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Transcriptional delay can significantly impact the dynamics of gene networks. Here we examine
how such delay affects bistable systems. We investigate several stochastic models of bistable gene
networks and find that increasing delay dramatically increases the mean residence times near sta-
ble states. To explain this, we introduce a non-Markovian, analytically tractable reduced model.
The model shows that stabilization is the consequence of an increased number of failed transitions
between stable states. Each of the bistable systems that we simulate behaves in this manner.

Transcriptional delay [41] in gene networks is the dy-
namical consequence of the sequential nature of protein
production [1–4]. For transcriptional signaling this delay
is further compounded by the time it takes for transcrip-
tion factors to find their target promoters [5, 6]. Previous
theoretical work has shown that such delay can signifi-
cantly affect the dynamics of gene networks and play an
important role in a variety of naturally-occurring genetic
network architectures. For example, delay produces oscil-
lations in models of networks containing transcriptional
negative feedback loops [3, 7–11]. In addition, delayed
negative feedback is theorized to govern the dynamics
of circadian oscillators [2, 12], a hypothesis experimen-
tally verified in mammalian cells [13]. Experiments also
suggest that transcriptional delay can produce robust,
tunable oscillations in synthetic gene circuits [14, 15].

In this Letter we study the impact of delay on bistable
gene networks. Bistability is a central characteristic of
biological switches: It is essential in the determination of
cell fate in multicellular organisms [16], the regulation of
cell-cycle oscillations during mitosis [17], and the main-
tenance of epigenetic traits in microbes [18]. Due to the
stochastic nature of gene expression, bistable gene net-
works can randomly switch between stable states [19].
This phenomenon has been studied in many contexts,
including the lysis/lysogeny switch of bacteriophage λ
[20, 21], bacterial persistence [22], and synthetically con-
structed positive feedback loops [23, 24].

While delay and bistability have been extensively stud-
ied, the impact of transcriptional delay on bistable gene
networks is not clear. In general, the interaction between
delay and stochasticity is complex. Modeling suggests
delay affects the stochastic properties of gene expres-
sion [25–28], and that stochastic delay can accelerate sig-
naling in genetic pathways [4]. The effect of delay on the
mean first passage times for Langevin-approximations to
bistable gene networks has been studied, but no gen-
eral principles have been proposed. Indeed, many re-
sults appear to contradict each other [29–33]. There are
many possible reasons for these discrepancies. For in-
stance, Langevin approximations can fail at small sys-

FIG. 1: Sample trajectories for a single gene positive
feedback loop. From top to bottom, the three timeseries
correspond to transcriptional delays τ = 0, t1/2, and 2t1/2,
where t1/2 is the half-life of the protein.

tem sizes typically found inside cells, and ad hoc choices
of Langevin models can lead to different predictions for
the same underlying system.

Here, we investigate a variety of bistable gene networks
using a modified version of the Gillespie algorithm that
allows us to incorporate transcriptional delay [34]. Al-
though the details and dimensionality of the networks
differ, in each the mean residence times near the stable
states increase dramatically with even modest increases
in transcriptional delay time (See Fig. 1). In some cases,
stability increases despite the fact that the stationary
distributions show no appreciable change. To explain
this phenomenon, we construct a non-Markovian, ana-
lytically tractable model. The model predicts that the
enhanced stability is due to an increase in the number of
failed transitions between stable states. Exact stochastic
simulations of each bistable system verify this prediction.

Models and simulations.—To explore the impact of
transcriptional delay on bistable gene networks, we sim-
ulated three common systems: 1) A single-gene positive
feedback loop; 2) the co-repressive toggle switch [23]; and
3) the lysis/lysogeny switch of phage λ [21]. Details
about the models, parameters, and simulations can be
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FIG. 2: The impact of transcriptional delay on three different genetic networks. Left panels show the three different
gene networks, center panels show the stationary distributions at three different values of transcriptional delay, τ , and right
panels illustrate the increase in residence times (dots) and the decrease in the probability of a successful transition (dashed lines)
with increasing τ . Rτ denotes the mean residence time in the metastable states at delay τ . The lighter stationary distributions
correspond to larger delays; (A) Positive feedback model with stationary distributions at τ = 0, 1, 2, and R0 = 227; (B)
λ−phage model with stationary distributions at τ = 0, 5, 10, and R0 = 4829; (C) Co-repressive toggle switch with stationary
distributions at τ = 0, 0.45, 0.9, and R0 = 489.

found in the Supplementary Information (SI).
Consider the single-gene positive feedback loop shown

in Fig. 2-A. The corresponding deterministic dynamics
are given by the delay differential equation

ẋ = α+ β
x(t− τ)b

cb + x(t− τ)b︸ ︷︷ ︸
birth

− γx︸︷︷︸
death

, (1)

where x is the number of proteins per unit volume, α
the basal transcription rate due to leakiness of the pro-
moter, β the increase in transcription rate due to protein
binding to the promoter, b the Hill coefficient, c the con-
centration of x needed for half-maximal induction, γ the
degradation rate coefficient of the protein, and τ is the
transcriptional delay time.

This positive feedback loop is bistable for a range of
parameters. As shown in the SI, the stability of the two
fixed points generally decreases with an increase in delay
in Eq. (1).

In the corresponding stochastic model, births and
deaths occur at rates indicated in the equation. We chose
parameters for which the system switches stochastically
between the two stable states, and examined a biophysi-
cally relevant range of delays. These were on the order of
the protein half-life, but small compared to the transition
timescales.

While an increase in delay destabilized the fixed points
in the deterministic model, in the stochastic counter-

part it resulted in a sharp increase in the average res-
idence time near the stable states (See Fig. 1 and 2-A,
panel 3). Qualitatively similar behavior was observed in
other models of bistable gene networks we examined (See
Fig. 2). Although these systems are quite different, in-
creasing transcriptional delay has qualitatively the same
effect in all cases.

Simulations showed that with an increase in transcrip-
tional delay: a) the mean residence time near the stable
states increases (right panels of Fig. 2); b) the proba-
bility of a successful transition decreases; and c) the in-
crease in stability may not be accompanied by a consis-
tent change in the stationary distribution (center panels
of Fig. 2). These observations appear to be independent
of the model system and therefore may have an under-
lying, unified explanation. However, since the stationary
distributions do not necessarily change in the manner
predicted by Kramers’ theory [35], a new explanation of
the phenomenon is necessary.

Reduced model.—In order to obtain a unified descrip-
tion of the observed increase in stability with an in-
crease in transcriptional delay, we introduce a general-
ized 3-state reduced model (RM). Two of the states in
the model correspond to neighborhoods of the two stable
fixed points. We call these states H (high) and L (low).
The third state is an intermediate state, I, correspond-
ing to a neighborhood of the separatrix. All transitions
between H and L must pass through I. Therefore, the
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FIG. 3: Phase space dynamics. The state of the system
at time t − τ and time t is shown in the case of (A) a posi-
tive feedback loop, and (B) a genetic toggle switch. Mature
proteins enter the population at time t at rates determined
by the state at time t − τ . In (A), at time t, the birth rate
Bx of x is larger in the past, and production is higher than
if the birth rate was determined by the present state of the
system, St. This facilitates a return to the previously visited
stable state. A similar explanation holds for (B) (see text).
Stationary densities are shown in both cases.

RM represents a coarse projection of a general bistable
model where large fluctuations push the system from the
stable states into a neighborhood of the separatrix.

Due to transcriptional delay, the transition rates be-
tween the states depend on the history of the system.
This is particularly important when the system is in state
I. In the absence of delay the system has no memory;
the likelihood of a transition to either stable state from a
neighborhood of the separatrix is determined only by the
present state of the system. However, in the presence of
delay, this likelihood will depend on the past.

As a particular example, consider the positive feedback
loop (Fig. 2A). At the upper stable state, which corre-
sponds to state H in the RM, protein production is high.
Consider a large fluctuation from this state that takes
the system away from the upper fixed point, to state St
shown in Fig. 3A. In the presence of transcriptional delay,

birth rates are determined by the state St−τ = x(t− τ).
The larger τ , the more likely it is that x(t − τ) is in
state H, near the fixed point whose neighborhood has
just been abandoned. But the birth rates in state H
are high and favor motion back toward H (See Fig. 3A).
Therefore, the trajectory is pulled back towards the sta-
ble state it came from. Thus, memory in the system acts
as a “rubber band” and causes resistance to transitions.

The situation is similar for the genetic toggle switch,
a network of two mutually repressing genes expressing
proteins x and y. At the stable states of this system
(dots in Fig. 3B), the birth rate of one protein is high,
and that of the other is low. Consider a fluctuation away
from state H, where x is high and y low, to state St =
(x(t), y(t)). Birth rates are again determined by the state
St−τ = (x(t− τ), y(t− τ)). As shown in Fig. 3B, in state
St−τ both the birth rates of x and y at t− τ favor motion
back to H. Hence in systems of interacting genes, the
“rubber band” effect may be even stronger.

To capture the effects of memory in the RM, the tran-
sition rates between states are assumed to depend on the
state of the system in the past. We define λij→k, for
i, j, k ∈ {H, I, L}, as the rate of transition from state j
to state k, given that τ units in the past the system was
in state i. Not all transitions are possible, as transitions
out of states H and L must go into state I.

We make several assumptions on these transition rates.
First, the delay τ is small compared to the mean residence
time in each of the stable states. Therefore, if the system
is in state H or L at time t, it is unlikely that it was in
state I at time t− τ .

Second, we assume that the six transition rates, λjI→k,
out of state I are at least an order of magnitude larger
than transition rates out of states L and H. This corre-
sponds to the assumption that the system will exit the
vicinity of the separatrix much more quickly than the
vicinity of a stable fixed point.

Finally, we assume that for time τ after entering state
I, the system is more likely to return to its previous state.
In other words, we assume

pHI→H > pII→H , pLI→L > pII→L, (2)

where

piI→j =
λiI→j

λiI→H + λiI→L

is the probability of transitioning from state I to state
j ∈ {H,L} given the system was in state i a time τ in
the past. This assumption captures the “rubber band”
effect illustrated in Fig. 3, i.e. delayed protein production
favors a return to the stable state that was visited last.
Metastability as a function of delay.—We now analyze

the stability of states H and L as a function of the delay,
τ . Let RH denote the residence time for state H. We
compute the expected value E[RH ]; the computations
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for L are analogous. Once the system enters state H, it
will make a number of failed transitions of the form H →
I → H before eventually making a successful transition
H → I → L. Let fH denote the probability of a failed
transition, that is, the probability that a transition H →
I → H occurs conditioned on the system having been in
state H for at least time τ . We have

fH = (1− ZH(τ))pHI→H + ZH(τ)pII→H , (3)

where we define ZH(τ) by

ZH(τ) := exp(−(λHI→H + λHI→L)τ).

Note that fH is a convex linear combination of pHI→H and
pII→H . When τ = 0 (Markovian case), fH = pII→H . As τ
increases away from zero, fH moves toward pHI→H .

Let FH denote the random time needed to complete
a failed transition and let SH denote the time needed
for a successful transition. Assuming that the delay is
small compared to the characteristic residence times in
the stable states, we obtain the key estimate for E[RH ].
Writing R = RH , f = fH , F = FH , S = SH , and
λ = λHH→I , we have

E[R] ∼ f

1− f

(
E[F ] +

1

λ

)
+ E[S] +

1

λ
. (4)

The primary contribution in Eq. (4) comes from the
term f(1− f)−1 representing the mean number of failed
transitions of the form H → I → H before a successful
transition H → I → L. The terms E[F ] and E[S] are not
very sensitive to τ . On the other hand, because of the
inequalities (2), f(1 − f)−1 grows rapidly as τ increases
from τ = 0 . If the states H and L are sufficiently sta-
ble, the expected time spent in each state before a large
fluctuation is approximately λ−1.

Fig. 4B illustrates that the RM qualitatively behaves
like the models shown in Fig. 2.

Concluding remarks.—The existence of multiple stable
states is a common feature of genetic networks, such as
those that determine cell fate in multicellular organisms
[16]. Since noise is ubiquitous in gene networks, mech-
anisms that stabilize dynamics are essential. We have
shown that transcriptional delay can stabilize bistable
gene networks. The tendency to return to the state from
which the system just escaped increases with delay.

The RM proposed in this Letter depends on neither
the explicit underlying model, the specific distribution
of delay times, nor on the exact mechanism that pro-
duces the delay. Therefore, we conclude: (a) That dis-
tributed delay will stabilize bistable systems, provided
the delay distribution is not close to the residence times
of the system; as shown in SI Fig. S2, this is indeed the
case; (b) A decrease in stability can be observed by de-
laying degradation and keeping production instantaneous
(see SI Fig. S3). The explanation given in Fig. 3 carries

FIG. 4: The reduced model (A) Sample trajectories for
the 3-state RM. Top and bottom trajectories correspond to
τ = 0 and τ = 0.03, respectively. (B) The estimated increase
in mean residence time as a function of delay given by Eq. (4)
(Left axis, solid line) compared to values obtained by simu-
lating the RM (bold circles). The dashed line represents the
probability of a successful transition as a function of delay
(Right axis).

over to this case: Delayed death pushes the system away
from the stable state that was just visited; and (c) The
particular details of the mechanism that produce the de-
lay are not important (these mechanisms are yet to be
characterized completely experimentally). Hence, the ef-
fect should be observable even in more detailed models
that explicitly model sequential protein production.

In some previous studies of bistable systems in the
presence of delay, it was assumed that the delay time
was on the order of the residence time [36, 37]. In this
case, it was sufficient to consider reductions with only two
states, e.g. H and L. However, transcriptional delays in
gene networks are typically much smaller than residence
times. As we have shown here, in such systems it is there-
fore appropriate to introduce an additional intermediate
state, e.g. I, in a reduced model.

Transcriptional delay introduces a number of other dy-
namical changes to stochastic bistable systems. For in-
stance, typical transition paths between the stable states
change with delay (see SI Fig. S4). Such changes de-
pend on the specifics of the individual models, and can-
not be understood using the reduction described above.
Precise results for large deviations in delayed Langevin
equations have been obtained [30, 38]. However, the cor-
rect Langevin approximations of the models we consider
here need to include delay in the diffusion term [39, 40]).
Extensions of previous large deviation approaches may
provide more detailed information about transitions be-
tween states in particular models of genetic switches.
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