23), consider the function

wr(y) = w(ry)−
1

|∂Br |

∫

∂Br

wdσ .

It is defined on
(

1
r Ω
)

\B1, and it has mean value zero on the inner boundary∂B1.
Therefore

1

r(N−1)/2
‖w−

1
|∂Br |

∫

∂Br

wdσ‖L2(∂Br) = ‖wr‖L2(∂B1)

≤ C‖∇wr‖L2(B2\B1)

≤ C‖∇wr‖L2(( 1
r Ω)\B1)

= Cr(2−N)/2‖∇w‖L2(Ω\Br)
.
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This gives (3.23).
To prove (3.24), we note that 1/e(|x|) is a harmonic function, with

∇
1

e(|x|)
= −

x
|x|N

, |x| < 1 , and
∂

∂ν
1

e(|x|)

∣

∣

∣

∣

|x|=r = −
1

rN−1 , r < 1 ,

where∂/∂ν is the normal (radial) derivative at the boundary of the ballof radius
r. Therefore
∣

∣

∣

∣

∫

∂Br

wdσ
∣

∣

∣

∣

=

∣

∣

∣

∣

rN−1
∫

|x|=r
w

∂
∂ν

1
e(|x|)

dσ
∣

∣

∣

∣

=

∣

∣

∣

∣

rN−1
∫

r<|x|<2r0

∇w ·∇(
1

e(|x|)
)dx

∣

∣

∣

∣

≤ rN−1
(

∫

r<|x|<2r0

|∇w|2 dx

)1/2(∫

r<|x|<2r0

|∇(
1

e(|x|)
)|2 dx

)1/2

≤ CrN−1|e(r)|−1/2‖w‖H1(Ω\Br)
.

This gives
∣

∣

∣

∣

1
|∂Br |

∫

∂Br

wdσ
∣

∣

∣

∣

≤C|e(r)|−1/2‖w‖H1(Ω\Br)
,

which is equivalent to (3.24). �

The following lemma estimates the distance between an arbitrary function in
H1(Ω) and its “projection” toH1

∗ (Ω\Br). Its conclusion is precisely our assertion
(3.21).

Lemma 3.7. SupposeΩ contains a ball of radius2r0, r0 < 1. Assume the spatial
dimension is N= 2 or 3, and let e(r) be defined by (2.12). For any v∈ H1(Ω), let
P(v) denote the orthogonal projection of w onto H1(Ω)∩{ v= 0 on Br } using the
H1(Ω) inner-product, and define v∗ ∈ H1

∗ (Ω\Br) by

v∗ = P(v)|Ω\Br
.

Then there is a constant C (independent of v and r) such that

‖v∗−v‖L2(Ω\Br)
≤Ce(r)1/2‖v‖H1(Ω\Br )

, 0 < r < r0 .

Proof. LetV = v∗−v∈ H1(Ω\Br). We already know from (3.19) that
∫

Ω\Br

∇V ·∇φ∗ dx+
∫

Ω\Br

Vφ∗ dx= 0 ∀φ∗ ∈ H1
∗ (Ω\Br)

or, in the equivalent “strong” formulation

−∆V +V = 0 in Ω\Br , V = −v on ∂Br ,
∂V
∂ν

= 0 on∂Ω .
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We shall prove in Section 3.5 that there existsW in H1(Ω\Br ) such that∆W = 0
in Ω\Br , W = v on ∂Br , and

‖
∂W
∂ν

‖L2(∂Ω) ≤ Ce(r)‖v(r ·)‖L2(∂B1) = C
e(r)

r(N−1)/2
‖v‖L2(∂Br) ,(3.25)

‖W‖L2(Ω\Br)
≤ Ce(r)‖v(r ·)‖L2(∂B1) = C

e(r)

r(N−1)/2
‖v‖L2(∂Br) .(3.26)

(see Proposition 3.8). The functionW1 = V +W satisfies

−∆W1+W1 = W in Ω\Br ,
∂W1

∂ν
=

∂W
∂ν

on ∂Ω , W1 = 0 on∂Br .

Multiplication byW1 and integration by parts gives
∫

Ω\Br

|∇W1|
2 + |W1|

2 dx

=
∫

∂Ω

∂W
∂ν

W1 dσ +
∫

Ω\Br

WW1 dx

≤C

(

‖
∂W
∂ν

‖L2(∂Ω) +‖W‖L2(Ω\Br)

)

×‖W1‖H1(Ω\Br)
,

whence by (3.25) and (3.26)

‖W1‖H1(Ω\Br)
≤ C

(

‖
∂W
∂ν

‖L2(∂Ω) +‖W‖L2(Ω\Br )

)

≤ C
e(r)

r(N−1)/2
‖v‖L2(∂Br) .

SinceV = −W +W1, this estimate combines with (3.26) to give

‖V‖L2(Ω\Br )
= ‖−W+W1‖L2(Ω\Br)

≤C
e(r)

r(N−1)/2
‖v‖L2(∂Br).

Applying Lemma 3.6 we conclude that

‖V‖L2(Ω\Br)
≤Ce(r)1/2‖v‖H1(Ω\Br)

,

which is exactly the assertion of Lemma 3.7. �

3.5 Some results on harmonic extensions

We used certain estimates on harmonic extensions in Sections 3.2 and 3.4,
namely equations (3.10), (3.25), and (3.26). This section provides the proofs. As
in Section 3.4, it suffices to consider real-valued functions.

There are (at least) two different approaches. One uses separation of variables,
making use of the fact that the desired estimates are on the exterior of a ball. The
other uses potential theory; it has the advantage of workingjust as well when the
ball is replaced by a more general inclusion. Rather than stick to one approach, we
shall present them both – giving the separation-of-variables-based argument in 2D,
and the potential-theory-based argument in 3D.
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Proposition 3.8. AssumeΩ contains B2r0, r0 < 1, and suppose N= 2 or N =
3. Then there is a constant C (depending only onΩ and r0) with the following
property: for any r< r0, and any g∈ H1/2(∂Br), there is a solution of

∆W = 0 in R
N \Br , W = g on∂Br

such that

‖
∂

∂ν
W‖L2(∂Ω) ≤ Ce(r)‖g(r ·)‖H−1/2(∂B1)

,(3.27)

‖W‖H1/2(∂Ω) ≤ Ce(r)‖g(r ·)‖H−1/2(∂B1)
,(3.28)

‖W‖L2(Ω\Br )
≤ Ce(r)‖g(r ·)‖H−1/2(∂B1)

,(3.29)

with e(r) defined by (2.12).

Proof for N= 2 using separation of variables.Consider the Fourier representation
of g:

g(r cosθ , r sinθ) = a0 +
∞

∑
n=1

(an cosnθ +bnsinnθ)

The functiong(r ·) is defined on∂B1, and

c

(

|a0|+
∞

∑
n=1

a2
n +b2

n

n

)1/2

≤ ‖g(r ·)‖H−1/2(∂B1)
≤C

(

|a0|+
∞

∑
n=1

a2
n +b2

n

n

)1/2

(see e.g. [15] for a concise discussion of this well-known fact). The obvious har-
monic extension is

W = a0
logR
logr

+
∞

∑
n=1

(an cosnθ +bnsinnθ)rnR−n

whereR= |x|. We claim it satisfies the desired estimates.
Since high modes decay quickly, our estimates will be drivenby the lowest

modes. Therefore it is convenient to writeW = W0 +W1 +W̃ with

W0 = a0
logR
logr

, W1 = (a1 cosθ +b1sinθ)rR−1 ,

andW̃ = W−W0−W1. We will show that each of the functionsW0, W1, andW̃
satisfies (3.27)–(3.29).

ForW0, we observe that

‖
∂

∂ν
log|x|‖L2(∂Ω) ≤C , ‖ log|x|‖H1/2(∂Ω) ≤C , and‖ log|x|‖L2(Ω\Br)

≤C .

Therefore (remembering thate(r) = 1/| logr| whenN = 2)

‖
∂

∂ν
W0‖L2(∂Ω) +‖W0‖H1/2(∂Ω) +‖W0‖L2(Ω\Br )

≤ Ce(r)|a0|

≤ Ce(r)‖g(r ·)‖H−1/2(∂B1)
,

i.e. W0 satisfies (3.27)–(3.29).
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ForW1, we observe that

‖
∂

∂ν
1
|x|

‖L2(∂Ω) ≤C and ‖
1
|x|

‖H1/2(∂Ω) ≤C ,

so

‖
∂

∂ν
W1‖L2(∂Ω) +‖W1‖H1/2(∂Ω) ≤Cr‖g(r ·)‖H−1/2(∂B1)

.

For theL2 norm, supposeΩ ⊂ Br1. Then

‖
1
|x|

‖2
L2(Ω\Br )

≤C
∫ r1

r

1
R2RdR≤C| logr| ,

so
‖W1‖L2(Ω\Br)

≤Cr| logr|1/2‖g(r ·)‖H−1/2(∂B1)
.

Sincer ≪ r| logr|1/2 ≪ e(r) asr → 0, we conclude thatW1 satisfies (3.27)–(3.29).
ForW̃ = ∑∞

n=2(an cosnθ +bn sinnθ)rnR−n we use the fact thatΩ containsB2r0

and the hypothesisr < r0 to see that

‖
∂W̃
∂ν

‖L2(∂Ω) ≤ C
∞

∑
n=2

(|an|+ |bn|)n

(

r
2r0

)n

≤ Cr2

(

∞

∑
n=2

|an|
2 + |bn|

2

n

)1/2

≤ Cr2‖g(r ·)‖H−1/2(∂B1)
.(3.30)

Similarly

(3.31) ‖W̃‖H1/2(∂Ω) ≤ ‖W̃‖H1(∂Ω) ≤Cr2‖g(r ·)‖H−1/2(∂B1)
.

As for theL2 norm, we have

‖W̃‖2
L2(Ω\Br)

≤ ‖W̃‖2
L2(R2\Br )

≤ C
∞

∑
n=2

(|an|
2 + |bn|

2)r2n
∫ ∞

r
R−2n+1dR

≤ Cr2
∞

∑
n=2

(|an|
2 + |bn|

2)n−1

≤ Cr2‖g(r ·)‖2
H−1/2(∂B1)

.(3.32)

Sincer2 ≪ r ≪ e(r), it follows from (3.30)–(3.32) that̃W satisfies (3.27)–(3.29).
�

Proof for N= 3 using potential theory.We decomposeg = g0 + g̃, where

g0 =
1

|∂Br |

∫

∂Br

gdσ =
1

|∂B1|

∫

∂B1

g(r ·)dσ



CLOAKING VIA CHANGE OF VARIABLES 23

is the mean value ofg andg̃ has mean value 0. Notice that

(3.33) |g0| ≤C‖g(r ·)‖H−1/2(∂B1)
.

The obvious choice ofW isW0 +W̃, where

W0(x) = g0
r
|x|

andW̃ is the unique solution of

(3.34) ∆W̃ = 0 in R
3\Br , W̃ = g̃ on ∂Br , W̃(x) → 0 as|x| → ∞ .

To show thatW satisfies (3.27)–(3.29), we will show that bothW0 andW̃ satisfy
these relations.

ForW0, we observe that

‖
∂

∂ν
1
|x|

‖L2(∂Ω) ≤C , ‖
1
|x|

‖H1/2(∂Ω) ≤C , and‖
1
|x|

‖L2(Ω\Br)
≤C .

Therefore (remembering thate(r) = r whenN = 3)

‖
∂

∂ν
W0‖L2(∂Ω) +‖W0‖H1/2(∂Ω) +‖W0‖L2(Ω\Br )

≤ Ce(r)|g0|

≤ Ce(r)‖g(r ·)‖H−1/2(∂B1)
,

using (3.33). ThusW0 satisfies (3.27)–(3.29).
To estimateW̃ we use the following lemma.

Lemma 3.9. Let B1 be the unit ball inR3, and let h∈ H1/2(∂B1) have mean value
0. Then the solution V of

(3.35) ∆V = 0 in R
3\B1 , V = h on∂B1 , V(x) → 0 as|x| → ∞

satisfies, for any R≥ 2,

‖∇V‖L∞(|x|=R) ≤
C
R3‖h‖H−1/2(∂B1)

,(3.36)

‖V‖L∞(|x|=R) ≤
C
R2‖h‖H−1/2(∂B1)

, and(3.37)

‖V‖L2(BR\B1)
≤ C‖h‖H−1/2(∂B1)

,(3.38)

with C independent of R.

Given this Lemma, our task is easy. In fact, by definitionW̃(x) =V(x/r) where
V solves (3.35) withh = g̃(r ·). SinceB2r ⊂ Ω ⊂ Br1 for somer1, the estimates
(3.36) – (3.38) imply, by change of variables and elementarymanipulation, that

‖
∂

∂ν
W̃‖L2(∂Ω) ≤ Cr2‖g̃(r ·)‖H−1/2(∂B1)

,

‖W̃‖H1/2(∂Ω) ≤ Cr2‖g̃(r ·)‖H−1/2(∂B1)
,

‖W̃‖L2(Ω\Br)
≤ Cr3/2‖g̃(r ·)‖H−1/2(∂B1)

.
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Since‖g̃(r ·)‖H−1/2(∂B1)
≤C‖g(r ·)‖H−1/2(∂B1)

andr2 ≪ r3/2 ≪ e(r) whenN = 3 it
follows thatW̃ satisfies (3.27)–(3.29). �

Proof of Lemma 3.9.We shall use the double layer potential representation ofV.
If G is the “free-space” fundamental solution

G(x,y) = −
1

|∂B1||x−y|
= −

1
4π|x−y|

,

then the desired representation isV = D(φ), where

D(φ)(x) =
∫

∂B1

∂
∂νy

G(x,y)φ(y)dσy

=
1

4π

∫

∂B1

(y−x) ·y
|x−y|3

φ(y)dσy

for x∈ R
3\∂B1, andφ is an appropriately chosen density. For pointsx∈ ∂B1, and

continuousφ , this double layer potential gives rise to the following well-known
jump condition

lim
x′→x,x′∈R3\B1

D(φ)(x) = −
1
2

φ(x)+
1

4π

∫

∂B1

(y−x) ·y
|x−y|3

φ(y) dσy

= −
1
2

φ(x)+
1

8π

∫

∂B1

1
|x−y|

φ(y) dσy

= (−
1
2

+T)φ(x) .(3.39)

The mappingT is a compact linear operator fromL2(∂B1) to itself. Since the
kernel is symmetric,T is selfadjoint.

We discuss some additional properties of the operatorT. If τx is the tangent
vector field on∂B1 given byτx = (x2,−x1,0), then

∇x

(

1
|x−y|

)

· τx =
(y−x) · τx

|x−y|3
=

y· τx

|x−y|3
= −

x· τy

|x−y|3
= −∇y

(

1
|x−y|

)

· τy .

It follows, after integration by parts, that

∂
∂θ1

Tφ(x) = T

(

∂
∂θ1

φ
)

(x)

whereθ1, 0≤ θ1 < 2π denotes the azimuthal angle of the standard spherical co-
ordinate system(cosθ1 sinθ2,sinθ1 sinθ2,cosθ2). Varying the coordinate system,
and using the fact thatT mapsL2 into itself, we conclude thatT mapsH1(∂B1) to
itself. Using interpolation we conclude thatT mapsH1/2(∂B1) to itself. It follows,
sinceT is L2-selfadjoint, thatT also mapsH−1/2(∂B1) (the dual ofH1/2(∂B1)) to
itself. It is well-known that

Ker{−
1
2

+T} = { constants}
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in any of these spaces (see [6] for this assertion inL2, from which the assertions
in H1/2 andH−1/2 follow easily). Moreover, the full space (L2, H1/2, or H−1/2

respectively) may be decomposed as

Ker{−
1
2

+T}⊕Range{−
1
2

+T} .

Due to theL2-orthogonality of this decomposition (remember:T is selfadjoint) it
now follows that

(−
1
2

+T)φ = h , h∈ L2(∂B1) ,

has a solutionφ ∈ L2(∂B1) iff
∫

∂B1
h = 0, and furthermore, if we require that

∫

∂B1
φ = 0 then

‖φ‖L2(∂B1) ≤C‖h‖L2(∂B1) .

A similar existence statement and estimate holds withL2(∂B1) replaced byH±1/2(∂B1).
We claim that the solution of (3.35) is

(3.40) V(x) = D(φ)(x) =
1

4π

∫

∂B1

(y−x) ·y
|x−y|3

φ(y)dσy for x∈ R
3\B1 ,

whereφ is the solution of(−1
2 + T)φ = h. Whenh is continuous this statement

is classical: ifh is continuous so isφ (see e.g. [6] Proposition 3.14), so (3.39)
shows thatD(φ) = h at ∂B1; moreover it is obvious thatD(φ)(x) → 0 as|x| → ∞.
The validity of (3.40) for allh∈ H1/2(∂B1) with mean value 0 follows easily, by a
density argument.

We now estimateV in terms ofφ . For anyx∈ R
3\B2, let hx(·) be the function

hx(y) =
(y−x) ·y
|x−y|3

, y∈ ∂B1 .

It is easy to see that

(3.41) ‖hx‖H1/2(∂B1)
≤ ‖hx‖H1(∂B1) ≤C

1
|x|2

,

with C independent ofx∈ R
3 \B2. Similarly, for anyx∈ R

3 \B2 let Hx(·) be the
vector-valued function

Hx(y) = ∇xhx(y) = 3
(y−x)(y−x) ·y

|x−y|5
−

y
|x−y|3

, y∈ ∂B1 .

It is easy to see that

(3.42) ‖Hx‖H1/2(∂B1)
≤ ‖Hx‖H1(∂B1) ≤C

1
|x|3

with C independent ofx ∈ R
3 \B2. Using (3.41) we see that the double layer

potential

D(φ)(x) =
1

4π

∫

∂B1

(y−x) ·y
|x−y|3

φ(y)dσy
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satisfies

‖D(φ)‖L2(BR\B2)
≤ C‖φ‖H−1/2(∂B1)

,

‖D(φ)‖L∞({|x|=R}) ≤
C
R2‖φ‖H−1/2(∂B1)

.

Using (3.42) we also have

‖∇D(φ)‖L∞({|x|=R}) ≤
C
R3‖φ‖H−1/2(∂B1)

.

By theH−1/2(∂B1) boundedness of(−1
2 +T)−1, these estimates imply

‖V‖L2(BR\B2)
≤ C‖h‖H−1/2(∂B1)

,

‖V‖L∞({|x|=R}) ≤
C
R2‖h‖H−1/2(∂B1)

,

‖∇V‖L∞({|x|=R}) ≤
C
R3‖h‖H−1/2(∂B1)

,

for anyR≥ 2. This proves (3.36) and (3.37).
To establish (3.38), and thus complete the proof of the lemma, we only need to

show that
‖V‖L2(B2\B1)

≤C‖h‖H−1/2(∂B1)
.

It suffices to show that

(3.43) ‖V‖L2(B2\B1)
≤C

(

‖h‖H−1/2(∂B1)
+‖V‖H−1/2(∂B2)

)

,

since the second term on the right is estimated by (3.37) withR= 2.
We use a standard duality argument to prove (3.43). Letw solve

∆w = V in B2\B1 with w = 0 on∂B2∪∂B1 .

It satisfies
‖w‖H2(B2\B1)

≤C‖V‖L2(B2\B1)
,

and thus

‖
∂

∂ν
w‖H1/2(∂B1)

+‖
∂

∂ν
w‖H1/2(∂B2)

≤C‖V‖L2(B2\B1)
.

We therefore calculate
∫

B2\B1

V2dx =
∫

B2\B1

V∆wdx

=

∫

∂B2

V
∂

∂ν
wdx−

∫

∂B1

V
∂

∂ν
wdx

≤ ‖V‖H−1/2(∂B2)
‖

∂
∂ν

w‖H1/2(∂B2)

+‖h‖H−1/2(∂B1)
‖

∂
∂ν

w‖H1/2(∂B1)

≤ C‖V‖L2(B2\B1)

(

‖h‖H−1/2(∂B1)
+‖V‖H−1/2(∂B2)

)

,
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whence
‖V‖L2(B2\B1)

≤C
(

‖h‖H−1/2(∂B1)
+‖V‖H−1/2(∂B2)

)

.

This verifies (3.43), completing the proof of the lemma. �

4 Numerical results

The main goal of this section is to demonstrate the sharpnessof our estimates.
After briefly reviewing the task at hand, we begin with a discussion of the “cloak-
busting” inclusions whose existence was announced in Section 2.5. Then we show
that for these cloak-busting inclusions the estimate (2.11) is sharp. We also exam-
ine the performance of the near-cloak as a function of the loss parameterβ , and we
study the degree to which the fields outside the cloak emulatethose of a uniform
domain.

To describe the formulas used in our computations, complex notation is very
convenient. For all of our computations we take the background solutionu0 to be
a plane wave,u0(x) = eiωx2, propagating in thex2 direction. Thisu0 is the solution
of

(4.1)







∆u0 + ω2u0 = 0 in Ω ,
∂u0

∂ν
= ψ on ∂Ω ,

with

(4.2) ψ = iωeiωx2ν2 .

Throughout this section,BR denotes the ball of radiusR centered at the origin, the
domainΩ is chosen to beΩ .

= B2, and all calculations are done at frequencyω = 1.
(Note that these choices make (4.1) well-posed, since−1 is not an eigenvalue of
the Neumann Laplacian onB2.)

We denote byuρ the solution to the following problem

(4.3)







div(Aρ∇uρ)+ ω2qρuρ = 0 in B2 ,
∂uρ

∂ν
= ψ on ∂B2 ,

whereAρ(y),qρ (y) are given by

(4.4)















Aρ = qρ = 1 for 2ρ < |x| ≤ 2 ,

Aρ = 1, qρ = 1+ iβ for ρ < |x| ≤ 2ρ ,

Aρ ,qρ > 0 arbitrary for|x| ≤ ρ ,

with β > 0. In principle the value ofAρ(y) inside Bρ could be any symmetric
positive-definite matrix, but for simplicity we take bothAρ and qρ to be scalar
constantsin Bρ . When there is no danger of confusion, we will sometimes abuse
notation by writingAρ ,qρ for the (arbitrary, constant) values of the coefficients in
Bρ (in particular, we have done this in (4.4)).
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Our near-cloaks are obtained by change-of-variables usingthe mapF, defined
by

(4.5) F =







x
2ρ if |x| ≤ 2ρ

(

1−2ρ
1−ρ + 1

2(1−ρ) |x|
)

x
|x| if 2ρ ≤ |x| ≤ 2

(in the notation of Section 3 this isF2ρ ). Note thatF mapsBρ to B1
2
, B2ρ to B1,

and the annulusB2\B2ρ to the annulusB2\B1. The “push-forward” ofuρ , i.e. the
functionUρ(y)

.
= uρ(F−1(y)), satisfies

(4.6)

{

div(F∗(Aρ)∇Uρ)+ ω2F∗(qρ)Uρ = 0 in B2 ,

(F∗(Aρ)∇Uρ) ·ν = ψ in ∂B2 ,

whereψ is as before. Taking into account the special form (4.4) of the coefficients
under consideration, and the fact thatAρ and qρ are scalar constants inBρ , the
pushed-forward coefficientsF∗(Aρ ,qρ)

.
= (F∗(Aρ),F∗(qρ)) are given

(4.7) in 2D by















































F∗(Aρ)(y) = DF(x)DFT(x)
detDF(x) |x=F−1(y) ,

F∗(qρ)(y) = 1
detDF(x) |x=F−1(y)











for 1 < |y| ≤ 2

F∗(Aρ)(y) = 1 , F∗(qρ)(y) = 4ρ2(1+ iβ ) for 1
2 < |y| ≤ 1

F∗(Aρ)(y) = Aρ ,

F∗(qρ)(y) = 4ρ2qρ

}

for |y| ≤ 1
2

and
(4.8)

in 3D by















































F∗(Aρ)(y) = DF(x)DFT (x)
detDF(x) |x=F−1(y) ,

F∗(qρ)(y) = 1
detDF(x) |x=F−1(y)











for 1 < |y| ≤ 2

F∗(Aρ)(y) = 2ρ , F∗(qρ)(y) = 8ρ3(1+ iβ ) for 1
2 < |y| ≤ 1

F∗(Aρ)(y) = 2ρAρ ,

F∗(qρ)(y) = 8ρ3qρ

}

for |y| ≤ 1
2

We shall writevρ for the solution of the problem (4.3) in the particular case when
β = 0. Thus,vρ solves

(4.9)







div(A′
ρ∇vρ)+ ω2q′ρ vρ = 0 in B2 ,

∂vρ

∂n
= ψ in ∂B2 ,
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whereA′
ρ ,q′ρ are piecewise constant functions given by

(4.10)







A′
ρ = q′ρ = 1 for ρ < |x| ≤ 2

A′
ρ ,q′ρ > 0 arbitrary for|x| ≤ ρ .

The corresponding pushed forward problem and pushed forward coefficients are
described by (4.6) and (4.7)/(4.8) withβ = 0, for 2D/3D, respectively.

We recall the following representations, in 2D and 3D, of theplane wave solu-
tion of (4.1),u0 = eiωx2:

u0(r,θ) =
k=+∞

∑
k=−∞

Jk(ωr)eikθ , in 2D(4.11)

u0(r,θ ,φ)=4π
∞

∑
l=0

i l j l (ωr) ∑
|m|≤l

Ym
l (

π
2

,
π
2

)Ym
l (θ ,φ), in 3D(4.12)

where here and in what follows,i2 = −1, z denotes the complex conjugate ofz, Jk

and j l are the classical Bessel and spherical Bessel functions, respectively (see for
instance [24]) and for eachl ≥ 0,Ym

l (θ ,φ) with |m| ≤ l are the 2l +1-orthonormal
spherical harmonics of degreel and orderm, (see for instance [18]). The explicit
(dual) presence of the angleπ/2 in the 3D formula stems from the fact that the
propagation direction (thex2 direction) corresponds to azimuthal and polar angle
π/2. From (4.2), (4.11) and (4.12) we get that the fluxψ (defined onr = 2) can be
written as







ψ(θ)=∑
k

ψ̂ke
ikθ , with

ψ̂k = ωJ′k(2ω)







in 2D ,(4.13)











ψ(θ ,φ)=
∞

∑
l=0

∑
|m|≤l

ψ̂m
l Ym

l (θ ,φ), with

ψ̂m
l =4πω i l j ′l (2ω)Ym

l (π
2 , π

2 )











in 3D .(4.14)

4.1 Cloak-busting inclusions

We turn now to the identification of “cloak-busting” inclusions, elaborating on
the discussion in Section 2.5. It is natural to begin with the2D setting. Using
separation of variables, we may express the solutionvρ of problem (4.9) as follows:

(4.15)



















vρ(r,θ) = ∑
k

αkJk

(

ωr

√

q′ρ
A′

ρ

)

eikθ if r ≤ ρ ,

vρ(r,θ) = ∑
k

(

βkJk(ωr)+ γkH
(1)
k (ωr)

)

eikθ if ρ < r ≤ 2 .

From the appropriate transmission conditions for problem (4.9), i.e., continuity of
vρ and (A′

ρ∇vρ) · ν across∂Bρ , and the Neumann condition forvρ on ∂B2, we
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arrive at the following necessary and sufficient condition for the well-posedness of
the problem (4.9):

(4.16)

0 6= Dk(A
′
ρ ,q′ρ)

.
= Jk

(

ωρ

√

q′ρ
A′

ρ

)

(

J′k(2ω)(H(1)
k )′(ωρ)− (H(1)

k )′(2ω)J′k(ωρ)
)

−
√

A′
ρq′ρJ′k

(

ωρ

√

q′ρ
A′

ρ

)

(

J′k(2ω)H(1)
k (ωρ)− (H(1)

k )′(2ω)Jk(ωρ)
)

,

for all integersk. Note that, due to well known properties of the Bessel functions,
it suffices to require that (4.16) hold for all nonnegative integers.

Our “cloak-busting” inclusions correspond to choices ofA′
ρ ,q′ρ such thatDk(A′

ρ ,q′ρ)=
0 for somek ∈ Z. Such coefficients make the problem (4.9) ill-posed (i.e. they
make−ω2 an eigenvalue), despite the fact that (4.1) is well-posed byhypothesis.
For such inclusions near-cloaking is clearly not achieved in the lossless case. We
will not attempt to classify all solutions ofDk(A′

ρ ,q′ρ) = 0; rather, we examine
selected solutions that are easy to identify and analyze.

For k = 0 we make the choiceA′
ρ = q′ρ and obtain the following positive solu-

tions ofD0(A′
ρ ,q′ρ) = 0:

(4.17) A′
ρ = q′ρ =

J0(ωρ)
(

(H(1)
0 )′(2ω)J′0(ωρ)− (H(1)

0 )′(ωρ)J′0(2ω)
)

J′0(ωρ)
(

(H(1)
0 )′(2ω)J0(ωρ)−H(1)

0 (ωρ)J′0(2ω)
) .

Here we have used the fact that

(4.18) 06= (H(1)
k )′(2ω)Jk(ωρ)−J′k(2ω)H(1)

k (ωρ) for k∈ Z ,

whenρ is sufficiently small. The non-vanishing condition (4.18) is a direct conse-
quence of classical results about the asymptotic behavior of Bessel functions, and
the fact thatJ′k(2ω) 6= 0 (since the problem (4.1) is wellposed by assumption). It
is quite easy to see that the right hand side of (4.17) is real (both numerator and
denominator are pure imaginary) and due to the asymptotic behavior of Bessel
functions it is actually positive forρ sufficiently small.

To find real positive solutions ofDk(A′
ρ ,q′ρ) = 0 for somek > 0 we take a

different approach. Givenk, we start by choosing a real numberz∗ > 0 such that

(4.19) Jk(z
∗)J′k(z

∗) < 0 ,

then we make choice
q′ρ = (z∗)2A′

ρ/(ωρ)2 .

It is easy to verify that with this choice ofq′ρ , Dk(A′
ρ ,q′ρ) = 0 when

(4.20) A′
ρ =

ωρJk(z∗)
(

(H(1)
k )′(2ω)J′k(ωρ)− (H(1)

k )′(ωρ)J′k(2ω)
)

z∗J′k(z
∗)
(

(H(1)
k )′(2ω)Jk(ωρ)−H(1)

k (ωρ)J′k(2ω)
) .
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Due to the condition (4.18) thisA′
ρ is well defined, and it is easily seen to be real.

Because of the asymptotics of the Bessel functions, and the fact thatJk(z∗) and
J′k(z

∗) have opposite signs, we may conclude thatA′
ρ andq′ρ are positive.

Figure 4.1 shows the pushed-forward valuesF∗(A′
ρ),F∗(q′ρ) whenk = 0, using

(4.17) and (4.7). When the coefficients inB1/2 take these values the lossless ver-
sion of our construction (4.10) is resonant, i.e.−ω2 is a Neumann eigenvalue of
the ρ-inclusion problem. Notice that in this caseF∗(A′

ρ) → ∞ asρ → 0. Thus,
in the “physical” (pushed-forward) variables, these cloak-busting inclusions have
extreme physical properties in the limitρ → 0.

Figure 4.2 gives the analogous picture fork = 1: it showsF∗(A′
ρ) andF∗(q′ρ)

when(A′
ρ ,q′ρ) are the particular solutions ofD1(A′

ρ ,q′ρ) = 0 given by (4.20) (for a
specific choice ofz∗ satisfying (4.19)). Notice that in this caseF∗(A′

ρ) andF∗(q′ρ)
have finite, nonzero limits asρ → 0. Thus, in the “physical” (pushed-forward)
variables, these cloak-busting inclusions donot have extreme physical properties.
We wonder how a lossless singular cloak of the type considered in [8, 21] would
perform when faced with such an inclusion.
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FIGURE 4.1. Thek = 0 cloak-busting inclusions in 2D:F∗(A′
ρ) = A′

ρ
andF∗(q′ρ)=4ρ2q′ρ with A′

ρ = q′ρ given by (4.17).

We turn now to the 3D setting. The situation is not very different, so we shall
be relatively brief. Separation of variables yields the following expression for the
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solutionvρ of the lossless problem (4.9):
(4.21)






















vρ(r,θ ,φ) =
∞

∑
l=0

∑
|m|≤l

αm
l j l

(

ωr

√

q′ρ
A′

ρ

)

Ym
l (θ ,φ) if r ≤ ρ

vρ(r,θ ,φ) =
∞

∑
l=0

∑
|m|≤l

(

Rm
l j l (ωr)+Sm

l h(1)
l (ωr)

)

Ym
l (θ ,φ) if ρ < r ≤ 2

whereh(1)
l = j l + iyl denotes the first kind spherical Hankel function. Arguing as

for 2D, one finds the following necessary and sufficient condition for the well-
posedness of the problem (4.9) in 3D:

(4.22)

0 6= Dl (A
′
ρ ,q′ρ)

.
= j l

(

ωρ

√

q′ρ
A′

ρ

)

(

j ′l (2ω)(h(1)
l )′(ωρ)− (h(1)

l )′(2ω) j ′l (ωρ)
)

−
√

A′
ρq′ρ j ′l

(

ωρ

√

q′ρ
A′

ρ

)

(

j ′l (2ω)h(1)
l (ωρ)− (h(1)

l )′(2ω) j l (ωρ)
)

,

for all positivel .
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Our 3D “cloak-busting inclusions” are associated with choices ofA′
ρ ,q′ρ such

thatDl(A′
ρ ,q′ρ) = 0 for somel . As before, our goal is not to classify all solutions

of Dl (A′
ρ ,q′ρ) = 0, but rather to explore some examples. Forl = 0 we make the

choiceA′
ρ = q′ρ and obtain (using well-known results about the asymptoticsof the

spherical Bessel functions) the following positive solution ofD0(A′
ρ ,q′ρ) = 0:

(4.23) A′
ρ = q′ρ =

j0(ωρ)
(

(h(1)
0 )′(2ω) j ′0(ωρ)− (h(1)

0 )′(ωρ) j ′0(2ω)
)

j ′0(ωρ)
(

(h(1)
0 )′(2ω) j0(ωρ)−h(1)

0 (ωρ) j ′0(2ω)
) .

For anyl > 0, we make the choice

(4.24) q′ρ = (z∗)2 A′
ρ

(ωρ)2 wherez∗ is such thatj l (z∗) · j ′l (z
∗) < 0

and we find thatDl(A′
ρ ,q′ρ) = 0 andA′

ρ > 0,q′ρ > 0 when

(4.25) A′
ρ =

ωρ j l (z∗)
(

(h(1)
l )′(2ω) j ′l (ωρ)− (h(1)

l )′(ωρ) j ′l (2ω)
)

z∗ j ′l (z
∗)
(

(h(1)
l )′(2ω) j l (ωρ)−h(1)

l (ωρ) j ′l (2ω)
) .

Figure 4.3 shows the pushed-forward valuesF∗(A′
ρ) andF∗(q′ρ)) of our l = 0 exam-

ple, whenA′
ρ ,q′ρ are given by (4.23). The push-forward in this 3D setting is given

by (4.8). Notice that in this caseF∗(A′
ρ)→ ∞ while F∗(q′ρ)→ 0 asρ → 0. Thus, in

the “physical” (pushed-forward) variables, both coefficients associated with these
3D cloak-busting inclusions become extreme asρ → 0.

Whenl = 1 andA′
ρ ,q′ρ are given by (4.24)-(4.25), bothF∗(A′

ρ) andF∗(q′ρ) tend
to 0 asρ →0 (not shown). We did not find any examples in 3D analogous to the one
shown in Figure 4.2, where the push-forwards both remain bounded asρ →∞. This
suggests (but does not prove) that in the 3D setting, all cloak-busting inclusions
have extreme physical properties in the physical (pushed-forward) variables.

4.2 Sharpness of Theorem 3.1

We turn now to the optimality of our results concerning the performance of our
near-cloak. According to Theorem 3.1, whenρ ≪ 1 andβ ∼ ρ−2 we have

(4.26) ||uρ −u0||H1/2(∂B2) ≤











C
| log(ρ)|

||ψ ||H−1/2(∂B2)
in 2D

Cρ ||ψ ||H−1/2(∂B2)
in 3D

whereuρ is the solution of (4.3),u0 is the solution of (4.1), and the constantC
is independent of the coefficientsAρ ,qρ in Bρ . To assess the sharpness of this
estimate, we focus (as already noted) on the case whenu0 is the plane waveeiωx2,
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FIGURE 4.3. Thel = 0 cloak-busting inclusions in 3D:F∗(A′
ρ)=2ρA′

ρ
andF∗(q′ρ)=8ρ3q′ρ whenA′

ρ = q′ρ are given by (4.23).

i.e. whenψ = iωeiωx2ν2. Let Eρ(β ) be defined by

(4.27) Eρ(β ) =































| log(ρ)| · ||uρ −u0||
H

1
2 (∂B2)

||ψ ||H−1/2(∂B2)

in 2D

||uρ −u0||
H

1
2 (∂B2)

ρ ||ψ ||H−1/2(∂B2)

in 3D.

The assertion of (4.26) is thus thatEρ(β ) ≤C whenβ ∼ ρ−2.
To approximateuρ numerically we used separation of variables with finitely

many modes. In 2D we used the modeseikθ with −30≤ k ≤ 30; in 3D we used
the modesYm

l (θ ,φ) with 0 ≤ l ≤ 30 and|m| ≤ l . Thus the plane waveu0 was
approximated by

u0(r,θ) ≈ uappr
0 (r,θ) =

k=+30

∑
k=−30

Jk(ωr)eikθ in 2D ,

u0(r,θ ,φ)≈ uappr
0 (r,θ ,φ) =4π

30

∑
l=0

i l j l (ωr) ∑
|m|≤l

Ym
l (

π
2

,
π
2

)Ym
l (θ ,φ) in 3D ,

and the solutionuρ of (4.3) was approximated by similar finite sums.
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Figures 4.4 and 4.5 show the dependence ofEρ on β in the 2D and 3D cases
respectively. In the top frames of each figureEρ is plotted as a function ofβ , for
three different values ofρ : ρ = 10−3, ρ = 10−5, ρ = 10−7; the bottom frames
show zoomed-in versions near the optimal values ofβ (which are just beyond the
range of the top frames). For all these plots the values ofAρ andqρ in Bρ were our
mode-0 cloak-busting inclusions, given by (4.17) for 2D and(4.23) for 3D. Similar
results were obtained (not shown) for mode-1 cloak-bustinginclusions, given by
(4.20) in 2D and (4.24)-(4.25) in 3D. These are natural test problems, since for
suchAρ ,qρ the structure is resonant (roughly:Eρ = ∞) whenβ = 0.

Theorem 3.1 asserts thatEρ is bounded by a constant (independent ofAρ and
qρ ) whenβ ∼ ρ−2. Figures 4.4 and 4.5 confirm this; in addition, the lower plots
suggest that the optimal value ofβ (at least for our mode-0 cloak-busting examples)
is aboutcρ−2 with c≈ 2.5 in 2D andc≈ 4 in 3D. Asβ decreases from this optimal
value the value ofEρ increases, becoming very much larger whenβ ≪ ρ−2. Thus,
a value ofβ on the order ofρ−2 is required to control the resonance associated
with a cloak-busting inclusion. The situation forβ larger than the optimal value
is different: makingβ very large does no real harm. Indeed, our calculations (not
shown) indicate thatEβ remains finite asβ → ∞. This is consistent with the results
in [17], where estimates similar to ours are obtained using aDirichlet boundary
condition (roughly the same as our setting withβ = ∞).

Figure 4.6 shows the behavior ofEρ as a function ofρ , whenβ = (2ρ)−2.
The left frame shows the behavior in 2D the right in 3D. The continuous line and
the dashed line in the left frame correspond to our mode-0 andmode-1 cloak-
busting inclusions, given by (4.17) and (4.20) respectively. The right frame uses
the same convention: the continuous line and the dashed linecorrespond to our 3D
mode-0 and mode-1 cloak-busting inclusions, given by by (4.23) and (4.24)-(4.25)
respectively. The figure shows quite clearly that whenβ = cρ−2, Eρ(β ) has a finite
(nonzero) limit asρ → 0. This confirms the sharpness of our estimate (4.26).

Finally we examine the degree to which the fields outside the cloak emulate
those of a uniform domain. To this end, we observe that our approximate solu-
tion of the PDEu(appr)

ρ and its push-forwardU (appr)
ρ are given by finite Fourier

sums. Therefore they extend naturally beyondB2. Their (common) extension is
the solution of an exterior problem (for the operator∆ + ω2) with the Cauchy data

(uρ |r=2,
∂uρ
∂ν |r=2) = (uρ |r=2,ψ). Abusing notation slightly, we writeuρ or Uρ for

theextendedfunction (dropping even the superscriptappr).
Consider theL∞ plane wave residual at radiusR≥ 2, defined by

(4.28) P(R,ρ) =
||(Uρ −u0)r=R||L∞(0,2π)

||ψ ||
H− 1

2 (∂B2)

with u0(x) = eiωx2. If the cloaking were perfect then the plane wave residual would
vanish. The first frame of Figure 4.7 showsP(R,10−5) as a function of 10< R<
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FIGURE 4.4. The influence of the loss parameterβ in 2D. The lower
frames indicate that the optimalβ ≈ 104/10ρ−2 ≈ 2.5ρ−2.

100 in 2D. The second frame of Figure 4.7 shows

(4.29) f (ρ)
.
= | log(2ρ)|P(2,ρ)

as a function ofρ . (These figures show the 2D case, withβ = (2ρ)−2, for our
mode-0 cloak-busting inclusion (4.17); the situation in 3Dis similar.) Note from
Figure 4.7 thatf approaches a constant asρ → 0, consistent with the sharpness of
our estimate (4.26).

Figures 4.8 and Figure 4.9 show contour plots of the real part(2D) and the
projection onto the planez= 0 of the real part (3D) of the extended pushed forward
solutionUρ . Figures 4.10 and 4.11 are zoomed-in versions of Figure 4.8 and Figure
4.9. In these examples we have takenβ = (2ρ)−2, and we focus on the mode-0
cloak-busting inclusions, given by (4.17) in 2D and (4.23) in 3D. Each figure shows
the behavior for four different values ofρ . Since the near-cloak is not very effective
in 2D, Figures 4.8 and 4.10 use relatively small values ofρ , namely 10−1, 10−2,
10−4, and 10−6. Since the near-cloak is more effective in 3D, we use much larger
values ofρ for Figures 4.9 and 4.11, namely 0.5, 10−1, 10−2, and 10−3. The
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FIGURE 4.5. The influence of the loss parameterβ in 3D. The lower
frames indicate that the optimalβ ≈ 106/10ρ−2 ≈ 4ρ−2.

figures show that whenρ is sufficiently small, the extended solutionUρ is close
to the plane waveu0 away fromB2, i.e. we get approximate cloaking in the far
field. Each frame of Figure 4.8 achieves roughly the same degree of approximate
cloaking as the corresponding frame of Figure 4.9. This reflects the very different
performance of our near-cloaks in 2D (where the deviation from perfect cloaking
is of order 1/| logρ |) versus 3D (where the deviation is of orderρ).

In summary, the actual performance of our near-cloak is completely consistent
with the estimate of Theorem 3.1, in the sense that (a) the loss parameterβ must
be at least of orderρ−2 for the conclusion of the Theorem to be valid, and (b)
with such a loss parameter, the Theorem correctly estimatesthe performance of
the near-cloak for our cloak-busting choices ofAρ andqρ .
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FIGURE 4.8. The 2D extended pushed forward solutionUρ onB10
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FIGURE 4.10. The 2D extended pushed forward solutionUρ onB3
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FIGURE 4.11. The 3D extended pushed forward solutionUρ onB3
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