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Abstract

The transformation optics approach to cloaking uses a Einghange of coordi-
nates, which blows up a point to the region being cloakeds paper examines
a natural regularization, obtained by (i) blowing up a bélasliusp rather than

a point, and (ii) including a well-chosen lossy layer at thadr edge of the
cloak. We assess the performance of the resulting neak-aelw¢he regulariza-
tion parametep tends to 0, in the context of (Dirichlet and Neumann) boupdar
measurements for the time-harmonic Helmholtz equationceSthe goal is to
achieve cloaking regardless of the content of the cloakgidmewe focus on es-
timates that are uniform with respect to the physical prigeof this region. In
three space dimensions our regularized construction pesfeelatively well: the
deviation from perfect cloaking is of ordgr. In two space dimensions it does
much worse: the deviation is of ordey|logp|. In addition to proving these
estimates, we give numerical examples demonstratingshaimpness. Some au-
thors have argued that perfect cloaking can be achieveaduithsses by using
the singular change-of-variable-based constructionuimegularized setting the
analogous statement is false: without the lossy layerethes certain resonant
inclusions (depending in general gn that have a huge effect on the boundary
measurements(© 2000 Wiley Periodicals, Inc.

1 Introduction

We say a region of space is cloaked for a particular class @sarements
if its contents — and even the existence of the cloak — aresibiei using such
measurements.

A change-of-variable-based scheme for cloaking was pexpbg Pendry, Schurig,
and Smith in [21] for measurements that can be modelled ubmtme-harmonic
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Maxwell equations. Essentially the same scheme was disdwesarlier by Green-
leaf, Lassas, and Uhimann in [7] for electric impedance wraphy. Recent re-
views with many references to the rapidly growing literatan cloaking and other
applications of “transformation optics” can be found in [13, 23, 29]; see also
[28] for an enlightening treatment, [14] for informationaalt earlier work along
similar lines, and [3, 5] for an application to scalar wavegagation (the focus of
the present paper). For discussion of the literature méseikto the present work,
see Section 2.7.

The change-of-variable-based scheme proposed in [7, 2Hther singular.
This makes it difficult to analyze; in particular, multipleogposals have emerged
about the appropriate notion of a “weak solution” of Maxveeliquations in such
a singular setting [8, 25, 26, 28]. The proposals could alttmect, if they rep-
resent the limiting behavior of different regularizatiortdowever there has been
relatively little work on the limiting behavior of any reguization. Such work has
mainly been restricted to uniform inclusions (whose propsiremain fixed as the
regularization varies), analyzed via separation of véemlb, 9, 22, 25, 29, 30].

This paper develops a different viewpoint, which avoidgslar structures and
weak solutions. We shall study change-of-variable-basezhr-cloaks,” defined
using a natural regularization of the singular scheme. frieghe framework of
[7, 21] uses a singular change of variable, which blows upiatfo a finite-size
region. Our near-cloaks replace this with a regular chafgar@able, which blows
up a small ball to a finite-size region.

The key issues from our perspective are (a) specifying theige structure of
the near-cloak, and (b) assessing its performance. Wealdikss these issues for
the scalar Helmholtz equation

N 9

Jdu
i,Jzzl 0%

(Aij (X)a_xj> +w’gx)u=0 iInQ

(1.1)
whereQ is a bounded domain ilRN, N = 2 or 3. This PDE describes time-
harmonic solutions) = ue™'“* of the scalar wave equati@ix)Uy — 0+ (A(X)OU ) =
0.

Any analysis of cloaking must specify the class of measurgsnbeing con-
sidered. We shall focus on “boundary measurements,” i.e. ctrrespondence
between Dirichlet and Neumann dataapnd (ACu) - v) at 9 Q.

Our main results are summarized in Section 2. They enconthadsllowing
key points:

(i) If there are no constraints on the material propertiethefobjects to be
cloaked, then change-of-variable-based cloaking froomaty measure-
ments requires the use of lossy materials.

(i) The change-of-variable-based scheme works muchriat&D than in 2D.
In fact, our near-cloaks come withmof perfect cloaking in 3D, but only
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within 1/|log p| of perfect cloaking in 2D. Herp is our regularization pa-
rameter — the radius of the small ball that is blown up to adisize region
— and the deviation from perfect cloaking is measured by ifierdnce
between the Neumann-to-Dirichlet map and that of a unifooatyb

Our viewpoint was introduced in [15], which focused on dlecimpedance
tomography. This viewpoint was recently adopted by Liu [Ivho studied near-
cloaking achieved by change of variables when a homogeri2ioighlet boundary
condition is imposed at the inner edge of the cloak; his perémce estimates are
similar to ours (see point (ii) above). Other regularizasie- of a more direct “trun-
cation” nature, and sometimes involving other boundarydd@ns — are consid-
eredin|[5,9, 10, 11, 22, 25, 29, 30]. The recent articles J1Qnote the possibility
of resonance, which is directly related to point (i) above.

2 Main ldeas

2.1 Cloaking with respect to boundary measurements

As stated in the Introduction, we shall focus on “boundaryasueements,”
i.e. the correspondence between Dirichlet and Neumann diatdne context of
Helmholtz's equation (1.1), this means we consider the map

Aag: HY2(0Q) — HY2(0Q) ,
defined by
(2.1)  Aagq(¥) =ul,, whereu € HY(Q) solves (1.1) withy A;j g—;;vi =y .

This map is well-defined and invertible provideg (x) is a uniformly elliptic
symmetric-matrix-valued function an@? avoids a discrete set of eigenvalues.
Throughout this paper we shall impose this restrictioruBmrelative to the homo-
geneous mediumA = |, = 1. The Sobolev spadd’/?(dQ) consists functions
with 3 derivative inL?" and H=Y/2(9Q) is its dual. These are the natural spaces
for Dirichlet and Neumann data of finite-energy solutiorisce @ € HY2(9Q) if
and only if @ is the restriction t@Q of some function irH(Q).

Fixing Q, we shall say thaf\(x) and q(x) “look uniform” if the associated
boundary measurements are identical to those obtained &vaeln =1, in other
words if Ap g = /A 1.

Rather than define “cloaks of arbitrary geometry”, let uslaixpwhat it means
for a specific structuré:(x),gc(X) defined in the shell & |x| < 2 to cloak the unit
ball B; = {|x| < 1}. Given a domair©) containingB,, we say tha#\, g cloaksB;
if whenever

l,1 forxe Q\ By

(2.2) A(X),q(X){ Ac,0c  InBz\ By
arbitrary inBy
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thenAaq = /A 1. In other words,Q looks uniform regardless of the content of
the “cloaked regionB;. To make the definition complete one must specify the
meaning of “arbitrary” in (2.2): for example one might askith andq be real-
valued inB, with A(x) uniformly elliptic. It is easy to see that the above defimitio
depends only on the “cloal&:, ¢, not on the choice d. In particular, if cloaking

is achieved foQ = By then it is also achieved for any larger domain.

2.2 The “pushforwards” F.(A) and F.(q)

The change-of-variable-based cloaking scheme relies erdllowing basic
fact.

Let F: Q — Q be a differentiable, orientation-preserving, surjectavad invertible
map such that Fx) = x atdQ. Then yx) solvesy - (A(X)Oxu) + w?q(x)u = 0 if
and only if wy) = u(F ~(y)) solvesd - (F.A(y)Oyw) + w?F.q(y)w = 0 with

DF (x)A(X)DF T (x)

9 _ -1
(23) FAY) =—DF X FAY) = SeoER S Fo(y) -
Moreover Aq and EA F.q give the same boundary measurements:

In (2.3) DF is the matrix whoséi, j)th element i®9)F; /0x;. Note thatA andF.A are
symmetric-matrix-valued functions, whitpandF.q are scalar-valued functions;
our use of the same symbig] for both cases is a convenient abuse of notation.

The proof of the preceding statement is elementary. The farakof the PDE
Ox - (A(X)Oxu) + w?q(x)u = O is the assertion that

A [E’*‘N o wzq(X>u<x>cp<x>] dx=0

for all @ that vanish avQ. Changing variables tg = F(x), this becomes the
statement that

ow aL/J

F.A — w’F, dy=0
/Q [;( i V)35, 3y aly)w (y)w(y)] y
with @¢(y) = @(x). As @ varies over test functions vanishing@® so doesy, so
we conclude thafl, - (F.A(y)Oyw) + w?F.q(y)w = 0. In fact the two PDE'’s are
equivalent, since the argument is reversible. To seeAlmandF. A, F.q give the
same boundary measurements, it suffices to note that the &lvountegrals agree
for any smooth functiorp (and the associatagl(y) = ¢(x)) whether it vanishes or
not ondQ. Integration by parts now gives thg(F.A);; g—;’,‘j’v,( y) =S A; 2 s Lvi(X).
Sincey = F(x) = x on dQ (and thereforev = u on 9Q) it follows that/\A,q =
NgAF.q-
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2.3 Alossless regularization of the singular cloaking scimee

Suppose) contains the balB,. For any (smallyp > 0, consider the change of
variablesF, defined by

X forxe Q\ B,
2-2
(2.5) Fo(X) = (Tff + ﬁ\x]) n forp<|x <2
2 for|x <p

Its key properties are that

e F, is continuous and piecewise smooth,
¢ F, expandsB, to By, while mappingB, to itself; and
e F(x) = xoutsideB;.

The arguments in [7, 21] applied to Helmholtz suggest Byashould be cloaked
by Ac = (Fo)«l,0c = (Fo)«1, whereFy = lim,_oF, is the singular transformation
that blows up the origin to the bdll;. We might therefore think that ip is small
then(Fp).l, (Fp).1 should nearly cloaBy, in the sense that if

l,1 forye Q\ By
(2.6) Ay),dly) =4 (Fo)«l,(Fp)«1 inBz\By
arbitrary inB;

then/\A’q =~ /\1’1.

Such a statement is true at frequency O; this is the maintreg(il5]. It is
however not true whew ## 0; we shall explain why not in Section 2.5.

2.4 Reduction to the study of small inclusions

To assess the wheth&g = (Fy).l, 0. = (Fp).1 achieves approximate cloaking,
we must study the boundary operator associated with (2.6).thB change of
variable principle, this is the same as the boundary opeaatociated with

L1 forxe Q\B,

2.7) (Fo H-AM), (Fyh).a(x) :{ arbitrary  inB,.

Here we have used the fact tr(ﬂp—l)* o (Fp). =id, and so ifA, g are arbitrary in
Ba, then their transformgF, ). Aand(F, *)..q are similarly arbitrary irB,. Thus:

(Fp)«!, (Fp)«1 approximately cloal, if and only if
(2.8) an inclusion of radiug with arbitrary content has little
effect on the boundary map of an otherwise uniform domain.
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2.5 Failure of the lossless regularization

The lossless regularized scheme discussed in Sectiora. 2 @esotachieve
approximate cloaking. To explain why not, it suffices by j2dshow that a small
inclusion in an otherwise uniform domain can have a largecti®n the boundary
operator.

We use separation of variables, focusing on the 2D case rigplisity. Let
Q = By, and consider

[ 11 inB\B,
AP’qP—{Ap,qp in B,

whereA, > 0 anddj, are real-valued constants. The general solution of thecasso
ated Helmholtz equation can be expressed in polar cooetiras

[ee]

u="y aka<wr\/qp/Ap>eik9 forr<p ,

k=—o0

00

u="% {Bka(wr) + M(ngl)(wr)] e forp<r<2,
k=—oo
for appropriate choices afy, B« and . When we solve a Neumann problem,
the three unknowns at mod#d ay, Bk, ) are determined by three linear equations:
agreement with the Neumann data at 2 and satisfaction of the two transmission
conditions atr = p. However, for anyw # 0 and anyk, this linear system has
determinant zero at selected valuesigfand d,. (We shall show this in Section
4, where we also study the asymptotics of such special vamég,qp asp—0

for k=0 andk = 1.) When the linear system is degenerate (for sdnehe
homogeneous Neumann problem has a nonzero solution, armbtimelary map
AVIER is not even well-defined. In brief: no matter how small theueabf p, for
any w # 0 there arecloak-bustingchoices opr andd, for which the ball with
such an inclusion is resonant at frequeinay

2.6 Our near-cloaks

The standard way to deal with resonance is to introduce aamésyn for damp-
ing or loss. There are many alternatives, most of which amtmiconsidering an
open rather than a closed system (for example, use of arsegtt®mundary condi-
tion permits energy to be lost at infinity).

In this paper we choose a particular damping mechanism, hyéecmits us
to remain focused on boundary measurements for the Helmbgltation (1.1).
Specifically: we take to be complex, choosing the geometry in such a way that it
maintains the equivalence between near-cloaking andsitsdty to small inclu-
sions.

Our construction (nearly) cloakB,, by surrounding it with two concentric
shells: an isotropic but lossy one of thicknes® 1coated by an anisotropic but
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lossless shell similar to the one in Section 2.3. Besideesipglarization parameter
p, it also has a damping paramefer- 0. The analogue of (2.6) is

l,1 forye Q\ B,
_ (F20)«l,(F2):1  inBz\By
@9 AWV =1 ()T (Fro). (L4+1B) inBy\Byjo
arbitrary real, elliptic  inBy .

To be clear: inB;/, we permitq(y) to be anyL” real-valued function, and we
permit A(y) to be any real symmetric-matrix-valued function that isfomnly
bounded and uniformly positive definite. (See Section 2rictionments on the
hypothesis thaf > 0 in the cloaked region.) Wheh, q are arbitrary in this sense
in By, their puIIbacks(Fzgl)*A,(Fzz)l)*q are similarly arbitrary inB,. So the
boundary operator associated wity),q(y) is the same as that of
(2.10)
1,1 forxe Q\ By
At = (3 )-AM), (F3p).a(x) = 1,1+iB in Bap \ By

arbitrary real, elliptic inB,
(this is the analogue of (2.7)). We shall show in Section 3 Wizen 3 is chosen
properly — specifically, whei ~ p—2 — this construction approximately cloaks
By/2 in the sense that

(2.11) [Aag—Niall = [[Aa,q, —Niall < Ce(p)

where the left hand side uses the operator foam maps fromH1/2(3Q) to
HY2(9Q) and

1/|lo in space dimension 2
(2.12) e(p):{ /llogp| insp

o} in space dimension 3

We emphasize that this near-cloaking is achiexggghrdless of the content of the
cloaked regioni.e. the constant in (2.11) is entirely independent of the values
of A(y) andq(y) in By, (provided they are real, with symmetric and positive
definite).

The estimate (2.11) is essentially optimal. In fact, we Isslabw in Section 4
that there exist (constant) values/ig > 0 andd, and Neumann datgr such that

when
1,1 forxe Q\By

then
H(AAp~qp _Alal)wHHl/Z

1@l
170 be completely explicit] Aag— A1 = SURjy,, 1,<1 INaqW — A 1Wla2; thus, it mea-

sures the worst-case difference between the Dirichlet @sgaciated with coefficients q andl, 1
when the associated PDE’s are solved using the same (naedpNeumann data.

~ €(p).
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Note that our near-cloak is not very successful in spacermiioa 2, since 4] logp|
decays very slowly ap — 0. It is much more successful in space dimension 3.
The reason for such dimension-dependent behavior liegidifferent decay of the
fundamental solution of the Laplacian in dimensions 2 andr3space dimension

N > 3, arguments similar to the ones presented here would giegrasponding
estimate witre(p) = pN—2.)

2.7 Discussion

Our presentation used the radial transformattgn defined by (2.5), but our
analysis of the scheme involves only the study of the inolugiroblem (2.10).
By replacingF,, by a more general change of variable, one easily gets a simila
scheme for cloaking a non-spherical cavity.

We explained in Section 2.5 that the lossless version of egularization must
fail, if the goal is to achieve cloaking without regard to thigysical properties of
the region being cloaked. The papers [5, 9, 10, 22, 25, 29i0@ a different
viewpoint: translated into our terminology they assume tha properties of the
cloaked region remain fixed @s— 0. It appears that perfect cloaking is achieved
without losses for 3D Maxwell and 3D Helmholtz; however tesults we present
in Section 4 indicate that this should not be the case for 2DnHeltz (see the
discussion associated with Figure 4.2).

Our near-cloaks use loss paramgber p—2. Numerically we can say a little
more: theoptimal choice of is aboutcp~2 with ¢~ 2.5 in 2D andc ~ 4 in 3D
(see the discussion of Figures 4.4 and 4.5 in Section 4). VBhisrsignificantly
smaller near-cloaking is not achieved, because the losstisufificient to hide
certain “cloak-busting” inclusions. Whehis larger the performance of the near-
cloak is slightly worse, however near-cloaking is appdyeathieved even in the
limit 8 — co. This limit corresponds, at least heuristically, to the asition of a
Dirichlet boundary condition at the inner edge of the clothle case considered
in [17]. Thus our results are closely related to those of [héjvever we achieve
near-cloaking using a finite value of the loss parameter.

Much of the literature on cloaking focuses on scatterinpegathan bound-
ary measurements. It would be interesting to know whethenear-cloaks work
equally well in that setting, e.g. whether there is an edenamalogous to (2.11)
for the scattering of plane waves fraih(embedded in uniform space witk= I,
q=1). We conjecture that this is the c&séThe results in [17] provide such an
estimate wheiff = «.)

In assessing the performance of our near-cloak, we focuseowadrst-case be-
havior. In particular, our estimate (2.11) applies regessllof the material proper-
ties of the cloaked region, provided only thly) is real-valued, positive-definite,
and finite there, and(y) is real-valued function. The constant in the estimate does

2 A treatment of the scattering problem in much the same sprthe present paper has recently
been completed by Nguyen [20].
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not depend on the upper or lower bounds Aoor g in the cloaked region. The
recent paper [4] argues that by takiAg< O in part of the cloaked region, one
can defeat the effect of the (singular, lossless) changewidble-based cloak. We
doubt that our lossy near-cloak would be defeated by suchense. But to discuss
a situation where the real part Afchanges sign it is necessary to include losges (
must be complex). As the losses tend to zero and elliptisitgst, the local fields
may become increasingly oscillatory (this is case, for gdarin the “anomalous
localized resonances” of [19]). Since our analysis assuha#\ g are real in the
cloaked region, we assumde> 0 to know that the PDE has a well-defined solution.

Is our approach the best way to achieve near-cloaking withiogular materi-
als? Not necessarily. The papers [9, 30] suggest that adiionebased regulariza-
tion combined with a different choice of boundary conditetrthe inner edge of
the cloak may do better. But these papers keep the matetia inloaked region
fixed as the regularization parameter tends to zero. It woelidteresting to exam-
ine whether their lossless near-cloaks can be defeateddunyasfcloak-busting”
inclusions, as discussed in Section 2.5.

Is the change-of-variable-based approach optimal? Ortntigiie be an en-
tirely different approach to (approximate) cloaking — gsimaterials less singular
than(F2p).l, (F2p)-1, and achieving an error estimate much better 8§an? This
question remains open. The recent paper [27] used separdHtiariables and a
genetic algorithm to optimize cloaking offxed, constaninclusion with respect
to scattering measurements, obtaining a better resultlesgcomplexity than the
change-of-variable-based scheme. But their cloak woutdbadsly not work as
well for non-constant inclusions. Moreover, since it wasaoked by numerical
optimization, the example in [27] lacks the intuitivenessl ainiversality of the
change-of-variable-based scheme.

This paper focuses entirely on change-of-variable-bakeking. But we note
in passing the existence of other promising schemes foewaicly similar goals,
including one based on optical conformal mapping [16], heotising anomalous
localized resonance [19], and a third based on specialbbgpendent) coatings

[1].

3 The effect of a small inclusion

The goal of this section is to prove (2.11). We begin by givihg result a
more formal statement. Throughout this sectifnis a bounded domain iRN
(N = 2 or 3), whose boundary &? (so we may use elliptic estimates), witle@
(our inclusions will be centered at 0). We are interestedeintholtz’'s equation at
frequencyw: giveny € H-1/2(9Q), let uy be the solution of

Aup+ w?up=0 inQ

3.1
(3-1) %: onoQ .
av



10 R.V. KOHN ET AL.

We suppose that w? is not an eigenvalue of the Neumann Laplacian. The bound-
ary value problem (3.1) is therefore well-posed, and

[UollH(@) < CllYln-12(0q) -
Now consider the solution, of

(3.2) % =y ondQ ’
whereA, andg, have the form:
Ay=1,q,=1 inQ\ By
Ao=10p=1+ip in By \ Bp
Ao, 0, arbitrary real, elliptic inB,

Heref is a positive constant, and the “arbitrary real, ellipthgy; andq, in B, are
assumed to be positive definite, symmetric-matrix-valuediraal-valued functions
respectively, in.*(B,) (qp need not be of one sign). We assume fatontains
a neighborhood 0By, (this is a smallness condition gu). The existence and
unigueness ofl, is easy to see using the positivity Bf (see Section 3.1). We
claim that if 8 is chosen appropriately then is close toug:

Theorem 3.1. Suppose-w? is not an eigenvalue of the Laplacian @with Neu-
mann boundary condition. Lefwand y, be the solutions of (3.1) and (3.2) re-
spectively, and suppoge= dgp 2 for some positive constang.dThen there exist
constantsog and C (independent af) such that for any < pq,

(3.3) [Up = Uolly22(90) < CEP)|W[lH-1/2(a0)

where ép) is defined by (2.12). In other words, the difference betwherntwo
boundary operatorg\a, q, and /A 1 has norm at most Gg), when viewed as an

operator from H/2(3Q) to HY?(dQ). The constantgy and C depend ow and
do, but they are completely independent of the values,afril ¢, in B,.

Our strategy for proving this theorem is as follows:

¢ In Section 3..ve use the energy identity and the positivity»fo control
the L2 norm ofu, in By, \ Bp. We also deduce, by a duality argument, an
estimate for the restriction af, to 9Byp.

e In Section 3.2ve prove a general result comparing the Helmholtz equation
in Q to the same equation in the punctured don@inBy,. It is obvious
that if the latter problem is solved using Dirichlet dargﬁ,;sz at the edge
of the “hole” , and normal flux datg/ on 0Q, then the solution isig. The
main estimate of Section 3.2 is an associated stabilityltrésasserts that
if Dirichlet data at the edge of the hole are closeigpthen the solution of
Helmholtz in the punctured domain is closeutpat 0Q.
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¢ In Section 3.3ve show how the estimates in Sections 3.1 and 3.2 combine
to prove Theorem 3.1.

e The discussion of Section 3.2 uses the well-posedness oftidtz's equa-
tion in the punctured domai@ \ By, (with Neumann data afQ and
Dirichlet data a¥/By,). This well-posedness result is not surprising (if the
hole is small its effect should be small) but we do not know aveaient
reference. So we give a self-contained prooSeaction 3.4

e The arguments in Sections 3.2 and 3.4 use some estimateslditions
of Laplace’s equation in the exterior of a small ball. Thostneates are
not difficult, but we do not know a suitable reference. So we @i self-
contained proof irBection 3.5

3.1 Some estimates based on the positivity @f

We noted above that the well-posedness of (3.2) followdyefrsim the posi-
tivity of 8. The proof, which is standard, uses the energy identity. fdhawing
Lemma uses a variant of that argument to boundLtheorm of u,, in the shell

p < [X <2p by |[uo—Up|[12(50)-

Lemma 3.2. The solutions of (3.1) and (3.2) satisfy

B [ 1Upl? X< Cl@ly-vzam g — olleiagy -
B2o\Bp
where C is an absolute constant (depending onl{¥2pn

Proof. Multiplying (3.2) by u, (the complex conjugate af,) and integrating by
parts gives

Q Q 0Q

The first term on the left hand side is real. Therefore takimgiaginary part of
each side (and remembering tiat= | neardQ) we get

: " duy
2 2 b
w Up|©dx = —Im / — - U, do;
B/BZP\BT,' P < oo dv * X)
(3.4) — —Im (/ W(0p — o) dc&)
aQ
For the second equality we have used thas/dv = (, and the fact that
/ Yo doy :/ |Oug|? dx— wz/ |ug|? dx
20 Q Q
is real. The assertion of the lemma is an immediate consequa(3.4). O

The functionalg andu, solve the same PDE @2\ By, with the same Neumann
data at the outer bounda#2. We will compare them in Sections 3.2 and 3.3 using
elliptic estimates on this punctured domain. So it is cluciaontrolu, at dBy,.
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We achieve such control (in tHé—1/2 norm) by combining the last result with a
duality argument.

Lemma 3.3. The solutions of (3.1) and (3.2) satisfy

[(1+B)w’p®+1° _
Hup(p’)Hafl/Z(aBZ)—C B p N”U—’HH%/Z(@Q)”Up—UOHHl/Z(aQ) )

where C is an absolute constant (depending onl{¥2dn

Proof. We use the fact that

10p(p Vlhi-reamy = sup | [ up(px)@(x) do
2

H‘PHHl/szz)Sl

Now, for any € HY?(9B,) there existsv € H?(B,) such that
(&) w=00ndB,, 3_\\/}v =@ondBy,,

(b) [Wllhze, < Cll@llh12(8,) »
(c) wvanishes insid®; .
Using thisw we have

ow
doy, = “d
/a Bzup(pX)co(X) Ox /a Bzup(pX) 5y 40 -

whence after integration by parts

/ Up (pX)@(x) doy = p/ Ou, (px)Ow dx+/ Up (pX)Aw dx
552 B> B2

— —p2/ Aup (X)W dx+/ Up (PX)Aw dX .
By B2

Sincew vanishes irB; andAu, + (1+iB)w?u, = 0 in By, \ B,, we conclude that
< @ (1+B)p? </
1<|x|<2

1
2
+ / Uy |2(pX w
< 1<‘X|<2\ b|“(P )> | ”HZ(BZ)

< Clw?(1+B)p+ Y lup(p )21 <2 1Pllur2(08,) -
Maximizing overg subject to]|@||,412(sg,) < 1 and using the relation

1
2
| up(on0xd o pl2(p)) Iwlizs,
2

[Uo (P )l 2ep\B7) = P_N/ZHUpHLZ(sz\B_p)
we conclude that
(3.5) U (P )ll-1/2(98,) < ClaP(1+B)p*+ Up M2 Up | 2(py85) -

Squaring both sides and combining the result with Lemmaea#d easily to the
desired estimate. O
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3.2 Estimates for Helmholtz on the punctured domain

As noted aboveylp andu, solve the same PDE \B—zp, with the same Neu-
mann data at the outer boundad@. If in addition their values are similar at
the inner boundaryB,,, thenug should be globally close ta,. The following
Lemma makes this rigorous. For notational simplicity weetéthe inclusion to be
By rather tharBy,.

Lemma 3.4. Suppose-w? is not an eigenvalue of the Laplacian éhwith Neu-
mann boundary condition. There are constantsund C with the following prop-
erty: suppose K ro, suppose gisolves (3.1) with boundary datp ¢ H*l/z(dQ),
and supposesolves

Au+ @’ =0  inQ\B

Ur:¢ OnﬁBr
20 ﬂ—t,u onoQ
ov

using the same Neumann dafiaas for u, ondQ, and Dirichlet datap € HY/2(4B,),
then

3.7) 1Ur = Uollyrz(a0) < CEN)I[( —Uo)(r )ll-v2(8,)

where €r) is given by (2.12). The constantsand C depend ow andQ, but they
are entirely independent @b, ¢, and r.

Proof. We shall show in Section 3.4 that if Helmholtz's equation &llvposed on
Q, then it is also well-posed o2 \ B, whenr is sufficiently small andB; carries
a homogeneous Dirichlet condition. In particulamwikolves

(38) (A+w)W=FinQ\B,, a—\:}vzfondQ, w=00ndB, ,

7]
then

(3.9 Wbz o5 <C (HF l2@e) + I f HH*l/Z(dQ)) ;

with C independent of.

We want to estimatea, — up using (3.9). Itisn’t zero afB;, but we can fix this
by subtracting a harmonic function. We shall show in Sec8dnthat there is a
solution of AV = 0in Q\ B, with V = ¢ — up on B, satisfying

0
155V lz00) < CEMI(@ = Uo)(r )ll-v2(08,
(3.10) IV llnezaq) < CENII(@ —Uo)(r -)l[H-12(8,)

IVlli2\g) < Cen)I(@ —Uo)(r -)ll-12(98,
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(see Proposition 3.8). The function = u, —up—V satisfies (3.8) witlF = —w?V
andf = —0dV/dv. So the estimate (3.9) gives

[[ur — Uollrr2(90) < IWrllnaza0) + IV [IHr2(00)
< ClW g + uvnHm o0
< c(uw Vi@ + IVl szamy + VIl ,,m)

< Ce(r)|[(¢ —uo)(r -)HH—l/z(ael> ;
which is the desired estimate. O

3.3 Proof of Theorem 3.1
Theorem 3.1 follows by elementary manipulation from Lem@&sand 3.4:

Proof of Theorem 3.1Lemma 3.4 withr = 2p and¢ = up](;sz gives

1Up — Uol|1/2(9q) < CE&P)I[(Up — o) (P ) lln-1/2(98,) -

Therefore by the triangle inequality

[Up — Uol[41/2(50) < CE(p) <HU0(P Nn-22(98,) + Up (0 ')||H71/2(552)) :

The first term is easy to estimate, using the well-posednieg®edDE onQ and
elliptic regularity:

[Uo(P )Ih-1298,) < Clluo(P -)[IL=(a8,) < CllWIIH-12(90)-

To estimate the second term we apply Lemma 3.3. Shealyp—2 by hypothesis,
the conclusion of Lemma 3.3 is

_ 1/2 1/2
(311 [up(p Ml vz(0my < CP N 2@ 22 s o — ol o0

whereC, depends only ody, w, andQ. The right hand side is bounded, for- 0,
by

(2-N)/2
zn (P e(p) £
Cop? (7”4’”,4 3 00) ;)(ZT/Ze(mHu Uoll ,1 5Q)>

2—N
G, Py

€
H 2 (0Q) +C2 e(p)Hup OHHz (09Q) °
Combining these results we get

< Celp) ¢l 3 0,
p2 Ne ( )

195 =l g

+Coe(p) ——— VIl +Cag|up — ol 3

HzaQ HzaQ)'
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We now choose so thatC,e < 1. Then the last term on the right hand side can be
absorbed by the left hand side, and we conclude that

1o = Uoll, 3 ) < CEPIIWI, 3 5 +CERIOZ @I, 3 o,

with C independent op, ¢, and the values of, andq, in B,. WhenN = 2,
p?>Ne(p) =e(p) — 0asp — 0. WhenN = 3, p>Ne(p) = 1 is constant. In either
case we get

195 Vol 3 ) < CEPI Wl 3 -

which is the desired conclusion. O

3.4 Uniform well-posedness for the punctured domain

This section provides the proof of (3.9). Actually we shaibye a slightly
stronger statement, in whidfF HLZ(Q\E) is replaced by a weaker norm (see equa-
tion (3.16)). A concise statement of our well-posednesslrés given at the end
of the section (see Proposition 3.5).

We are concerned with the PDE
{ Ao+ w?wWo=F inQ

3.12
(3.12) AL atdQ
v

and its analogue (3.8) in the punctured dom@inB,. Sincew is real, it suffices to
consider the case whén f andwg are real-valued. (The corresponding estimates
for complex-valued solutions are immediate, by considgtire real and imaginary
parts separately.)

We begin by reviewing the equivalence of well-posednesdtamtinf-sup con-
dition.” For any domainQ, it is well-known (and fairly easy to prove) that the
condition

(3.13) inf sup
weH(Q) veHl(Q
Wl =1 v, l<1

wvd%>co>0

is necessary and sufficient for the wellposedness of thedaoynvalue problem

(3.12) (see for instance [2]). To be quite precise, (3.18ecessary and sufficient
for the existence of a bounded inversé(Q) — H(Q) to the linear operator
associated with the bilinear form

B(W,v):/ Ow - Ovdx— wz/wvdx,

0 0

which in turn yields a (unique) weak solution of (3.12) dgtisg
[Wolls(a) < Co (IF ey + 11 flu-s200y )

HereH(Q)' is the dual ofH(Q). Elliptic regularity implies thatvg is a strong
solution of (3.12) providedr and f are sufficiently regular. The requirement that
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—w? not be an eigenvalue for the Laplacian @rwith Neumann boundary condi-
tion is equivalent to this notion of wellposedness.
The situation for a punctured domdn\ B; with w, = 0 atdB; is similar (and
equally standard). IH(Q\ B;) denotes the space
HA(Q\Br) =HY(Q\Br)N{ w|ss, =0 }

equipped with théd1-norm, then the “inf-sup” condition

(3.14) inf sup / ~ Ow-Ovdx— w02 _WVd)({ >¢ >0
weH! (Q\Br) veH1(Q\B) Q\B; O\B;
Mlg2=1 " vil,1 <1

is necessary and sufficient for the unique solvability oftibendary value problem
(3.15) (A+ w?)w, = F in Q\ By, % =fondQ, w, =00ndB;,
with the associated estimate
(3.16) e sy < Ca ([IF

Our task is now clear. To prove (3.16), we must show th& gatisfies the
inf-sup condition (3.13) the \ B, satisfies the inf-sup condition (3.14) wheis
sufficiently small, with a constam that remains uniform as— 0.

So suppose (3.13) holds, and considerapy H1(Q\ By) such that|w, ||y =
1. Extendw, by O to all of Q, and call the extensiow. Thenw € H1(Q), with
[W|l2(q) = 1. So by (3.13) there existec H'(Q) with

Hiogy I HH*1/2(09)> .

/ OW- Ovdx— wz/ Wvd% > “ and||V|[j1q) <1 .
Q Q 2
Let P denote orthogonal projection onitb'(Q) N {w = 0 onB;}, using theH(Q)
inner-product, and define. € H}(Q\ By) by
Vi =P(V)|q\5 -
Sincev, is (the restriction of) a projection
(3.17) Vel o\g) < [Vl @) <1
Decomposing/g, g CW, - Ov, dX— w? Jo\g WeVi dxas
/ ~ Ow,-Ovdx—w? [ w,vdx
Q\B Q\Br

+ [ Ow,- O, —v)dx—w? [ w. (v, —v)dx ,
Q\B, Q\By

/ OW- Ovdx— wz/Wvdx{ > % ,
Q Q 2

we have

/ ~ Ow, - Ovdx— w? w*vdx{ =
Q\B, Q\By
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from which it follows that

(3.18) ‘/ COw, - Ov,dx—w? | w,v, dx
Q\B; Q\By

S G
-2
Our essential task is thus to show that the expression ilwbsealues on the
right hand side of (3.18) is small. For agy € H}(Q\B;) letp c HY{(Q)N{w=
0 onB; } denote its extension (by zero) to all@f Then

/ COw,-O(v, —v) dx—w? [ w, (v, —v)dx
Q\B Q\B

(3.19) ~ O(ve—v)- D@dx+/ Vi — V)@, dx
Q\B
_/ 0P D(pdx+/ ) —V)@dx=0 ,
and as a consequence (usipg= W)
COw, -0, —v)dx—a? | W, (v, —Vv)dx
Q\B, Q\By

= —(w2+1)/ W (v, —V)dx .
o\

Inserting this into (3.18), we get

(3.20) ‘/ COw,-Ovedx—w? [ w,v, dx
Q\Br Q\B

> (w?t1)

W, (v, — V) dx
. /Q\& (V. —v)

We shall show below (see Lemma 3.7) the existence of comssTaatdrg such
that

(3.21) Ve = V20 < CE1)?||Vl[ 320, Provided O<r <o .

Accepting this for a moment, the rest of the argument is e@gynbining (3.20)
with (3.21), and recalling thatw. || o\g,) = 1 and|[V||41(q) < 1, we get

~ Ow,-Ov,dx—w? [ w,v,dx
Q\B; Q\By

Co 2

2 & — (@7 + Dl 2z Ve — Vi)
Co

2> —Ce(n)"?Vl o8
Co 12 5 Co

>—-C 0

zocenTT=g >

providedr is sufficiently small (less thagr (“°/%)* for N = 2, and less thafcy,/4C)?
for N = 3). Thus the “inf-sup” condition (3.14) holds, with a pogiticonstant
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¢, independent of. In summary, once (3.21) has been established we will have
proved

Proposition 3.5. Suppose-w? is not an eigenfrequency for the Laplacian on
with Neumann boundary condition. Then there exists 10 such that the prob-
lem (3.15) has a unique solution for @l < r < rg and all F € H}(Q\ B/,
f € H-Y2(3Q). Furthermore, the solution to (3.15) satisfies (3.16) withom-
stant G that is independent of r.

The rest of this subsection is devoted to proving (3.21). droef, presented in
Lemma 3.7, makes use of the following correctly-scaledetestimate.

Lemma 3.6. SupposeQ contains By,, ro < 1. Assume the spatial dimension is
N =2or 3, and let €r) be defined by (2.12). Then there is a constant C such that

pN-1 1/2
(3.22) [Wlez(om) <C (W) Y

for any0 < r < rg and any we H1(Q\ B;).

Proof. We may suppose that vanishes outsid8y,. (The general case is easily
reduced to this one, by replacimgwith wy wherey is a smooth function such that
X =1onB,, andx = 0 off By,.) Our plan is to decompose as

wdo + wdo |,

W W 1 1
B |6Br| 0B, |aBI’| JB;

and to prove that

1
(3.23) ”W_ W/dB Wdaﬂl_z(aBr) < Crl/ZHWHHl(Q\E) , and

1 . PN-1 1/2
(3.24) HW/MW Ol 298, < C o Wlhro\s) -

The desired result (3.22) is an immediate consequence ¢ thequalities.
To prove (3.23), consider the function

1
Wi (y) = w(ry) — [9B/] Jos wdo .

It is defined on(%Q) \ By, and it has mean value zero on the inner bounddsy.
Therefore

1 1
oz W 98] /aBrWdO-HLZ(aB,) = [IWr [lL2(9By)

< Cl|OWr[| 2(g,\87)

< Cllowllz (10

= CreN2I0w| 2 g8 -
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This gives (3.23).
To prove (3.24), we note tha/&(|x|) is a harmonic function, with

1 X IX| <1 andii -1
e(x) XNV P el [N
whered/dv is the normal (radial) derivative at the boundary of the béladius
r. Therefore

r<1i1 ,

WdO" = erl/ Wiidd‘
9B x=r OV e(|x|)
1
N-1
=r Ow-0O(———)dx
/r<x|<2ro (e(|x|))
1/2 1 1/2
< - </ |DW|2dx> </ [al )|2dx>
r<|x<2ro r<|x|<2rg e([x])
< CfN_l|e(r)|_1/2HWHH1(Q\BT) :
This gives
1 ~1/2
557y, 10| < Gl Wl
which is equivalent to (3.24). O

The following lemma estimates the distance between anrarpifunction in
H1(Q) and its “projection” taH2(Q\ By). Its conclusion is precisely our assertion
(3.21).

Lemma 3.7. Suppose& contains a ball of radiugrg, ro < 1. Assume the spatial
dimension is N= 2 or 3, and let €r) be defined by (2.12). For anyaH(Q), let
P(v) denote the orthogonal projection of w ontd(®) N { v=0on B } using the
HY(Q) inner-product, and define.c H1(Q\ B;) by

Vi =P(V)|q\5 -
Then there is a constant C (independent of v and r) such that
Vs =Vl 2y < Ce(r)l/ZHVHHl(Q\E) , 0<r<irg .
Proof. LetV = v, —ve HY(Q\By). We already know from (3.19) that
v D@dx+/ V@.dx=0 Vg eHLYQ\B)
Q\By O\B,

or, in the equivalent “strong” formulation

. — oV
—AV+V =0inQ\B,, V=-vondB,, W:OondQ .
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We shall prove in Section 3.5 that there exitsn H1(Q\ B;) such thathW = 0
in Q\ By, W=vondB;, and

ow e(r
(3.25) ||W||L2(09) < Cen)v(r -)lliz(omy) :Cr(NE%HVHLZ(aBr) ;

326) Wik < NIV lios, = Co 5Vl
(see Proposition 3.8). The functidhh =V +W satisfies

oW, oW
ov  9v
Multiplication byW; and integration by parts gives

/ . ’Dlez—l- \Wl\zdx
O\Br

—AWL+Wy =W in Q\ By, ondQ, Wy =00ndB, .

[ Wvdo+ [ wwdx
oq 0V Q\B;

ow
< (155 Iurnr + Wl ) % Malhns -

whence by (3.25) and (3.26)

oW
Wil < € (155 e + Wl
e(r)
< CWHVHLZ(ﬁBr) :
SinceV = —W +Wj, this estimate combines with (3.26) to give

e(r)
Vlzee) = | -W+Wil205) < Cmz IV[L2(a8,)-

Applying Lemma 3.6 we conclude that

IV Iz iz < CENY2IVInsas)
which is exactly the assertion of Lemma 3.7. O

3.5 Some results on harmonic extensions

We used certain estimates on harmonic extensions in SecBdhand 3.4,
namely equations (3.10), (3.25), and (3.26). This sectionigdes the proofs. As
in Section 3.4, it suffices to consider real-valued funciion

There are (at least) two different approaches. One usesasigpaof variables,
making use of the fact that the desired estimates are on thaaxof a ball. The
other uses potential theory; it has the advantage of workisigas well when the
ball is replaced by a more general inclusion. Rather thak &ione approach, we
shall present them both — giving the separation-of-vagisdlased argument in 2D,
and the potential-theory-based argument in 3D.
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Proposition 3.8. AssumeQ contains By,, ro < 1, and suppose N=2 or N =
3. Then there is a constant C (depending only®@rand 1) with the following
property: for any r< ro, and any g= Hl/z(dBr), there is a solution of

AW =0inRN\B,;, W=gondB,

such that

7]
(3.27) ”EWHLZMQ) < Cenllgr )lnu-r2(8y) >
(3.28) IWI|H12(a0) < CEO[T ) llH-1298,) >
(3.29) Wll2@s) < Cen)lar )lln-1208,) -

with &(r) defined by (2.12).
Proof for N= 2 using separation of variablesConsider the Fourier representation
of g:

g(rcosB,rsin@) = ap+

n

The functiong(r -) is defined orgB;, and

(ancosnd + b, sinnd)
1

AN @ a2z’
c <|ao| +> T”) <Nor ) lln-2(98,) <C <|a0| +> T”)
n=1 n=1
(see e.g. [15] for a concise discussion of this well-knowat)faThe obvious har-
monic extension is

logR & .
W = ao% + nZl(an cosné + b, sinnB)r"R™"
whereR = |x|. We claim it satisfies the desired estimates.
Since high modes decay quickly, our estimates will be driigrthe lowest
modes. Therefore it is convenient to wité= Wy +W; +W with
logR
Vo= logr
andW =W —Wp —W,. We will show that each of the functionsh, W;, andW
satisfies (3.27)—(3.29).
ForWp, we observe that

, W = (a;cos®+bysing)rR 1 |

7]
155 109Xl llL2(00) =€, [110gX/[li1/2(00) <€, and||log|X|[|.>q\&;) <C -

Therefore (remembering thefr) = 1/|logr| whenN = 2)

0
||WVV0HL2(0Q)+ Moll12(90) + [Mbll2(0\5) < Cer)lao]

< Ce()9(r Hlln-12(9m,) -
i.e. Wp satisfies (3.27)—(3.29).
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ForW,, we observe that
0 1
<C and <C
|| av |X| ||L2 0Q) H | | ||H1/2 (0Q) = )
o)

d
155 Wallz o) + Wallizoq) < Crllgr )lln-12g8,) -

For theL? norm, suppose'z C By,. Then

|| ™ 12208, / —RdR< Cllogr]| ,

SO

WAl 205 < Crllogr|*?||g(r Mn-12(08,) -

Sincer < r|logr|Y? <« e(r) asr — 0, we conclude thad, satisfies (3.27)—(3.29).

ForW = Y n_o(@ncosnb + by sinnd)r"R~" we use the fact tha® containsBy;,
and the hypothesis< rg to see that

oW > r\"
155 ey <€ 5 (ol +lonin (5 )

1/2
@ |an|2+|bn|2>

<cCr? (n; .

(3.30) < Crg(r )lln-v2(my) -
Similarly
(3.31) IW|h22090) < IWllia0) < CrIG(r )llk-12(8,) -

As for theL2 norm, we have

W1 ) < IV o)

<CZ (|an[2+ b 2)r /R*Z””dR

<0 3 (anf+ o
n=

(3.32) < Cr|g(r )IIF 1208, -

Sincer? < r < e(r), it follows from (3.30)—(3.32) thaiV satisfies (3.27)—(3.29).
O

Proof for N= 3 using potential theoryWe decomposg = go + §, where

g(r -)do

1
do—
g |0B1]| JoB,

=198, Jos,



CLOAKING VIA CHANGE OF VARIABLES 23

is the mean value af andg’has mean value 0. Notice that

(3.33) 9ol <Cllg(r )lln-12(98,) -
The obvious choice dV is\Wy +W, where
r
Wo(X) = go—
|

andW is the unique solution of
(3.34) AW =0inR3\B,, W=§ondB,, W(x) — 0 as|x| — o .

To show thatW satisfies (3.27)—(3.29), we will show that bty andW satisfy
these relations.
ForWp, we observe that

J 1 1 1
= <c, |= <C, and||= [l 2oz <C .
H av ‘X’ ”LZ(dQ) =, ” ’X‘ HHl/z(dQ) <C, an ” ’X‘ ”LZ(Q\B,) <

Therefore (remembering thefr) = r whenN = 3)

WollL2(aq) + [IMblH12(90) + Mol L2(0\5r) < C&(r)|gol
< Cen)[[9(r )lln-1208,)

A
ov

using (3.33). Thu¥\p satisfies (3.27)—(3.29).
To estimata/V we use the following lemma.

Lemma 3.9. Let B; be the unit ball inR3, and let he HY/2(9B;) have mean value
0. Then the solution V of

(3.35) AV =0inR3*\B;, V=hondB;, V(x) —0as|x — o
satisfies, for any R 2,

C
(3.36) 1BV lle=r) < zglihlln-vze,) -

C
(3.37) IVlle=r) = ggllhlln-v2(s8,) - and
(3.38) IVll2@asr) < Clihlln-1208,)

with C independent of R.

Given this Lemma, our task is easy. In fact, by definititx) =V (x/r) where
V solves (3.35) witth = §(r -). SinceBy C Q C By, for somery, the estimates
(3.36) — (3.38) imply, by change of variables and elememntaayipulation, that

0 - ~
I35 Wilz@a) < Cr2|1G(r )lln-12(8y) »
W ly1/2(90) < Cr|g(r Mn-1208y)

W/l 20\g) < Cr¥/2|g(r Mn-12(08,) -
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Sincel|§(r -)[ln-1/2(a8,) < ClIOT ) ll4-1/2(98,) andr? < r¥2 < e(r) whenN = 3 it
follows thatW satisfies (3.27)—(3.29). O

Proof of Lemma 3.9We shall use the double layer potential representatiovi. of
If Gis the “free-space” fundamental solution

1 1
G(xy) =— =— ,
OY) = = IoB oyl ~ dmx—y

then the desired representatiorVis= D(@), where

D(@)(x) = /a . aiWG(X,y)fp(y)de

1 (y—x)y
= — _— do,
47-[\[5‘51 ‘X_y‘3 (p(y) y
for x € R3\ 8By, andgis an appropriately chosen density. For poitsdB,, and

continuousg, this double layer potential gives rise to the following laAgiown
jump condition

i 1 11 =%y
| D - = 2 / =%)"Y i d
ol LB (@) = —50() + s, K yP @(y) doy

1 1 1
= —=@Q(X)+ — — do
5®(x) + 871/551 x—y ) doy

(3.39) = (—%+T)<P(X) :

The mappingT is a compact linear operator frob?(dB;) to itself. Since the
kernel is symmetricT is selfadjoint.

We discuss some additional properties of the operatoif 1, is the tangent
vector field ondB; given byt = (X2, —X1,0), then

1 (y—X) - Tx Y- Tx X- Ty < 1 )
X(!X—)/!) TOx=yR o x=yP T x=yP \ix=yl) 7

It follows, after integration by parts, that

55 T000 =T (55:0)

where 8y, 0 < 0; < 2mr denotes the azimuthal angle of the standard spherical co-
ordinate systenfcos6; sin6.,sin6; sinB,,cos6,). Varying the coordinate system,
and using the fact that mapsL? into itself, we conclude thal mapsH*(dB;) to
itself. Using interpolation we conclude thatmapsH 1/2(681) to itself. It follows,
sinceT is L2-selfadjoint, thafl also mapd ~1/2(3B;) (the dual ofH/?(3By)) to
itself. It is well-known that

1
Ker{—é + T} = { constants
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in any of these spaces (see [6] for this assertioh?nfrom which the assertions
in HY2 andH~1/2 follow easily). Moreover, the full spacé.{, HY/2, or H~1/2
respectively) may be decomposed as

1 1
Ker{—é +T}& Range{—é +T} .

Due to thel2-orthogonality of this decomposition (remembaris selfadjoint) it
now follows that

1
(—§+U¢:h, he L2(dB,) ,

has a solutionp € L2(9B,) iff Jos, N =0, and furthermore, if we require that
Jog, @ =0 then

0ll208,) < ClIhllL2(08y)

A similar existence statement and estimate holds At@B; ) replaced byH*1/2(3B;).
We claim that the solution of (3.35) is

@40 V=D = [ V0 Voiy)da, forxe Ry
where @ is the solution of(—§ +T)¢@ =h. Whenh is continuous this statement
is classical: ifh is continuous so i% (see e.g. [6] Proposition 3.14), so (3.39)
shows thaD (@) = h at dB;; moreover it is obvious thdd (@) (x) — 0 as|x| — oo.
The validity of (3.40) for allh € Hl/z(dBl) with mean value O follows easily, by a
density argument.

We now estimat®/ in terms ofg. For anyx € R3\ B, lethy(-) be the function

_y=x)-y
hX(y)_ |X_y|3 ) yeaBl .
It is easy to see that
1
(3.41) Ihllk1r2(0my) < Ikl oy < CW ;

with C independent ok € R3\ B,. Similarly, for anyx € R3\ B, let Hy(+) be the
vector-valued function

V=X -—x-y Yy

Hy(y) = Oxhy(y) = yF T hyR o YE9B
It is easy to see that
1
(3.42) [Hxll12(9,) < [Hxllkz oy < CW

with C independent ok € R®\ B,. Using (3.41) we see that the double layer
potential

D00 = 5 [ =0 ay)doy
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satisfies
ID(@)ll28285) < Cll@lH-12(08,) >

C
ID(@)|L=((x=r}) < =5 /1@ln-12008y) -

Using (3.42) we also have

C
1OD(@) [l (fj=R}) < @H(pHHﬂ/Z(dBl) -
By theH ~1/2(9B,) boundedness df-3 + T)~1, these estimates imply

IVllzee\gs) < CllDllk-11208;)
C

IV lle(in=ry) = g2liNlu-1208,) 5
C
1BVl (q=ry) < mglinlu-12(08y) -

for anyR > 2. This proves (3.36) and (3.37).

To establish (3.38), and thus complete the proof of the lemweaonly need to
show that

IVli2@er) < Clihlli-1208,) -
It suffices to show that

(3.43) IVIl2@8) =C (HhHHfl/Z(asl) + ”V”H*1/2(682)> ;

since the second term on the right is estimated by (3.37) Rith2.
We use a standard duality argument to prove (3.43)w.stlve

Aw=V in Bz\B_l with w=0 ondB,UdB; .
It satisfies

[Wihee\8n) < ClIVII2@ner) >
and thus

7] 7]
Ha_VW”Hl/Z(dBl) + ”EWHHU%&BZ) <ClVlle@,g) -
We therefore calculate

~VZ2dx= [ VAwdx
Bz\Bl BZ\Bl

0 0
= V —wdx— V—wdXx
B, OV B, OV

d
< HVHHfl/z(aBZ)Ha—VWHHl/z(aBZ)

0
+hlly-12(98y I EWH HY/2(9By)

< CIVllizeags) (Illi-soey + IV I8y )
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whence
IV @) < C (INa-sz0my) + IV ln-v208,) )
This verifies (3.43), completing the proof of the lemma. O

4 Numerical results

The main goal of this section is to demonstrate the sharpofemsr estimates.
After briefly reviewing the task at hand, we begin with a disgian of the “cloak-
busting” inclusions whose existence was announced in@e2tb. Then we show
that for these cloak-busting inclusions the estimate (4sléharp. We also exam-
ine the performance of the near-cloak as a function of trepasametef, and we
study the degree to which the fields outside the cloak emtiatge of a uniform
domain.

To describe the formulas used in our computations, compbeation is very
convenient. For all of our computations we take the backgpagolutionug to be
a plane waveyy(x) = €2, propagating in the, direction. Thisug is the solution
of

Aug+w?ug=0 inQ ,

(4.1) % = on dQ
with
4.2) Y =iy, .

Throughout this sectioBg denotes the ball of radiuR centered at the origin, the
domainQ is chosen to b& = B,, and all calculations are done at frequengy- 1.
(Note that these choices make (4.1) well-posed, siates not an eigenvalue of
the Neumann Laplacian dBp.)

We denote by, the solution to the following problem

div(A,Oup) + w?gpUp =0 inB, ,

4.3 Ju
( ) a—\f =y ondB, s
whereA,(y),dp (y) are given by

Ap=0p=1 for2p<|x <2,
(4.4) Ap=10=1+iB forp<|x<2p,

Ap,0p > O arbitrary forjx| <p ,

with B > 0. In principle the value of,(y) inside B, could be any symmetric
positive-definite matrix, but for simplicity we take bo#, andg, to be scalar
constantsn B,. When there is no danger of confusion, we will sometimes @bus
notation by writingA,, d, for the (arbitrary, constant) values of the coefficients in
B, (in particular, we have done this in (4.4)).
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Our near-cloaks are obtained by change-of-variables ubmgnapF, defined
by

% if [x<2p
(4.5) F=
(1 o |x|>1| if 2p<|x| <2

(in the notation of Section 3 this 5,). Note thatF mapsB, to B1, Bap 10 By,
and the annuluB, \ By, to the annulud; \ B;. The “push-forward” olu,, i.e. the
functionU, (y) = u, (F~1(y)), satisfies

(4.6) { div(F.(Ap)0Up) + w?F.(gp)Up =0 inB, |

(Fe(Ap)OUp) - v =y in 9B, ,

wherey is as before. Taking into account the special form (4.4) efdabefficients
under consideration, and the fact th#g and g, are scalar constants B, the
pushed-forward coefficients,(A,,0p) = (F.(Ap),F.(dp)) are given

.
Fe(Ao)(y) = e k1) -

forl<|y|<2
F(dp)(y) = W|x— F-1(y)

(4.7) In2DbyQ F (A))(y) =1, Fu(gp)(y) =4p?(1+iB) for i<y <1

F*(AP)(y) :AP ’ for | | <1
F.(a0)(y) = 4920, =2
and
(4.8)
»
Fo(A0)(Y) = P e ek 1y) »
forl<|y|<2

F.(0)(Y) = geprrg heF 1)
in 3D by F.(Ao)(Y) =2p, Fu(gp)(y) =8p3(1+iB) fori<ly|<1

F.(Ao)(y) = 20Ap , }

for y| < 3
F.(gp)(y) = 80%qp 2

We shall writev,, for the solution of the problem (4.3) in the particular cadeew
B = 0. Thus,v, solves

4.9 d
(4.9) Mo _y in 9B, |

{ div(A,OVp) + w?d,Vp =0 inB;
on
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WhereA;,,q;, are piecewise constant functions given by

{A;,q;,l forp<|x <2

(4.10) A,.q, > Oarbitrary ~ forlx <p .

The corresponding pushed forward problem and pushed fdreaefficients are
described by (4.6) and (4.7)/(4.8) with= 0, for 2D/3D, respectively.
We recall the following representations, in 2D and 3D, ofphene wave solu-
tion of (4.1),ug = €“:
k=-0

(4.11) Uo(r,0) = 5 J(wr)é®, in2D

k=—00

(4.12)  uo(r,0,9)=4my i'ji () W(I—ZT, 7—2T)Y,m(9,cp), in 3D

=0 m[<I
where here and in what follows, = —1, z denotes the complex conjugatez
and |, are the classical Bessel and spherical Bessel functiosisecavely (see for
instance [24]) and for eadh> 0,Y,"(68, ) with |m| < are the 2+ 1-orthonormal
spherical harmonics of degréeand ordem, (see for instance [18]). The explicit
(dual) presence of the angle/2 in the 3D formula stems from the fact that the
propagation direction (the, direction) corresponds to azimuthal and polar angle
/2. From (4.2), (4.11) and (4.12) we get that the fiuxdefined orr = 2) can be
written as

{ w(e)zzlﬂke‘ike, with }
(4.13) in2D |
Ik = w(2w)

00

0,0)= ™G @), with
(4.14) (6, 9) |;\n%|¢’| 1(6,9), wi 13D

P =4nai' j{ (20)Y7(5, 5)
4.1 Cloak-busting inclusions

We turn now to the identification of “cloak-busting” inclosis, elaborating on
the discussion in Section 2.5. It is natural to begin with 2k setting. Using
separation of variables, we may express the solwtiasf problem (4.9) as follows:

/
vp(r,e):Zaka (wr,/q—f’> kb ifr<p,
(4.15) Ap

Vp(r,8) = Z (Bka(wr) + M(Hlﬁl)(wr)) b ifp<r<2.

From the appropriate transmission conditions for problér)( i.e., continuity of
Vp and (A,0v,) - v acrossdB,, and the Neumann condition fep on B, we
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arrive at the following necessary and sufficient conditionthe well-posedness of
the problem (4.9):

(4.16)
0 # Di(Ap, 0p) = (wp\/,iz,’> (H(200) (H) (@p) — (HY) (20) K (wp))
0

Ay (wpﬁ) (kHE (@p) — (HY) 2w)K(wp))
0

for all integersk. Note that, due to well known properties of the Bessel fuimsj
it suffices to require that (4.16) hold for all nonnegativiegers.

Our “cloak-busting” inclusions correspond to choice#\pfqy, such thaDy(A,,dp) =
0 for somek € Z. Such coefficients make the problem (4.9) ill-posed (i.eeyth
make—w? an eigenvalue), despite the fact that (4.1) is well-posetiyipothesis.
For such inclusions near-cloaking is clearly not achievethe lossless case. We
will not attempt to classify all solutions dby(Ay,,qy,) = O; rather, we examine
selected solutions that are easy to identify and analyze.

Fork = 0 we make the choica;) = q;) and obtain the following positive solu-
tions of Do(Ay,qp,) = 0:

o B(wp) ((HEY) (2w)3p(wp) — (HEY) (wp)3h(2w))

@.17) A, =q,= & 0 .
Jy(ep) ((HEY (200)do(ep) — HEY (wp) 3y(2) )

Here we have used the fact that

(4.18) 0 (HMY (20) I (wp) — J(20)HY (wp) fork e Z

whenp is sufficiently small. The non-vanishing condition (4.18)pidirect conse-
quence of classical results about the asymptotic behatiBessel functions, and
the fact that),(2w) # 0 (since the problem (4.1) is wellposed by assumption). It
is quite easy to see that the right hand side of (4.17) is te#th(numerator and
denominator are pure imaginary) and due to the asymptotievder of Bessel
functions it is actually positive fop sufficiently small.

To find real positive solutions dDy(A),,d,) = O for somek > 0 we take a
different approach. Givek, we start by choosing a real numt®r> 0 such that

(4.19) Xk(Z)J(Z) <0,
then we make choice

o, = (Z)7A,/ (wp)? .
Itis easy to verify that with this choice aof,, Dk(A},qj,) = 0 when
0p3(Z) ((HMY (20)3(wp) — (HY) (w0p) %(20))

(4.20) A =
z3(z) (HY) (20)K(wp) — H (wp) 3 (2w)

o
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Due to the condition (4.18) thi&;, is well defined, and it is easily seen to be real.
Because of the asymptotics of the Bessel functions, andatttettiatJ(z*) and
J(z) have opposite signs, we may conclude #atnddgj, are positive.

Figure 4.1 shows the pushed-forward val&e&, ), F.(d,) whenk = 0, using
(4.17) and (4.7). When the coefficientsBa,, take these values the lossless ver-
sion of our construction (4.10) is resonant, i-ew? is a Neumann eigenvalue of
the p-inclusion problem. Notice that in this caEe(A})) — o asp — 0. Thus,
in the “physical” (pushed-forward) variables, these clbakting inclusions have
extreme physical properties in the lingit— 0.

Figure 4.2 gives the analogous picture kor= 1: it showsF.(A}) andF.(qj,)
when (A, d,) are the particular solutions &f; (A, qj,) = 0 given by (4.20) (for a
specific choice of* satisfying (4.19)). Notice that in this cabg(A;,) andF.(qp)
have finite, nonzero limits a8 — 0. Thus, in the “physical” (pushed-forward)
variables, these cloak-busting inclusionsriit have extreme physical properties.
We wonder how a lossless singular cloak of the type considiergs, 21] would
perform when faced with such an inclusion.

s Push forward of A’ in 2D for k=0 Push forward of g’_in 2D for k=0
x 10 P P
3.5
3.5F q
3l
3L i
25
2.5 1
2|
o =
< =
- uw
w oL i
15F
1 ] 151 E
05 1 1 i
ol 1
. . . . . . . . . .
(o] 0.02 0.04 0.06 0.08 0.1 (0] 0.02 0.04 0.06 0.08 0.1
0<p<0.1 0<p<0.1

FIGURE 4.1. Thek = 0 cloak-busting inclusions in 20F.(A;) = A,
andF. (d,) =4p?q), with A}, = g, given by (4.17).

We turn now to the 3D setting. The situation is not very défer so we shall
be relatively brief. Separation of variables yields thddwing expression for the
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Push forward of A’p for k=1 in 2D Push forward of q’p for k=1 in 2D
1.98
1.96 4 381+
1.94r 1 375}
1.921 b
37+
1.9 b
o o 36.51
< 188} 14 =
w w
1.86 E 361
1.841 b
355
1.82F q
35+
1.8 q
L 4 345
1.78 L L L L L L L L
(0] 0.02 0.04 0.06 0.08 0.1 (o] 0.02 0.04 0.06 0.08 0.1
0<p<0.1 0<p<0.1

FIGURE 4.2. Thek = 1 cloak-busting inclusions in 20, (A;) = A,
andF.(q,) =4p q’p whenA;, is given by (4.20) withk = 1 andqj, =
(Z)?A, /(wp)?.

solutionv,, of the lossless problem (4.9):

(4.21)
(1, 0,0) = %hr%l amji <wr\/;> Y™(0, ) ifr<p

Vo (r,0,9) = R|j| wr +S‘1“h wr)Ym(Qcp) if p<r<2

I= O|m<|

Wherehl(l) = j| +1y; denotes the first kind spherical Hankel function. Arguing as
for 2D, one finds the following necessary and sufficient ctiolifor the well-
posedness of the problem (4.9) in 3D:

(4.22)
0 Di(Ay,0p) = i <wpﬁz> (if o)y (p) ~ (H) (20) i (wp)

/

. g
— /A i (wp A

0

)(J.<2w>h Y (wp) - (WY (2w)ii(wp))

for all positivel.
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Our 3D “cloak-busting inclusions” are associated with clsiofA,q;, such
thatD, (A}, d,) = O for somel. As before, our goal is not to classify all solutions
of Dy(A,,dp) = 0, but rather to explore some examples. Fer 0 we make the
choiceA}, = q;, and obtain (using well-known results about the asymptatidhe
spherical Bessel functions) the following positive salatof DO(A;),q;)) =0:

jo(wp) (g (200)io(wp) — (G (wp) jo(2w)
jo(wp) () (200)o(wp) — h” (wp) jo(2))

For anyl > 0, we make the choice

(4.23) A, =q, =

(4.24) 0 = ()% oy, WhereZ is such thatji (') - j{(z') < 0

and we find thaD, (A}, ;) = 0 andA;, > 0,q, > 0 when

- @pin(@) ((h) 2w (wp) — (V) (wp) ji(2w) )
(4.25) Rp= : (1) . (1) . :
zif(z) ((h) (2w) it (wp) — Y (wp) jf (2w)

0
Figure 4.3 shows the pushed-forward valkig@\,) andF.(q,)) of ourl = 0 exam-
ple, whenA,, q;, are given by (4.23). The push-forward in this 3D setting iegi
by (4.8). Notice that in this cade (A},) — o while F.(g,) — 0 asp — 0. Thus, in
the “physical” (pushed-forward) variables, both coefiitgeassociated with these
3D cloak-busting inclusions become extremgpas 0.

Whenl = 1 andA;,, q, are given by (4.24)-(4.25), both.(A;,) andF.(q,) tend
to 0 asp — 0 (not shown). We did not find any examples in 3D analogousgotie
shown in Figure 4.2, where the push-forwards both remaimtéed agp — . This
suggests (but does not prove) that in the 3D setting, alkebnesting inclusions
have extreme physical properties in the physical (pusbesdrd) variables.

4.2 Sharpness of Theorem 3.1

We turn now to the optimality of our results concerning thefgrenance of our
near-cloak. According to Theorem 3.1, whers 1 andB ~ p~2 we have

C
——||¢lly1z0n, 2D
(426)  |lup— ol sa(0By) < § |109(P)] 2
CollW[lh-v2(98,) in 3D

whereu, is the solution of (4.3)Lg is the solution of (4.1), and the constait
is independent of the coefficienss,,d, in B,. To assess the sharpness of this
estimate, we focus (as already noted) on the case whenthe plane wave'“*,
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, Push forward of A’ for k=0 in 3D Push forward of g’_ for k=0 in 3D
x 10 P P

25F 1

1.5 1

b . . N . . . .
(0] 5 10 (0] 0.02 0.04 0.06 0.08 0.1
0<p<0.1 x 1072 0<p<0.1

FIGURE 4.3. Thel = 0 cloak-busting inclusions in 30F. (A} ) = 2pA;,
andF.(dp) :8p3q;, whenA;, = g, are given by (4.23).

i.e. wheny = iwe“v,. LetE,(B) be defined by

[log(p)|-{|up — Wol[ 3

H20%8)  in 2D
Wll-1/2(08,)
(4.27) Eo(B) =
[1up — Vol | 3 5. -
PlIW[l-12(08,) .

The assertion of (4.26) is thus tHag(B) < C whenB ~ p~2.

To approximateu, numerically we used separation of variables with finitely
many modes. In 2D we used the mod&§ with —30 < k < 30; in 3D we used
the modesy™(8, @) with 0 <1 < 30 and|m| <|. Thus the plane wavey was
approximated by

k=+30 _
Uo(r,0) ~ P (r,8) = Y K(wr)e’ in2D ,
k="30

NS

30
.- — .
Uo(r, 8, 9) ~ Ug"" (1,6, ) =4ﬂ%|'1|(wr) > YM(,5)"(6,9) in3D,
1= =]

and the solution, of (4.3) was approximated by similar finite sums.
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Figures 4.4 and 4.5 show the dependencg&gbn 3 in the 2D and 3D cases
respectively. In the top frames of each figliigis plotted as a function g8, for
three different values op: p =103, p = 1073, p = 10 /; the bottom frames
show zoomed-in versions near the optimal valueg @ivhich are just beyond the
range of the top frames). For all these plots the values,afndq, in B, were our
mode-0 cloak-busting inclusions, given by (4.17) for 2D &h@3) for 3D. Similar
results were obtained (not shown) for mode-1 cloak-bustictusions, given by
(4.20) in 2D and (4.24)-(4.25) in 3D. These are natural tesblpms, since for
suchA,, g, the structure is resonant (roughl, = ) whenf3 = 0.

Theorem 3.1 asserts thBp, is bounded by a constant (independenfgfand
dp) When ~ p~2. Figures 4.4 and 4.5 confirm this; in addition, the lower lot
suggest that the optimal value @{at least for our mode-0 cloak-busting examples)
is aboutcp~2 with c~ 2.5 in 2D andc ~ 4 in 3D. Asf3 decreases from this optimal
value the value oE, increases, becoming very much larger wiler< p~2. Thus,

a value off3 on the order ofp—2 is requiredto control the resonance associated
with a cloak-busting inclusion. The situation f@rlarger than the optimal value

is different: makingB very large does no real harm. Indeed, our calculations (not
shown) indicate thaEg remains finite a8 — . This is consistent with the results

in [17], where estimates similar to ours are obtained usimjrechlet boundary
condition (roughly the same as our setting with= ).

Figure 4.6 shows the behavior &), as a function ofp, whenf3 = (2p)~2.
The left frame shows the behavior in 2D the right in 3D. Theticwous line and
the dashed line in the left frame correspond to our mode-Orande-1 cloak-
busting inclusions, given by (4.17) and (4.20) respeativdlhe right frame uses
the same convention: the continuous line and the dasheddimespond to our 3D
mode-0 and mode-1 cloak-busting inclusions, given by l¥3¢¥and (4.24)-(4.25)
respectively. The figure shows quite clearly that wBea cp 2, Eo(B) has afinite
(nonzero) limit ago — 0. This confirms the sharpness of our estimate (4.26).

Finally we examine the degree to which the fields outside tbhakcemulate
those of a uniform domain. To this end, we observe that ourcxopate solu-
tion of the PDEUP™ and its push-forward) 2" are given by finite Fourier
sums. Therefore they extend naturally beydyd Their (common) extension is
the solution of an exterior problem (for the operatof w?) with the Cauchy data
(Uplr=2, %’h:z) = (Up|r=2, ). Abusing notation slightly, we write, or U, for
the extendedunction (dropping even the superscragbpr).

Consider tha.* plane wave residual at radil&s> 2, defined by

U, — —Rrllj »
(4.28) P(R p) = € P||wl|‘|0)rRHL (0.2m)
_1

H™2(9By)

with up(x) = €“*, If the cloaking were perfect then the plane wave residualldvo
vanish. The first frame of Figure 4.7 shoR&R,107°) as a function of 16 R <
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E(B) in 2D for p=10"3 E(B) in 2D for p=107° E,(B) in 2D for p=10""
10 10 10
8 8 8
__ 6 6 6
<
Q
w
4 4 4
2 2 2
0 0 0
0 5 10 0 5 10 0 5 10
B x 10° B x 10° B x 10"
Ep(B) around optimal B for p:lO'3 Ep(B) around optimal B for ple'5 EP(B) around optimal B for p=1077
1.655 1538 1.495
1.65
1.536 1.494
a 1.645
e 1.493
1.64 1.534
1.492
1.635 1.532
1.63 1.491
6 6.5 7 10 10.5 11 14 14.5 15
log, ,(B) log, ,(B) log, ,(B)

FIGURE 4.4. The influence of the loss paramefem 2D. The lower
frames indicate that the optimgl~ 10%/1% 2~ 2.5p 2.

100 in 2D. The second frame of Figure 4.7 shows

(4.29) f(p) = [log(2p)|P(2,p)

as a function ofp. (These figures show the 2D case, with= (2p)~2, for our
mode-0 cloak-busting inclusion (4.17); the situation in i83imilar.) Note from
Figure 4.7 thaff approaches a constant@s— 0, consistent with the sharpness of
our estimate (4.26).

Figures 4.8 and Figure 4.9 show contour plots of the real (@) and the
projection onto the plane= 0 of the real part (3D) of the extended pushed forward
solutionU,. Figures 4.10 and 4.11 are zoomed-in versions of Figurentl&aure
4.9. In these examples we have tagr- (2p)~2, and we focus on the mode-0
cloak-busting inclusions, given by (4.17) in 2D and (4.283D. Each figure shows
the behavior for four different values pf Since the near-cloak is not very effective
in 2D, Figures 4.8 and 4.10 use relatively small valuep ohamely 101, 1072,
104, and 10°®. Since the near-cloak is more effective in 3D, we use muajetar
values ofp for Figures 4.9 and 4.11, namely5) 101, 102, and 103. The
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E(B) in 3D, for p=10"% E,(B) in 3D, for p=10"° E,(B)in 3D, for p=10""

9 9 9

8 8 8

7 7 7

S 6 6

w

5 5 5

4 4 4

3 3 3

2 2 2

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
B x 10° B x 10° B x 10"

23 2.3
2.3

2.25 2.25
2.25

2.2 2.2
a 2.2

Q

w 2.15
215 2.15

21 21 2.1

2.05 2.05 2.05

6 6.5 7 10 10.5 11 14 14.5 15
log, ,(B) log, ,(B) log, ,(B)

FIGURE 4.5. The influence of the loss paramefen 3D. The lower
frames indicate that the optimgl~ 10/1% 2 ~ 4p—2.

figures show that whep is sufficiently small, the extended solutiafy, is close
to the plane wavel, away fromBy, i.e. we get approximate cloaking in the far
field. Each frame of Figure 4.8 achieves roughly the sameegegf approximate
cloaking as the corresponding frame of Figure 4.9. Thisctflthe very different
performance of our near-cloaks in 2D (where the deviatiomfperfect cloaking
is of order ¥|logp|) versus 3D (where the deviation is of orgex.

In summary, the actual performance of our near-cloak is ¢ei@ly consistent
with the estimate of Theorem 3.1, in the sense that (a) tteedasametef3 must
be at least of ordep—2 for the conclusion of the Theorem to be valid, and (b)
with such a loss parameter, the Theorem correctly estinthteperformance of
the near-cloak for our cloak-busting choicesfgfandg,.
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E_(B) for B=1/(4p>) in 2D E(B) for B=1/(4p?) in 3D
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solution Up extended to B for p:10_l solution Up extended to B for p:10_2
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FIGURE 4.8. The 2D extended pushed forward solutigynon By
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solution Up extended to B for p:10_1 solution Up extended to B for pzlo_2

FIGURE 4.10. The 2D extended pushed forward solutifynon B3

solution Up extended to B for p=0.5 solution Up extended to B for pzlo_1

FIGURE 4.11. The 3D extended pushed forward solutinon Bz
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