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Abstract. Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the
dynamics into RN using a ‘typical’ nonlinear projection map? We answer this question affirmatively by devel-

oping embedding theorems for compact invariant sets associated with C1 maps on Hilbert spaces. Examples of

such discrete-time dynamical systems include time-T maps and Poincaré return maps generated by the solution
semigroups of evolution partial differential equations.

We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-

dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions
under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-

dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical
in the sense of prevalence).
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1. Introduction

This paper is about observing Lyapunov exponents of infinite-dimensional dynamical systems by projecting the
dynamics into RN . We focus on discrete-time infinite-dimensional dynamics produced by maps on real Hilbert
spaces. Important types of such maps include time-T maps and Poincaré return maps generated by the solution
semigroups of evolution partial differential equations.

Let H be a real Hilbert space and let f : H → H be a C1 (continuously Fréchet-differentiable) map. A
Lyapunov exponent ω(x, v) is a limit of the form

(1) ω(x, v) = lim
n→∞

1

n
log ‖Dfnx v‖ ,

where x ∈ H and v ∈ TxH is a tangent vector.

1.1. Lyapunov exponents in finite dimensions. Lyapunov exponents play a central role in the theory of
nonuniformly hyperbolic dynamical systems in finite dimensions (here the domain of f is a compact Riemann-
ian manifold M). They are deeply related to a number of dynamical quantities of interest, including entropy,
dimension, and rates of escape in open systems. Although Lyapunov exponents encode information about the
infinitesimal behavior of f , a vast array of results demonstrates that local and even global information about the
nonlinear dynamics of f can be deduced from them (see e.g. [1, 2, 29]).
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The limit in (1) does not necessarily exist for every (x, v) in the tangent bundle TM ; nevertheless, Lyapunov
exponents exist for almost every x ∈ M assuming stationarity. Oseledec [18] proves that if µ is an f -invariant
Borel probability measure, then for µ almost every x ∈M , there exist numbers

ω1(x) > ω2(x) > · · · > ωq(x)(x)

with corresponding multiplicities m1(x), . . . ,mq(x)(x) such that

(a) for every tangent vector v ∈ TxM , ω(x, v) exists and equals ωj(x) for some j;

(b)
∑q(x)
i=1 mi(x) = dim(M);

(c)
∑q(x)
i=1 ωi(x)mi(x) = limn→∞

(
1
n

)
log |det(Dfnx )|.

Further, if f is a diffeomorphism of M , then the tangent space TxM admits a decomposition

TxM = E1(x)⊕ E2(x)⊕ · · · ⊕ Eq(x)(x)

with dim(Ei(x)) = mi(x) and ω(x, v) = ωi(x) for every v ∈ Ei(x). If µ is ergodic, then the ωi(·) are constant µ
almost everywhere; in this case we call the ωi the Lyapunov exponents of the system (f, µ).

While the Oseledec multiplicative ergodic theorem makes conclusions about Lyapunov exponents given an
invariant measure, the existence of important invariant measures for dynamical systems that exhibit some degree
of hyperbolicity is another matter entirely. Researchers actively work to identify mechanisms that may produce
nonuniform hyperbolicity and then prove that these mechanisms do produce nonuniform hyperbolicity for concrete
systems of interest in the physical and biological sciences. This program has been carried out for limit cycles and
homoclinic orbits in [28] and [27], respectively.

1.2. Lyapunov exponents in infinite dimensions. Here one starts with a dynamical system σ : Ω→ Ω, selects
a Banach space B, and then assigns to each ω ∈ Ω a bounded linear operator Lω on B. The assignment ω 7→ Lω is
known as a cocycle over the dynamical system. Having defined the cocycle, one then hopes to prove a multiplicative

ergodic theorem in the spirit of Oseledec that applies to the compositions L(n)
ω = Lσn−1(ω) ◦ · · · ◦Lσ(ω) ◦Lω. For a

smooth map f on a real Hilbert space H, Ruelle proves a multiplicative ergodic theorem for the derivative cocycle
assuming Dfx is compact [23]. Cocycles into operators on Banach spaces (possibly with nontrivial essential
spectrum) are treated in [5, 12, 17, 26].

Transfer operator techniques have led to substantial understanding of the statistical properties of deterministic
autonomous dynamical systems. With an eye on applications, multiplicative ergodic theorists in recent years have
sought to extend transfer operator techniques to nonautonomous and random dynamical systems. This effort has
led to beautiful multiplicative ergodic theorems for transfer operator cocycles [5, 6].

The program aimed at deducing global dynamical information about infinite-dimensional systems from Lya-
punov exponent data is in its early stages of development. Results in this direction include the existence of
Sinai-Ruelle-Bowen (SRB) measures for periodically-kicked supercritical Hopf bifurcations in a concrete PDE
context [16] and the existence of horseshoes in a general context [13, 14].

1.3. Observation of Lyapunov exponents. Suppose A ⊂ H satisfies f(A) = A (we call A an invariant set).
For example, A may be the global attractor of a dissipative PDE such as the two-dimensional incompressible
Navier-Stokes system. We are interested in observing Lyapunov exponents of the restriction f |A by projecting
the dynamics into RN . For a map ϕ : H → RN (we call ϕ an observable or measurement map), we say that ϕ
induces dynamics on ϕ(A) if there exists a map f∗ : ϕ(A)→ ϕ(A) such that the following diagram commutes:

A
f−−−−→ Ayϕ yϕ

ϕ(A)
f∗−−−−→ ϕ(A)

Question 1.1. For a ‘typical’ observable ϕ, if ϕ induces dynamics on ϕ(A) and if ω(z, w) is a Lyapunov exponent
for f∗, do there exist x ∈ A and a vector v such that ω(x, v) is a Lyapunov exponent for f |A and ω(x, v) = ω(z, w)?

Ott and Yorke [20] develop an affirmative answer to Question 1.1 for the case H = RD. In this work we treat
the infinite-dimensional case by developing an embedding result of the following type: For a ‘typical’ observable
ϕ, if ϕ induces dynamics on ϕ(A), then ϕ embeds A into RN . We then use this embedding result (Theorem 3.10)
to answer Question 1.1 in the affirmative (Corollary 3.11). Keep the following in mind as we develop the theory.
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(a) (Placement of hypotheses) Since we develop a theory of observation, we strive to place the hypotheses on
the observed set ϕ(A) and the induced dynamics thereon rather than on f and A. Indeed, we view f and
A as objects that are not known a priori.

(b) (Notion of ‘typical’) We use the measure-theoretic notion of prevalence [3, 8, 9, 10, 21]. Prevalence is
suitable for spaces of observables such as C1(H,RN ). See Section 2 for a brief overview.

(c) (Generalized tangent spaces) We expect the set A to have fractal properties. We therefore use a generalized
notion of tangent space suitable for such sets (Definition 3.2).

We finish the introduction by briefly examining an alternate approach to the embedding problem: Use as-
sumptions about dimension to embed A into RN (in the spirit of the Whitney embedding theorem) rather than
formulating results in terms of induced dynamics. As we will see, one encounters an unresolved challenge when
using dimension characteristics.

1.4. Embedding results via dimension characteristics. Here we discuss a prototype result that makes use
of dimension.

Prototype Theorem 1.2. Let H be a real Hilbert space and let A ⊂ H be compact. Fix N ∈ N. For almost
every (in the sense of prevalence) ϕ ∈ C1(H,RN ), if dim(ϕ(A)) < N/2, then ϕ is one-to-one on A.

Observe that the hypothesis involving dimension is placed on ϕ(A) rather than A. We do not know if there
exists a dimension characteristic for which the prototype theorem holds. Natural candidates include box-counting
dimension dimB and Hausdorff dimension dimH. Sets with finite box-counting dimension project well:

Theorem 1.3 ([7]). Let H be a real Hilbert space and let A ⊂ H be a compact set with dimB(A) = d < ∞ and
with thickness exponent τ(A) (see [7, Definition 3.4] for the definition of thickness exponent). Let N > 2d be an
integer and let α ∈ R satisfy

0 < α <
N − 2d

N(1 + τ(A)/2)
.

For almost every (in the sense of prevalence) C1 map ϕ : H → RN , there exists K > 0 such that for all x, y ∈ A,
we have

K ‖ϕ(x)− ϕ(y)‖α > ‖x− y‖ .
That is, ϕ is one-to-one on A with Hölder-continuous inverse.

Remark 1.4. Theorems 1.3 and 1.5 remain true when one replaces the thickness exponent of A with the Lipschitz
deviation dev(A) [22]. Roughly speaking, τ(A) measures how well A can be approximated by finite-dimensional
subspaces of H, while dev(A) measures how well A can be approximated by the graphs of Lipschitz functions
defined on finite-dimensional subspaces of H (with lower values of τ(A) and dev(A) indicating better approxima-
bility). One always has dev(A) 6 τ(A).

However, it is difficult to infer the box-counting dimension of a set from that of its images. Sauer and
Yorke [25] construct a compact set Q ⊂ R10 with dimB(Q) = 5 such that dimB(ϕ(Q)) < 4 for every C1 map
ϕ : R10 → R6. See [4, 11] for additional examples in the same spirit. By contrast, Hausdorff dimension is preserved
by typical smooth maps (for sets with thickness exponent zero, a condition automatically satisfied when H is
finite-dimensional).

Theorem 1.5 ([19]). Let H be a real Hilbert space and let A ⊂ H be a compact set with thickness exponent τ(A).
Let N ∈ N. For almost every (in the sense of prevalence) C1 map ϕ : H → RN , we have

dimH(ϕ(A)) > min

{
N,

dimH(A)

1 + τ(A)/2

}
.

In particular, dimH(ϕ(A)) = dimH(A) if τ(A) = 0 and N > dimH(A).

However, sets with low Hausdorff dimension may be difficult to project in a one-to-one way. Kan [24, Appendix]
constructs a set X ⊂ RD with Hausdorff dimension zero such that every linear map ϕ : RD → RN fails to be
one-to-one on X if N < D.

For H = RD, the difficulties associated with Hausdorff dimension and box-counting dimension can be overcome
by using the notion of tangent dimension dimT(Y ). Introduced in [20], dimT(Y ) is given for Y ⊂ RD by

dimT(Y ) = sup
x∈Y

dim(TxY ),

where TxY denotes the tangent space at x relative to Y (Definition 3.2). Ott and Yorke formulate a ‘Platonic’
version of the Whitney embedding theorem using tangent dimension.



4 WILLIAM OTT, MAURICIO A. RIVAS, AND JAMES WEST

Theorem 1.6 ([20]). Let A be a compact subset of RD and let N ∈ N. For almost every (in the sense of
prevalence) ϕ ∈ C1(RD,RN ), if dimT(ϕ(A)) < N/2, then ϕ is one-to-one on A.

The proof of Theorem 1.6 uses the fact that if A ⊂ RD is compact, then dimB(A) 6 dimT(A). This inequality
is a consequence of a manifold extension theorem [20, Theorem 3.5]: For every x ∈ A, there exists a neighborhood
N(x) of x in RD and a C1 manifold M such that M ⊃ A ∩ N(x) and TxA = TxM . The manifold extension
theorem, however, does not hold in general for compact subsets of infinite-dimensional real Hilbert spaces.

2. Linear prevalence

Prevalence is a measure-theoretic notion of genericity for infinite-dimensional spaces. We summarize the theory
here in the context of complete metric linear spaces. For more information, see [3, 8, 9, 10, 21].

Definition 2.1. Let V be a complete metric linear space. A Borel set S ⊂ V is said to be shy if there exists a
Borel measure µ on V satisfying

(a) 0 < µ(K) <∞ for some compact set K ⊂ V ;

(b) µ(S + x) = 0 for all x ∈ V .

We say that such a measure is transverse to S. More generally, a set S is said to be shy if it is contained in a shy
Borel set. The complement of a shy set is said to be a prevalent set.

Prevalence has the following properties [9].

(LP1) All prevalent sets are dense.

(LP2) Every subset of a shy set is shy.

(LP3) Every translate of a shy set is shy.

(LP4) The union of a countable collection of shy sets is shy.

(LP5) A set S ⊂ Rm is shy if and only if it has Lebesgue measure zero.

Property (LP5) shows that prevalence generalizes the translation-invariant notion of Lebesgue almost every to
infinite-dimensional complete metric linear spaces.

It is useful to view a Borel measure µ on V as an object that defines a family of perturbations. From this point
of view, a Borel set E ⊂ V is prevalent if there exists a Borel measure µ such that for every x ∈ V , x+ y ∈ E for
µ almost every y in the support of µ. An often useful choice for µ is Lebesgue measure on a finite-dimensional
subspace of V .

Definition 2.2. Let V be a complete metric linear space. A finite-dimensional subspace P ⊂ V is said to be a
probe for a Borel set E ⊂ V provided

λP ({p ∈ P : x+ p /∈ E}) = 0

for every x ∈ V , where λP denotes Lebesgue measure on P .

Notice that if a Borel set E ⊂ V has a probe, then E is prevalent.

3. Projection of dynamics: the Hilbert space case

Throughout this section, let H be a real Hilbert space with norm ‖·‖ induced by the inner product 〈·, ·〉 and
let H∗ denote the dual of H. Let f : H → H be a map and let A ⊂ H satisfy f(A) = A (we call A an invariant
set). For a map ϕ : H → RN , we say that ϕ induces dynamics on ϕ(A) if there exists a map f∗ : ϕ(A) → ϕ(A)
such that the following diagram commutes:

A
f−−−−→ Ayϕ yϕ

ϕ(A)
f∗−−−−→ ϕ(A)

We focus on the following question. For a typical observable ϕ : H → RN , does the existence of an induced
map f∗ with specified properties imply that A is ‘equivalent’ to ϕ(A) and that the dynamical systems (f,A) and
(f∗, ϕ(A)) are ‘equivalent’? This question has been answered affirmatively in the continuous category.



OBSERVING LYAPUNOV EXPONENTS 5

3.1. Continuous observables. We establish some notation before stating the result. For a map g : X → X
and k ∈ N, let Perk(g) denote the set of periodic points of g of period k. More precisely,

Perk(g) = {x ∈ X : gk(x) = x and gi(x) 6= x for 1 6 i 6 k − 1}.

Theorem 3.1 ([15]). Let H be a separable real Hilbert space and let f : H → H be a map. Suppose that A ⊂ H
is a compact set satisfying f(A) = A. Let N ∈ N and let V be any closed subspace of C0(H,RN ) that contains
the bounded linear functions. For prevalent ϕ ∈ V , if f induces a map f∗ on ϕ(A) satisfying f∗ ◦ ϕ = ϕ ◦ f on A
and if

(a) f∗ : ϕ(A)→ ϕ(A) is invertible;

(b) Per1(f∗) ∪ Per2(f∗) is countable;

then ϕ|A is a homeomorphism and the dynamical systems (f,A) and (f∗, ϕ(A)) are topologically conjugate.

3.2. Observing differentiable dynamics. In order to formulate versions of Theorem 3.1 for differentiable
dynamics, we must first define a notion of differentiability suitable for maps defined on arbitrary subsets of real
Hilbert spaces. We call this notion quasi-differentiability; it is defined in terms of generalized tangent spaces.

Definition 3.2. Let X be a real Hilbert space and let E ⊂ X. For x ∈ E, let ∆xE be the set of all directions
v ∈ X for which there exist sequences (xi)

∞
i=1 and (yi)

∞
i=1 in E such that xi → x, yi → x, xi 6= yi for all i, and

lim
i→∞

yi − xi
‖yi − xi‖

= v.

The tangent space at x relative to E, denoted TxE, is the smallest closed subspace of X that contains ∆xE.
The tangent bundle over E is defined by TE = {(x, v) : x ∈ E, v ∈ TxE}.

Definition 3.3. Let X be a real Hilbert space. A map f : X → X is said to be quasi-differentiable on a set
E ⊂ X if for each x ∈ E there exists a bounded linear operator Dfx on X such that

lim
i→∞

f(yi)− f(xi)−Dfx(yi − xi)
‖yi − xi‖

= 0

for all sequences (xi)
∞
i=1 in E and (yi)

∞
i=1 in E satisfying xi → x, yi → x, and xi 6= yi for all i. We call the

operator Dfx a quasi-derivative of f at x.

Now assume for the remainder of Subsection 3.2 that f : H → H is C1 and recall that A ⊂ H satisfies
f(A) = A. We will address the following question.

(Q1) For a prevalent C1 observable ϕ : H → RN , if f induces a quasi-differentiable map f∗ on ϕ(A), does ϕ
embed A into RN?

As we now explain, care must be taken when choosing a notion of embedding.

3.2.1. Notions of embedding. Our first notion of embedding is motivated by classical differential topology.

Definition 3.4. A C1 map ϕ : H → RN is said to be an immersion on a set E ⊂ H if Dϕx : TxE → Tϕ(x)ϕ(E)
is injective for every x ∈ E. An injective immersion ϕ is said to be an embedding of E if ϕ|E maps E
homeomorphically onto ϕ(E).

Suppose that C1 ϕ : H → RN embeds a set E ⊂ H into RN and let p ∈ E be an accumulation point of E.
If H is finite-dimensional, then the fact that Dϕp : TpE → Tϕ(p)ϕ(E) is injective implies that it is surjective as
well. This follows from the fact that the unit sphere in any finite-dimensional Hilbert space is compact. However,
injectivity of Dϕp on TpE does not imply surjectivity of Dϕp on TpE if H is infinite-dimensional because the
unit sphere in such an H is no longer compact. The following example illustrates the phenomenon.

Let X be an infinite-dimensional separable real Hilbert space with orthonormal basis {e i : i ∈ N} and let
p ∈ X. Define Q = {p + e i/i : i ∈ N} ∪ {p}. The direction set ∆pQ is empty and therefore TpQ = {0} despite
the fact that p is an accumulation point of Q. Now suppose that C1 ϕ : X → RN embeds Q into RN . Since
ϕ(p) is an accumulation point of ϕ(Q), the compactness of the unit sphere SN−1 in RN implies that ∆ϕ(p)ϕ(Q)
is nonempty and therefore dim(Tϕ(p)ϕ(Q)) > 0.

Motivated by this example, we formulate a second, stronger notion of embedding.

Definition 3.5. A C1 map ϕ : H → RN is said to be a strong embedding of a set E ⊂ H if ϕ is an embedding
of E and if Dϕx : TxE → Tϕ(x)ϕ(E) is bijective for every x ∈ E.

Note that if H is finite-dimensional, then an embedding of E is a strong embedding of E.
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3.2.2. Embedding theorems: general case. We formulate conditions under which (Q1) has an affirmative
answer in the sense of Definition 3.4.

Lemma 3.6. Let H be a separable real Hilbert space and let f : H → H be a C1 map. Suppose A ⊂ H is such
that f(A) = A and Dfx is injective on TxA for every x ∈ A \ Per1(f |A). Let N ∈ N. For every ball B = B(y, r)
in H, the set WB of observables ϕ ∈ C1(H,RN ) satisfying

(a) there exists (x, v) ∈ TA such that v 6= 0, x /∈ B(y, 2r), f(x) ∈ B(y, r), and Dϕxv = 0;

(b) for every such element of TA we have (Dϕf(x) ◦Dfx)v = 0;

is a shy subset of C1(H,RN ).

Proof of Lemma 3.6. Assume H is infinite-dimensional. It suffices to consider the case N = 1. We will construct
a measure µ that is transverse to WB. Choose a C∞ bump function β : R→ R such that

0 6 β 6 1, β ≡ 1 on {|s| < 25/16} , supp(β) = {|s| 6 9/4} .

Define βB : H → R by

βB(x) = β

(
‖x− y‖2

r2

)
.

The function βB has the following properties:

0 6 βB 6 1, βB|B(y, 5r/4) ≡ 1, supp(βB) = B(y, 3r/2).

Now let {e∗m : m ∈ N} be an orthonormal basis for H∗. Define

Q =

{
βB

∞∑
m=1

m−1γme∗m : |γm| 6 1 for all m

}
.

Notice that Q is compact. Let µ be the probability measure on Q that results from choosing the γm independently
and uniformly on [−1, 1]. We claim that µ is transverse to WB.

Let ψ ∈ C1(H,R). Suppose that there exists (x, v) ∈ TA such that v 6= 0, x /∈ B(y, 2r), f(x) ∈ B(y, r), and
Dψxv = 0. (If no such element of TA exists, then {η ∈ Q : ψ + η ∈WB} = ∅.) Let z = Dfxv. We represent z as
a sequence (zi)

∞
i=1 where zi = 〈z, e i〉. Let ` ∈ N be such that z` 6= 0. For (γm) ∈ [−1, 1]N, we have

D

(
ψ + βB

∞∑
m=1

m−1γme∗m

)
f(x)

z = Dψf(x)z +
∑
m 6=`

m−1γm〈em, z〉+ `−1γ`〈e`, z〉

= Dψf(x)z +
∑
m 6=`

m−1γm〈em, z〉+ `−1γ`z`.(2)

Consequently, if we fix γm for all m 6= `, then the right side of (2) is equal to 0 for at most one value of γ`. The
Fubini/Tonelli theorem therefore implies that µ({η ∈ Q : ψ + η ∈WB}) = 0. We conclude that µ is transverse to
WB. �

Lemma 3.7. Let H be a separable real Hilbert space and let f : H → H be a C1 map. Suppose A ⊂ H is such
that f(A) = A and suppose x ∈ Per1(f |A). Let N ∈ N. If

(Op1) the operator Dfx|TxA is not a scalar multiple of the identity;

(Op2) the real point spectrum σp of (Dfx|TxA)∗ is countable;

then the set Zx of observables ϕ ∈ C1(H,RN ) satisfying

(Ker1) ker(Dϕx) ∩ TxA 6= {0};
(Ker2) Dfx

(
ker(Dϕx) ∩ TxA

)
⊂ ker(Dϕx);

is a shy subset of C1(H,RN ).

Proof of Lemma 3.7. Assume H is infinite-dimensional. It suffices to consider the case N = 1. If dim(TxA) = 1,
then (Ker1) is satisfied by only a shy subset of C1(H,R). Condition (Ker1) is always satisfied if dim(TxA) > 1;
in this case we show that (Ker2) is a shy condition.

Let L = Dfx|TxA and assume that L is not a scalar multiple of the identity. Suppose that 0 6= w∗ ∈ (TxA)∗

satisfies L(ker(w∗)) ⊂ ker(w∗). For all v ∈ ker(w∗), we have 〈w, v〉 = 0 and 〈w,Lv〉 = 〈L∗w, v〉 = 0. The vector
w is therefore an eigenvector of L∗.
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We show that Zx is shy by using Lebesgue measure on a 1-dimensional subspace of C1(H,R). For γ ∈ σp, let
Eγ be the eigenspace associated with γ. Since L is not a scalar multiple of the identity, neither is L∗. Let

y ∈ TxA \
⋃
γ∈σp

Eγ .

We view y∗ ∈ (TxA)∗ as an element of H∗ by composing y∗ with the orthogonal projection π from H onto TxA:
define y∗(v) = 〈y, π(v)〉 for all v ∈ H. Let Y be the 1-dimensional subspace of C1(H,R) spanned by y∗. Let
ϕ ∈ C1(H,R). We claim that

(3) λY ({c ∈ R : ϕ+ cy∗ ∈ Zx}) = 0.

Let γ ∈ σp. Suppose that c1, c2 ∈ R are such that ϕ + c1y
∗ ∈ Zx and ϕ + c2y

∗ ∈ Zx. Suppose further that the
vectors in TxA associated with Dϕx ◦ π+ c1y

∗ and Dϕx ◦ π+ c2y
∗ via the Riesz representation theorem are both

elements of Eγ . This implies that (c1 − c2)y ∈ Eγ . Since y ∈ TxA \ Eγ , we conclude that c1 = c2. The set σp is
countable and therefore {c ∈ R : ϕ+ cy∗ ∈ Zx} is countable. This establishes (3).

�

The following proposition provides a preliminary answer to (Q1).

Proposition 3.8. Let H be a separable real Hilbert space and let f : H → H be a C1 map. Suppose that A ⊂ H
is a compact set such that f(A) = A. Assume

(H1) Per1(f |A) ∪ Per2(f |A) is countable;

(H2) f |A is injective;

(H3) Dfx is injective on TxA for every x ∈ A \ Per1(f |A);

(H4) for every x ∈ Per1(f |A), the operator Dfx|TxA is not a scalar multiple of the identity;

(H5) for every x ∈ Per1(f |A), the real point spectrum of (Dfx|TxA)∗ is countable.

Let N ∈ N. For prevalent ϕ ∈ C1(H,RN ), if f induces a quasi-differentiable map f∗ on ϕ(A), then ϕ embeds A
into RN in the sense of Definition 3.4.

Proof of Proposition 3.8. Let N ∈ N. Applying Proposition 3.5 of [15], there exists a prevalent set Γ1 ⊂
C1(H,RN ) such that for ϕ ∈ Γ1, if f induces a map f∗ on ϕ(A) satisfying f∗ ◦ ϕ = ϕ ◦ f on A, then ϕ
maps A homeomorphically onto its image.

Let {Bi : i ∈ N} be a collection of open balls in H that forms a basis for the topology on H. Define the
following sets:

Γ2 =

∞⋂
i=1

C1(H,RN ) \WBi
, Γ3 =

⋂
x∈Per1(f |A)

C1(H,RN ) \ Zx.

The set Γ2 is prevalent by Lemma 3.6 and property (LP4). The set Γ3 is prevalent by Lemma 3.7 and (LP4).
Property (LP4) applies here because (H1) gives that Per1(f |A) is countable.

Let Γ = Γ1 ∩ Γ2 ∩ Γ3. For ϕ ∈ Γ, if f induces a quasi-differentiable map f∗ on ϕ(A) satisfying f∗ ◦ ϕ = ϕ ◦ f
on A, then ϕ embeds A into RN . �

We obtain an improved version of Proposition 3.8 by transferring (H1)–(H3) onto the induced dynamics.

Theorem 3.9. Let H be a separable real Hilbert space and let f : H → H be a C1 map. Suppose that A ⊂ H
is a compact set such that f(A) = A. Assume (H4) and (H5). Let N ∈ N. For prevalent ϕ ∈ C1(H,RN ), if f
induces a quasi-differentiable map f∗ on ϕ(A) satisfying

(H1)* Per1(f∗) ∪ Per2(f∗) is countable;

(H2)* f∗ is injective;

(H3)* (Df∗)z is injective on Tzϕ(A) for every z ∈ ϕ(A) \ Per1(f∗);

then ϕ embeds A into RN in the sense of Definition 3.4.

Proof of Theorem 3.9. If (H1)–(H3) hold, then Theorem 3.9 follows from Proposition 3.8. If (H1) does not
hold, then Per1(f |A) ∪ Per2(f |A) is uncountable. For prevalent ϕ ∈ C1(H,RN ), ϕ(Per1(f |A) ∪ Per2(f |A)) is
uncountable (see Proposition 2.6 of [15]); for any such ϕ, f cannot induce a map on ϕ(A) satisfying (H1)*. If (H2)
(respectively (H3)) fails to hold, then a quasi-differentiable induced map satisfying (H2)* (respectively (H3)*)
cannot exist for prevalent ϕ ∈ C1(H,RN ). �
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3.2.3. Embedding theorems: strong case. We now formulate conditions under which (Q1) has an affirmative
answer in the sense of Definition 3.5. The key idea here is to place a mild hypothesis on the tangent dimension
of the image ϕ(A).

Theorem 3.10. Let H be a separable real Hilbert space and let f : H → H be a C1 map. Suppose that A ⊂ H
is a compact set such that f(A) = A. Assume (H5). Let N ∈ N. For prevalent ϕ ∈ C1(H,RN ), if

(DimT) dimT(ϕ(A)) < N,

and if f induces a quasi-differentiable map f∗ on ϕ(A) satisfying (H1)*–(H3)* as well as

(H4)* for every z ∈ Per1(f∗), the operator Df∗|Tzϕ(A) is not a scalar multiple of the identity,

then ϕ strongly embeds A into RN .

Proof of Theorem 3.10. First assume that for every q ∈ A and for every pair of sequences (xi)
∞
i=1 and (yi)

∞
i=1 in

A with xi → q, yi → q, and xi 6= yi for all i, the sequence of normalized differences ((yi − xi)/‖yi − xi‖) in the
unit sphere S of H has a converging subsequence. Under this assumption, if ϕ ∈ C1(H,RN ) is an embedding of
A, then ϕ is a strong embedding of A.

If (H4) holds as well, then the proof of Theorem 3.9 works for Theorem 3.10 as well. If (H4) does not
hold, there exists p ∈ Per1(f |A) such that Dfp|TpA is a scalar multiple of the identity. We consider two cases.
First, if dim(TpA) > N , then for prevalent ϕ ∈ C1(H,RN ), we have that dim(Tϕ(p)ϕ(A)) = N and Dϕp maps
TpA surjectively onto Tϕ(p)ϕ(A). Any such ϕ cannot induce a quasi-differentiable map on ϕ(A) satisfying (H4)*.

Second, if dim(TpA) < N , then for prevalent ϕ ∈ C1(H,RN ), Dϕp maps TpA injectively (and therefore bijectively
by our sequential precompactness assumption) onto Tϕ(p)ϕ(A). If any such ϕ induces a quasi-differentiable map

f∗ on ϕ(A), we would have (Df∗)ϕ(p) = (Dϕ ◦ Df ◦ Dϕ−1)ϕ(p) on Tϕ(p)ϕ(A). This precludes the possibility
of (H4)*.

For the second part of the proof, assume that there exist q̂ ∈ A and sequences (xi)
∞
i=1 and (yi)

∞
i=1 in A such

that xi → q̂, yi → q̂, xi 6= yi for all i, and the sequence of normalized differences (vi = (yi − xi)/‖yi − xi‖) has
no converging subsequences. This implies that

ρ := lim
M→∞

inf
i,j>M
i 6=j

∠(vi, vj) > 0.

By passing to a subsequence, we may assume that ∠(vi, vi′) > ρ/2 for all i 6= i′.

We use the sequence (vi) to construct a probe. Let V = span{vi : i ∈ N} and let πV : H → V denote orthogonal
projection onto V . Let L0 : V → V be a bounded linear map such that 〈L0vi, L0vi′〉 = 0 for all i 6= i′. Define
L = L0 ◦πV . Let {en : 1 6 n 6 N} be an orthonormal basis for RN . Define the bounded linear map ψ : H → RN
by

(4) ψ =

N∑
n=1

( ∞∑
m=0

(L(ymN+n − xmN+n))∗ ◦ L

)
en,

where we may assume (by passing to a subsequence if necessary) that ‖L(yi − xi)‖ decreases monotonically to
zero as i→∞ and that this happens quickly enough to guarantee that the sums in (4) converge.

Let ϕ ∈ C1(H,RN ). We claim that the set

Zϕ =
{
c ∈ R : dim(T(ϕ+cψ)(q̂)(ϕ+ cψ)(A)) < N

}
is countable. To see this, let c0 ∈ R be such that there exist N distinct vectors w1, . . . , wN in the direction set

∆(ϕ+c0ψ)(q̂)(ϕ+ c0ψ)(A) ⊂ SN−1 and N strictly increasing sequences (m
(n)
j )∞j=1 in Z+ satisfying

lim
j→∞

(ϕ+ c0ψ)(y
m

(n)
j N+n

)− (ϕ+ c0ψ)(x
m

(n)
j N+n

)∥∥∥(ϕ+ c0ψ)(y
m

(n)
j N+n

)− (ϕ+ c0ψ)(x
m

(n)
j N+n

)
∥∥∥ = wn

for every 1 6 n 6 N . Note that any sufficiently large c0 will have this property. Using c0 as a starting point,
define maps s 7→ wn(s) by

wn(s) = lim
j→∞

(ϕ+ sψ)(y
m

(n)
j N+n

)− (ϕ+ sψ)(x
m

(n)
j N+n

)∥∥∥(ϕ+ sψ)(y
m

(n)
j N+n

)− (ϕ+ sψ)(x
m

(n)
j N+n

)
∥∥∥ .

Each map s 7→ wn(s) is defined on all of R except for perhaps one exceptional value of s.
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Let 1 6 n1 < n2 6 N . Our choice of ψ implies that s 7→ ∠(en1
, wn1

(s)) is decreasing (and strictly decreasing
on the preimage of (0, π)), while s 7→ ∠(en1

, wn2
(s)) is increasing. Similarly, s 7→ ∠(en2

, wn2
(s)) is decreasing

(and strictly decreasing on the preimage of (0, π)), while s 7→ ∠(en2
, wn1

(s)) is increasing. It follows that
wn1(s) = wn2(s) for at most one value of s. The vectors w1(s), . . . , wN (s) are therefore all distinct except for at
most N(N − 1)/2 values of s. We have shown that Zϕ is finite.

The set {ϕ ∈ C1(H,RN ) : dimT(ϕ(A)) = N} is prevalent. Every map in this set fails to satisfy (DimT).
�

3.2.4. Implications for Lyapunov exponents. We answer the question that motivates this work - Question 1.1
- using Theorem 3.10.

Corollary 3.11. Let H be a separable real Hilbert space and let f : H → H be a C1 map. Suppose that A ⊂ H is
a compact set such that f(A) = A. Assume (H5). Let N ∈ N. For prevalent ϕ ∈ C1(H,RN ), if dimT(ϕ(A)) < N
and if f induces a quasi-differentiable map f∗ on ϕ(A) satisfying (H1)*–(H4)*, then Lyapunov exponents of f∗
correspond to Lyapunov exponents of f as follows. If z ∈ ϕ(A) and ω(z, w) is a Lyapunov exponent of f∗ with
w ∈ Tzϕ(A), then ω(ϕ−1z, (Dϕ−1)zw) is a Lyapunov exponent of f |A and ω(ϕ−1z, (Dϕ−1)zw) = ω(z, w).

Remark 3.12. A Lyapunov exponent ω(z, w) of f∗ with w ∈ TzRN \ Tzϕ(A) may be spurious - it may be an
artifact of ϕ that does not correspond to a Lyapunov exponent of f .

4. Discussion

Invariant sets associated with evolution PDEs often live in finite-dimensional submanifolds of the ambient
function space, such as inertial manifolds or center manifolds. For example, the genuinely nonuniformly hyperbolic
attracting sets produced when certain parabolic PDEs are forced periodically live in two-dimensional center
manifolds [16]. It is interesting to consider if observational data can be used to determine whether or not a
given invariant set of interest is contained in a finite-dimensional submanifold of the ambient Hilbert space. More
precisely:

Definition 4.1. Let H be a real Hilbert space. A subset E ⊂ H is said to be locally embeddable if for every
x ∈ E, there exists a neighborhood U of x in H and a finite-dimensional C1 submanifold M of H (without
boundary) such that U ∩E ⊂M . If a finite-dimensional C1 submanifold M contains every element of E that lies
within some neighborhood of x and if the dimension of M is minimal with respect to this property, then we call
M a local enveloping manifold for E at x (see [20, Section 3] for more about local enveloping manifolds when
H = RD).

Question 4.2. Let H be a real Hilbert space. Let f : H → H be a C1 map and suppose that A ⊂ H is a
compact set satisfying f(A) = A. Let N ∈ N. For prevalent ϕ ∈ C1(H,RN ), if f induces a quasi-differentiable
map f∗ on ϕ(A), does it follow that A is locally embeddable?

This question may well have an affirmative answer given the nature of existing theorems on the regularity of
embeddings of subsets of infinite-dimensional spaces into Euclidean spaces. Theorem 1.3, for example, guarantees
only Hölder continuity of ϕ−1 on ϕ(A), and therefore guarantees only Hölder continuity for an induced map
f∗ = ϕ ◦ f ◦ ϕ−1 induced by a C1 map f : H → H.
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