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Abstract. We show that a theorem of Shchepin and Repovš concerning the
smoothness of compacta follows from the theory of semicontinuous relations.

1. Introduction

Compact subsets of Euclidean space possess a surprising amount of smoothness.
Let A ⊂ Rn be compact. Using the notion of generalized tangent space, Shchepin
and Repovš [7] prove that A contains a residual subset of ‘smooth’ points. In this
note, we show that the result of Shchepin and Repovš follows directly from the
theory of semicontinuous relations.

The generalized tangent space illuminates the relationship between compacta
and smooth submanifolds. Consider the following two problems.

(1) The Extension Problem. Let A ⊂ Rn be compact and fix x ∈ A. What
is the smallest integer d for which there exists a neighborhood N of x and
a C1 submanifold M ⊂ Rn of dimension d such that M ⊃ A ∩ N? This
local question suggests a global version. Is it possible to embed A into a
C1 submanifold of ‘minimal’ dimension?

(2) The Characterization Problem. Among the compact subsets of Rn,
characterize those that have the structure of a smooth submanifold.

We discuss solutions to these problems in the final section. See [5] for applications
to dynamical systems and embedding theory.

2. Tangent Regularity

Let S denote the unit sphere in the Euclidean space Rn. For a closed A ⊂ Rn,
we call s ∈ S a tangent direction for A at x ∈ A when there exist sequences {yi}
and {xi} in A converging to x, with yi 6= xi for all i, such that

s = lim
i→∞

yi − xi

‖yi − xi‖
.

If the sequences can be chosen with xi = x for all i, then s is called a proper tangent
direction for A at x. We denote by DxA the set of tangent directions for A at x
and by dxA the subset of proper tangent directions. The generalized tangent space
TxA is the smallest linear space containing DxA.
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We say that x ∈ A is tangent regular if dxA = DxA. If dxA is a proper subset of
DxA, then we say that x is singular. Shchepin and Repovš [7] prove the surprising
result that most points of A are tangent regular.

Theorem 2.1. For every closed subset A of Rn, the set of tangent regular points
is a residual subset of A. That is, it contains a Gδ subset which is dense in A.

Notice that by intersecting A with large closed balls, we may reduce to the case
when A is compact. We therefore assume that A is compact from this point forward.

There is a general theory of semicontinuous relations which has proved quite
useful in topological dynamics, see e.g. Takens [8] and Akin, Hurley and Kennedy
[2]. In this section we will show that Theorem 2.1 follows directly from this general
theory. We review the theory following the notation of Akin [1].

For compact metric spaces X and Y , a relation R : X → Y is just a subset of
the product X × Y . For x ∈ X, we write R(x) for {y : (x, y) ∈ R}. If A ⊂ X, then

R(A) =
⋃

x∈A

R(x).

Given a relation R : X → Y , the inverse relation R−1 : Y → X is the set

{(y, x) : (x, y) ∈ R}.
Thus, for B ⊂ Y we have R−1(B) = {x : R(x) ∩B 6= ∅}.

A relation R : X → Y is called a closed relation when it is a closed subset of
X × Y . It is called a pointwise closed relation when R(x) is a closed subset of Y
for every x ∈ X. Clearly, a closed relation is pointwise closed.

A pointwise closed relation R : X → Y can be regarded as a function from X to
the space C(Y ) of closed subsets of Y . That is, we identify R with the map given
by x 7→ R(x). Equipped with the Hausdorff metric, C(Y ) is itself a compact metric
space (see e.g. Akin [1, Chapter 7]).

Definition 2.2. Let R : X → Y be a pointwise closed relation with X and Y
compact metric spaces. The relation R is called upper semicontinuous at x ∈ X if
for every open subset O ⊂ Y , R(x) ⊂ O implies that {x1 ∈ X : R(x1) ⊂ O} is a
neighborhood of x. We say that R is an upper semicontinuous relation when it is
upper semicontinuous at every point of X.

Definition 2.3. The relation R is called lower semicontinuous at x ∈ X if for
every open subset O ⊂ Y , R(x) ∩ O 6= ∅ implies that {x1 ∈ X : R(x1) ∩ O 6= ∅} is
a neighborhood of x. We say that R is a lower semicontinuous relation when it is
lower semicontinuous at every point of x.

Definition 2.4. The relation R is called continuous at x ∈ X if R is both upper
and lower semicontinuous at x. We say that R is a continuous relation when it
is continuous at every point of x or, equivalently, when it is both an upper and a
lower semicontinuous relation.

We will use the abbreviations usc and lsc for ‘upper semicontinuous’ and ‘lower
semicontinuous.’ With these definitions in place we collect the results we will need.

Theorem 2.5. Let R : X → Y be a pointwise closed relation with X and Y compact
metric spaces.

(1) The relation R is continuous at x ∈ X if and only if the associated mapping
from X to C(Y ) is continuous at x.
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(2) The relation R is an usc relation if and only if it is a closed relation, i.e.
a closed subset of X × Y .

(3) Let R denote the closure of R ⊂ X × Y so that R : X → Y is an usc
relation. Assume that R is a lsc relation. The relation R is continuous at
x ∈ X if and only if R(x) = R(x).

(4) If R is either a lsc or an usc relation, then the set of continuity points of
R is a dense Gδ subset of X.

Parts (1), (2), and (3) are elementary consequences of the definitions of semicon-
tinuous relations. In the exposition in Chapter 7 of Akin [1], parts (1) and (2) occur
in Proposition 7.11 and part (3) is Corollary 7.13. Part (4), due to Kuratowski [4],
is the principal tool in this subject. It is proved in Takens [8] where its usefulness
for dynamical systems is demonstrated. Part (4) is also proved as Theorem 7.19 in
Akin [1].

Proof of Theorem 2.1. For the compact set A ⊂ Rn, let

1A = {(x, x) : x ∈ A}

denote the diagonal in A × A. We define the direction maps σ : A × A \ 1A → S
and Σ : A×A \ 1A → A× S by

σ(x, y) =
y − x

‖y − x‖
,

Σ(x, y) = (x, σ(x, y)).

For ε > 0, let Vε denote the ε-neighborhood of the diagonal. That is,

Vε = {(x, y) ∈ A×A : ‖y − x‖ < ε}.

Define the relation Qε : A → S by

Qε = Σ(Vε \ 1A).

Now let mεA be the smallest pointwise closed relation which contains Qε. For each
x ∈ A,

mεA(x) = Qε(x) = σ(Vε(x) \ x).
Let M εA be the smallest closed relation which contains Qε. That is,

M εA = Qε = Σ(Vε \ 1A).

Since mεA lies between Qε and its closure M εA, we have

(2.1) M εA = mεA.

Finally, let

mA =
⋂
ε>0

mεA,

MA =
⋂
ε>0

M εA.

These are both pointwise closed relations and MA is closed. Because the depen-
dence on ε is monotone, it suffices to restrict the intersection to rational ε. For each
x ∈ A, MA(x) is the set DxA of tangent directions for A at x and mA(x) is the set
dxA of proper tangent directions for A at x as defined above. We leave the simple
verification as an exercise.
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Now let O ⊂ S be open and let ε be a fixed positive number. If σ(x, y) ∈ O with
0 < d(x, y) < ε, then for all x1 ∈ A sufficiently close to x, 0 < d(x1, y) < ε and
σ(x1, y) ∈ O. This implies that the relation mεA is lsc for every positive ε.

Define

A0 = {x ∈ A : mεA is continuous at x for every positive rational ε}.
By the Kuratowski Theorem (2.5.4) and the Baire Category Theorem, A0 is a dense
Gδ subset of A. By (2.1) and Theorem 2.5.3, we have mεA(x) = M εA(x) for every
x ∈ A0. Intersecting over the positive rationals, we have

dxA = mA(x) = MA(x) = DxA

for all x ∈ A0, as required. �

3. Compacta and Submanifolds

We now discuss the relationship between compacta and smooth submanifolds.
The local extension problem admits a solution in terms of the generalized tangent
space.

Theorem 3.1 (Manifold Extension Theorem [5, 3]). Let A ⊂ Rn be compact and
let x ∈ A. There exists a neighborhood N of x and a C1 submanifold M such that
M ⊃ A ∩N and TxA = TxM . In particular, dim(M) = dim(TxA).

This local result suggests a natural global question.

Definition 3.2. The tangent dimension of A ⊂ Rn, denoted dimT A, is given by

dimT A = max
x∈A

dim(TxA).

Question 3.3. Let A ⊂ Rn be compact. Does there exist a C1 submanifold M of
dimension dimT A such that M ⊃ A?

If dim TxA is the same for all x ∈ A, then such a manifold exists [3]. However,
topological obstructions may exist in the heterogeneous case. See [3] for an example.

We present two solutions to the characterization problem. The first result char-
acterizes C1 submanifolds in terms of tangent regularity.

Theorem 3.4 ([7]). Let A ⊂ Rn be compact. For every d ∈ {0, 1, . . . , n}, the
following statements are equivalent.

(1) The set A is a smooth submanifold of Rn of class C1 and dimension d.
(2) Every point in A is tangent regular and dim(TxA) = d for all x ∈ A.

This characterization result and Theorem 2.1 imply a second characterization in
terms of ambient homogeneity.

Definition 3.5. The set A ⊂ Rn is said to be ambiently C1-homogeneous if for
every pair of points x, y ∈ A, there exist neighborhoods Ox and Oy in Rn and a
C1 diffeomorphism

h : (Ox, Ox ∩A, x) → (Oy, Oy ∩A, y).

Theorem 3.6 ([6]). Let A ⊂ Rn be compact. Then A is ambiently C1-homogeneous
if and only if A is a C1 submanifold of Rn.

The original proof of this result [6] requires the Rademacher theorem concerning
the differentiability of Lipschitz functions. Shchepin and Repovš [7] simplify the
proof by eliminating the need to invoke Rademacher.
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