
DISSIPATIVE HOMOCLINIC LOOPS OF 2-DIMENSIONAL MAPS
AND STRANGE ATTRACTORS WITH 1 DIRECTION OF INSTABILITY

QIUDONG WANG AND WILLIAM OTT

Abstract. We prove that when subjected to periodic forcing of the form pµ,ρ,ω(t) = µ(ρh(x, y) +
sin(ωt)), certain 2-dimensional vector fields with dissipative homoclinic loops admit strange attractors
with SRB measures for a set of forcing parameters (µ, ρ, ω) of positive Lebesgue measure. The proof
extends ideas of Afraimovich and Shilnikov [1] and applies the recent theory of rank 1 maps developed
by Wang and Young [48, 52, 53]. We prove a general theorem and we then apply this theorem to an
explicit model: a forced Duffing equation of the form

d2q

dt2
+ (λ− γq2)

dq

dt
− q + q3 = µ sin(ωt).

1. Introduction

This paper is about proving the existence of sustained, observable chaos in explicit models of dy-
namical processes. We study the effects of periodic forcing on certain 2-dimensional flows that admit
homoclinic orbits. The aim is to formulate checkable hypotheses that imply the existence of sustained,
observable chaos for a set of forcing parameters of positive Lebesgue measure. We formulate such
hypotheses for a general class of systems and we then apply the general result to an explicit model: a
Duffing equation. By sustained, observable chaos we refer to a number of precisely-defined dynamical,
geometric, and statistical properties that will be made precise in the sequel.

1.1. Background: dynamical systems. The general theory of hyperbolic dynamics is one of the
most important components of the modern theory of dynamical systems. Individual orbits are typically
unstable in systems with some degree of hyperbolicity. It is therefore natural to study such systems
from a probabilistic point of view and ask the following questions.

(Q1) What mechanisms are creating the hyperbolicity?
(Q2) Does the system admit an invariant measure that describes the asymptotic distribution of a

large set (positive Riemannian volume) of orbits? If so, how many such measures does the
system admit?

(Q3) What are the ergodic and statistical properties of the invariant measures identified in (Q2)?
For example, do correlations decay at an exponential rate?

For a conservative system (a system preserving a measure ν that is equivalent to Riemannian volume),
the Birkhoff pointwise ergodic theorem answers (Q2). If ν is ergodic, then almost every point with
respect to Riemannian volume produces an orbit that is asymptotically distributed according to ν.
The situation is completely different for dissipative (volume-contracting) systems. For such systems,
question (Q2) is a major challenge. We focus on dissipative systems in this paper.

Let M be a compact Riemannian manifold and let F : M →M be a C2 embedding. A compact set
Σ satisfying F (Σ) = Σ is called an attractor if there exists an open set U called its basin such that
Fn(x) → Σ as n→∞ for every x ∈ U . The attractor Σ is said to be
(1) irreducible if it cannot be written as a union of 2 disjoint attractors;
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(2) uniformly hyperbolic if the tangent bundle over Σ splits into 2 DF -invariant subbundles Es and
Eu such that DF |Es is uniformly contracting and DF |Eu is uniformly expanding. We assume that
Eu is nontrivial.

An irreducible, uniformly hyperbolic attractor Σ supports a unique F -invariant Borel probability mea-
sure ν with the following property: there exists a set S ⊂ U having full Riemannian volume in U such
that for every continuous observable ϕ : U → R and for every x ∈ S, we have

(1) lim
n→∞

1
n

n−1∑
i=0

ϕ(F i(x)) =
∫

M
ϕdν.

This measure is known as the Sinai/Ruelle/Bowen measure or SRB measure of F . We adopt the point
of view that sets of positive Riemannian volume correspond to observable events. In this sense, the
SRB measure on a uniformly hyperbolic attractor is observable because time and space averages of
observables coincide for a set of initial data of full Riemannian volume in the basin. Note that for
dissipative systems, this does not follow from the Birkhoff ergodic theorem because if F is volume-
contracting in the basin, then the SRB measure will be supported on a set of zero Riemannian volume.

Many models of physical and biological processes exhibit some degree of hyperbolicity but are not
uniformly hyperbolic in character. The theory of nonuniform hyperbolicity can potentially be useful
for the analysis of such systems. This theory relaxes the assumptions of uniform hyperbolicity by
assuming that contraction and expansion occur only asymptotically in time and only almost everywhere
with respect to an invariant measure. New notions of SRB measure have developed as the theory of
nonuniform hyperbolicity has matured. The following definition is the state of the art.

Definition 1.1. Let M be a compact Riemannian manifold and let F : M →M be a C2 embedding.
An F -invariant Borel probability measure ν is called an SRB measure if (F, ν) has a positive Lyapunov
exponent ν almost everywhere (a.e.) and if ν has absolutely continuous conditional measures on
unstable manifolds.

These more general SRB measures are important for many reasons, one of which is that members of
a large class of them are observable: if ν is an ergodic SRB measure with no 0 Lyapunov exponents,
then there exists a set S of positive Riemannian volume such that (1) holds for every continuous
observable ϕ : M → R and for every x ∈ S. For dissipative systems, proving the existence of genuinely
nonuniformly hyperbolic dynamics and SRB measures is a major challenge. SRB measures were first
constructed outside of the uniformly hyperbolic setting by Benedicks and Young relatively recently [6,
7]. Here SRB measures are constructed for certain Hénon maps. A major advance has been made in
the last decade: the theory of rank 1 maps.

1.2. Theory of rank 1 maps. Developed by Wang and Young [48, 52, 53], the theory of rank 1
maps provides checkable conditions that imply the existence of strange attractors and SRB measures
in parametrized families {Fa} of dissipative embeddings in dimension N for any N > 2. The term
‘rank 1’ refers to the local character of the embeddings: some instability in 1 direction and strong
contraction in all other directions. Roughly speaking, the theory asserts that under certain checkable
conditions, there exists a set ∆ of values of a of positive Lebesgue measure such that for a ∈ ∆, Fa is a
genuinely nonuniformly hyperbolic map that has a strange attractor and admits an SRB measure. A
comprehensive dynamical profile is given for such Fa. In its strongest form, the profile is as follows.

The map Fa admits a unique SRB measure ν and ν is mixing. Lebesgue almost every point in the
basin of the strange attractor is asymptotically distributed according to ν in the sense of (1) and has
a positive Lyapunov exponent. Thus the chaos associated with Fa is both observable and sustained
in time. The system (Fa, ν) satisfies a central limit theorem and correlations decay at an exponential
rate for Hölder observables. The source of the nonuniform hyperbolicity is identified and the geometric
structure of the attractor is analyzed in detail.

Figure 1 illustrates the progression of ideas that has led to the development of the theory of rank 1
maps. The theory is ultimately based on theoretical developments concerning 1-dimensional maps with
critical points; see e.g. [4, 9, 17, 24, 43, 42, 44]. We note in particular the parameter exclusion technique
of Jakobson [17] and the analysis of the quadratic family by Benedicks and Carleson [4]. The analysis
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of the Hénon family by Benedicks and Carleson [5] provided a breakthrough from 1-dimensional maps
with critical points (the quadratic family) to 2-dimensional diffeomorphisms (small perturbations of
the quadratic family). Mora and Viana [25] generalized the work of Benedicks and Carleson to small
perturbations of the Hénon family and proved the existence of Hénon-like attractors in parametrized
families of diffeomorphisms that generically unfold a quadratic homoclinic tangency. Wang and Young
make several advances, 2 of which we discuss here. First, the theory of rank 1 maps replaces the
formulas of the Hénon diffeomorphisms with a set of analytic and geometric hypotheses so that the
theory can be applied to concrete systems of differential equations. Second, as discussed earlier, a
comprehensive dynamical profile is given for the nonuniformly hyperbolic maps. Exponential decay of
correlations for these maps is proved by applying the techniques of [54, 55].

Theory of
1D maps −→ Hénon maps

and perturbations −→ Rank one
attractors

Figure 1: Progression of ideas leading to the theory of rank 1 maps.

The theory of rank 1 maps has been applied to several concrete models thus far. Examples include
simple mechanical systems [49] and electronic circuits [29, 30, 46, 47]. Guckenheimer, Wechselberger
and Young [14] connect the theory of rank 1 maps and geometric singular perturbation theory by
formulating a general technique for proving the existence of chaotic attractors for 3-dimensional vector
fields with 2 time scales. Lin [21] demonstrates how the theory of rank 1 maps can be combined
with sophisticated computational techniques to analyze the response of concrete nonlinear oscillators
of interest in biological applications to periodic pulsatile drives.

The dynamical scenario studied most extensively thus far is that of weakly stable structures subjected
to periodic pulsatile forcing. Weakly stable equilibria [31], limit cycles [32, 49, 50], and supercritical
Hopf bifurcations [50] in finite-dimensional systems have been treated. Here intrinsic shear in the
unforced system is amplified by the cumulative effects of a pulsatile force followed by a long period of
relaxation. This amplification produces rank 1 dynamics. Lu, Wang, and Young [22] use the theory
of rank 1 maps and invariant manifold techniques to prove that certain parabolic partial differential
equations undergoing supercritical Hopf bifurcations admit SRB measures when subjected to periodic
pulsatile forcing. In this paper we analyze systems with dissipative homoclinic loops.

1.3. Periodically-forced homoclinic solutions. Homoclinic phenomena including homoclinic tan-
gles were first observed by Poincaré [38, 39, 40] and have been studied extensively. Important systems
in this context include the nonlinear pendulum, the Duffing equation and the van der Pol oscilla-
tor [3, 11, 13, 19, 20, 45]. Consider a differential equation of the form

(2)
dx

dt
= f (x )

on RN . A homoclinic orbit is a solution Φ of (2) that converges to a single stationary point of saddle
type as t → ±∞. The homoclinic orbit is therefore part of both the stable and unstable manifolds of
the saddle. When a system with such an orbit is forced periodically, the stable and unstable manifolds
that coincide in the unforced system will typically become distinct. Figure 2 illustrates some of the
possibilities. If the stable and unstable manifolds intersect transversely as in Figure 2(a), homoclinic
tangles and horseshoes are produced (horseshoes are invariant sets on which the dynamics are conjugate
to certain symbolic systems). This scenario has been studied extensively; see e.g. [23, 38, 39, 40, 41].
This paper focuses on the scenario in which the stable and unstable manifolds do not intersect (see
Figure 2(b)). Afraimovich and Shilnikov [1] initiated the study of this scenario by proving that it is
possible to define a flow-induced return map. They showed that this map admits horseshoes in certain
parameter regimes and conjectured that it has a strange attractor. Our paper solves this conjecture in
the affirmative.
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(a) transverse homoclinic intersections

W s

Wu

(b) invariant manifolds do not intersect

Figure 2: Some time-T maps that can occur when a system with a homoclinic loop is subjected to
periodic forcing of period T .

Section 2 contains a complete description of our results. We summarize them briefly here. Consider
an autonomous vector field on R2 that admits a homoclinic solution associated with a stationary point
z 0 of saddle type. We assume that the saddle is dissipative, meaning that the eigenvalues −α and
β of the linearization of the vector field at z 0 satisfy 0 < β < α, and nonresonant (see (H1) in
Section 2). Suppose the autonomous system is subjected to periodic forcing of the form pµ,ρ,ω(t) =
µ(ρh(x, y) + sin(ωt)). Here µ, ρ, and the frequency ω are parameters. We convert the forced system
into an autonomous system on the extended phase space R2 × S1 by adding an angular variable θ.
The main theorem (Theorem 1 in Section 2) of this paper provides checkable conditions that imply
the existence of a strange attractor in the forced system for a set of forcing parameters (µ, ρ, ω) of
positive (3-dimensional) Lebesgue measure. More precisely, for such parameters we show that the flow
of the forced system admits a flow-induced return map to an annulus in the extended phase space
and this discrete-time annulus map admits a strange attractor. By ‘strange attractor’ we refer to the
complete dynamical profile implied by the theory of rank 1 maps (see [48, 53]). In particular, the
strange attractor supports a unique mixing SRB measure with exponential decay of correlations and
Lebesgue almost every point in the basin has a positive Lyapunov exponent. The chaos is therefore
sustained in time and observable. We prove the main theorem by explicitly computing the flow-induced
annulus maps and then using the theory of rank 1 maps.

Theorem 1 is designed so that it can be directly applied to given differential equations. In fact,
to apply Theorem 1, all one must do is compute the Melnikov function and verify that it is a Morse
function. In Section 8, we demonstrate the power of Theorem 1 by applying it to a concrete model: a
forced Duffing equation of the form

(3)
d2q

dt2
+ (λ− γq2)

dq

dt
− q + q3 = µ sin(ωt).

Many natural systems possess homoclinic loops. The following is a partial list of systems to which
the analysis behind Theorem 1 applies (see Chapter 4 of [13] for details about these classical systems).

(1) Pendulum. Start with the pendulum described by the Hamiltonian H = p2/2 + (1− cos(q)).
Then perturb with time-periodic forcing and damping (damped sine-Gordon).

(2) Pendulum oscillator. Start with the Hamiltonian H = p2/2 + (1− cos(q)) + x2/2 + ω2y2/2.
Restrict to an energy surface and consider a Poincaré map, e.g. y = 0 to y = 0. This Poincaré
map has a separatrix loop. Now perturb in a natural fashion.

(3) Perturbations of Hénon-Heiles Hamiltonians.

We note that Theorem 1 is formulated for the forcing function p to enhance the readability of the
proof and to allow for a direct application to the forced Duffing equation. The analysis on which
Theorem 1 is based can be adapted to apply to more general forcing functions. Theorem 1 therefore
applies (with the appropriate adaptations) to a rich variety of concrete physical models.

1.4. Outline. We state the main result precisely in Section 2. In Section 3 we discuss a simplified
model due to Afraimovich and Shilnikov. Here we present some of the geometric and analytic ideas
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behind the main result in a setting with relatively low technical complexity. Sections 4–7 are devoted to
the proof of the main theorem. We apply the main theorem to the forced Duffing equation in Section 8.

1.5. Acknowledgments. We thank Afraimovich for bringing his previous work with Shilnikov [1]
to our attention. See also [2]. This paper essentially picks up where Afraimovich and Shilnikov left
off, transforming an insightful conjecture into a theorem that can be applied to concrete differential
equations. We also thank Kening Lu and Lai-Sang Young for insightful conversations related to this
work and Lai-Sang Young in particular for connecting us with Afraimovich.

2. Statement of Results

2.1. Setting and statement of the main theorem (Theorem 1). Let (x, y) ∈ R2 be the phase
variables and t be the time. We start with an autonomous system

(4)


dx

dt
= −αx+ f(x, y)

dy

dt
= βy + g(x, y)

where f and g are real analytic at (x, y) = (0, 0) and f(0, 0) = g(0, 0) = ∂xf(0, 0) = ∂yf(0, 0) =
∂xg(0, 0) = ∂yg(0, 0) = 0. We assume that α and β satisfy a certain Diophantine nonresonance
condition and that (x, y) = (0, 0) is a dissipative saddle point. Namely, we assume the following.

(H1) Nonresonant dissipative saddle.

(a) There exist d1, d2 > 0 such that for all m, n ∈ Z+ with m+ n > 0, we have

|mα− nβ| > d1(m+ n)−d2 .

(b) 0 < β < α.

We also assume that the positive x-side of the local stable manifold of (0, 0) and the positive y-side of
the local unstable manifold of (0, 0) are included as part of a homoclinic solution which we denote as
x = a(t), y = b(t). Let

` = {`(t) = (a(t), b(t)) ∈ R2 : t ∈ R}.
We further assume that f(x, y) and g(x, y) are C4 in a sufficiently small neighborhood of `.

To the right side of equation (4) we add a time-periodic term to form a nonautonomous system

(5)


dx

dt
= −αx+ f(x, y)− µ(ρh(x, y) + sin(ωt))

dy

dt
= βy + g(x, y) + µ(ρh(x, y) + sin(ωt))

where µ, ρ, and ω are parameters. We assume that h(x, y) is analytic at (x, y) = (0, 0) and C4 in a
small neighborhood of the homoclinic loop `. The parameter µ satisfies 0 6 µ � 1 and controls the
magnitude of the forcing term. The prefactor ρ and the forcing frequency ω are much larger parameters,
the ranges of which we will make explicit momentarily. Observe that the same forcing function is added
to the equation for y but subtracted from the equation for x. We do this to facilitate the application
of our theorem to the Duffing equation. The analysis in this work is by no means limited to these
particular forcing functions.

To study (5), we introduce an angular variable θ ∈ S1 and write it as

(6)



dx

dt
= −αx+ f(x, y)− µ(ρh(x, y) + sin(θ))

dy

dt
= βy + g(x, y) + µ(ρh(x, y) + sin(θ))

dθ

dt
= ω.
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We define

(u(t), v(t)) =
∥∥∥∥ ddt`(t)

∥∥∥∥−1 d

dt
`(t)

where `(t) = (a(t), b(t)) is the homoclinic loop of equation (4). The vector (u(t), v(t)) is a unit vector
tangent to ` at `(t). Define

(7)
E(t) = v2(t)(−α+ ∂xf(a(t), b(t))) + u2(t)(β + ∂yg(a(t), b(t)))

− u(t)v(t)(∂yf(a(t), b(t)) + ∂xg(a(t), b(t))).

The quantity E(t) measures the rate of expansion of the solutions of equation (4) in the direction
normal to ` at `(t) (see Section 4.3). In matrix form, we have

E(t) =
(
v(t) −u(t)

)(−α+ ∂xf(`(t)) ∂yf(`(t))
∂xg(`(t)) β + ∂yg(`(t))

)(
v(t)
−u(t)

)
.

Define

(8)

A =
∫ ∞

−∞
(u(s) + v(s))h(a(s), b(s))e−

R s
0 E(τ) dτ ds,

C =
∫ ∞

−∞
(u(s) + v(s)) cos(ωs)e−

R s
0 E(τ) dτ ds,

S =
∫ ∞

−∞
(u(s) + v(s)) sin(ωs)e−

R s
0 E(τ) dτ ds.

The integrals A, C, and S are all absolutely convergent (see Lemma 4.8). They describe the relative
positions of the stable and unstable manifolds of the perturbed saddle. See Figure 3. The quantity ρAµ
measures the average distance between the stable and unstable manifolds and µ(C2 + S2)1/2 measures
the magnitude of the oscillation of the unstable manifold relative to the stable manifold.

ρAµ

µ
(
C2 + S2

)1/2

Figure 3: The geometric meaning of the integrals A, C, and S.

We assume that A, C, and S satisfy the following nondegeneracy conditions.

(H2) Nondegeneracy conditions on A, C, and S.
(a) A 6= 0.
(b) C2 + S2 6= 0.

Given equation (5) satisfying (H1) and (H2), we let

ρ1 = −202
99

(C2 + S2)1/2

A
, ρ2 = −396

101
(C2 + S2)1/2

A
.

We also let
I = {z ∈ R, |z| < Kµ}

for some K > 1 sufficiently large independent of µ and

Σ = {`(0) + (v(0),−u(0))z ∈ R2 : z ∈ I} × S1.

The following is the main theorem of this paper.



DISSIPATIVE HOMOCLINIC LOOPS AND RANK 1 ATTRACTORS 7

Theorem 1. Assume that (5) satisfies (H1) and (H2)(a). There exists ω0 > 0 such that if ω ∈ R
satisfies (H2)(b) and |ω| > ω0, then for every ρ ∈ [ρ1, ρ2] we have the following.

(1) For µ sufficiently small, equation (6) induces a well-defined return map Fµ : Σ → Σ.
(2) There exists a set ∆ω,ρ of values of µ with positive Lebesgue measure such that for every

µ ∈ ∆ω,ρ, Fµ admits a strange attractor that supports a unique ergodic SRB measure ν. Fur-
thermore, Lebesgue almost every point in Σ is generic with respect to ν.

Remark 2.1. The set ∆ω,ρ has positive lower Lebesgue density at µ = 0, meaning that

lim
µ̂→0

Leb(∆ω,ρ ∩ [0, µ̂])
µ̂

> 0.

Remark 2.2. We have opted to state Theorem 1 in terms of SRB measures. In fact, for µ ∈ ∆ω,ρ,
Fµ has all of the properties provided by the theory of rank 1 maps (see [48, 52, 53] for details). In
particular, ν exhibits exponential decay of correlations for Hölder observables and Fµ has a positive
Lyapunov exponent Lebesgue almost everywhere in Σ.

Remark 2.3. As an important condition to be verified, (H2) does not cast doubt on the abundance
of the type of strange attractor proved to exist in this paper. By properly adjusting the sign of h(x, y)
according to the sign of u(s) + v(s) on `, we can easily achieve A 6= 0. Hypothesis (H2)(b) requires
that the Fourier spectrum of the function

R(s) = (u(s) + v(s))e−
R s
0 E(τ) dτ

is not identically zero on the frequency range higher than ω0. Since R(s) decays exponentially as
a function of s, the Fourier transform R̂(ξ) is analytic in a strip containing the real ξ-axis by the
Paley-Wiener theorem. It follows that R̂(ξ) = 0 for at most a discrete set of values of ξ unless R(s) is
identically zero.

2.2. Discussion: unfolding homoclinic structures. Theorem 1 describes the dynamics of certain
unfoldings of homoclinic orbits. Unfoldings of homoclinic structures (homoclinic bifurcations) have
been studied extensively; a rich variety of dynamical phenomena have been identified and investigated.
Theorem 1 adds to this body of work. Here we discuss some of the possibilities that Theorem 1 does
not cover.

2.2.1. Unfoldings of homoclinic tangencies. Let {Gξ} be a C∞ 1-parameter family of surface
diffeomorphisms and assume that G0 has a quadratic homoclinic tangency associated with a hyperbolic
stationary point z 0 (W s(z 0) andW u(z 0) are tangent at a point). Suppose that {Gξ} generically unfolds
the homoclinic tangency and that the eigenvalues ζs and ζu of DG0(z 0) satisfy

(1) 0 < ζs < 1 < ζu,
(2) ζsζu < 1, and
(3) (ζs, ζu) belongs to the open and dense set of eigenvalue tuples that satisfy the hypotheses of

the Sternberg linearization theorem.
In this setting, there exists a set ∆ of values of ξ near ξ = 0 of positive Lebesgue measure such that
for ξ ∈ ∆, Gξ admits a strange attractor. Mora and Viana prove this result in [25] by extending
the analysis of Benedicks and Carleson [5] to perturbations of the Hénon family (so-called Hénon-like
families) and then showing that {Gξ} admits a Hénon-like renormalization. Wang and Young later
show that the theory of rank 1 maps applies in this setting [48].

Newhouse has shown that there exist parameter intervals and residual subsets of them such that
for a parameter ξ in one of these residual subsets, Gξ has infinitely many periodic sinks (attracting
periodic orbits) [27, 28]. Palis conjectures that the set of values of ξ for which Gξ has infinitely many
periodic sinks is a set of Lebesgue measure zero [33]. Gorodetski and Kaloshin have made progress on
this conjecture [12]. By combining the techniques of Mora and Viana and with those of Newhouse, Colli
proves that there exist parameter intervals converging to ξ = 0 and dense subsets of these intervals
such that for ξ in one of these dense subsets, Gξ exhibits infinitely many coexisting Hénon-like strange
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attractors [10]. The work of Newhouse and that of Colli has been generalized to higher dimensions by
Palis and Viana [35] and by Leal [18], respectively.

The results described thus far only scratch the surface of the vast body of work on homoclinic and
heteroclinic phenomena. For the sake of brevity, we complete this necessarily incomplete discussion
by mentioning work on the dominance of hyperbolicity [26, 34] and the work of Palis and Yoccoz [37]
on nonuniformly hyperbolic horseshoes. For further reading, we direct the reader to [8, 36] and the
references contained therein.

2.2.2. A comparison of Theorem 1 with the work of Mora and Viana [25]. We can relate
the theory of homoclinic tangencies to the setting of this paper (depicted in Figure 3) by first fixing a
value of µ 6= 0 and then varying ρ to create a nondegenerate homoclinic tangency for a certain value
of ρ (using the Melnikov method). There is no compelling reason for this to fail to work though we
are not aware of any rigorous attempt in the literature. It would then follow that for every fixed µ 6= 0
sufficiently small, there is a positive measure set of values of ρ such that equation (6) admits Hénon-like
attractors in the sense of Mora and Viana [25]. We emphasize, however, that the Hénon-like attractors
obtained in this way are entirely different from the rank 1 attractors we obtain in Theorem 1. The
rank 1 attractors obtained in Theorem 1 have entire neighborhoods of the unperturbed homoclinic
solution as part of their basins of attraction (they are global). Further, the strength of the expansion
associated with the SRB measure supported on the attractor is determined by the forcing frequency ω,
while the Hénon-like attractors of Mora and Viana are tiny local sink-like objects obtained by zooming
in through renormalization. In fact, the entire purpose of the theory of Wang and Young is to provide
a way to prove the existence of large strange attractors obtained through global analysis.

3. A model of Afraimovich and Shilnikov

In this section we study a model introduced by Afraimovich and Shilnikov in [1]. See also [2]. This
simple model allows us to illustrate the geometry of the flow-induced maps and the steps we use to
prove the main theorem while working in a setting with relatively low technical complexity. The flow-
induced maps of Afraimovich and Shilnikov are derived in Section 3.1 and their geometry is examined
in Section 3.2. In Section 3.3 we prove that these flow-induced maps are rank 1 maps in the sense
of [48, 52, 53].

3.1. Derivation of return maps. We begin by describing an unperturbed system of differential
equations. Let f : R2 → R and g : R2 → R be C∞ functions and let α, β ∈ R satisfy 0 < β < α. Define

(9)


dx

dt
= −αx+ f(x, y)

dy

dt
= βy + g(x, y).

We assume that the functions f and g satisfy f(x, y) = g(x, y) = 0 for all (x, y) ∈ B(0, 2ε) where 0 <
ε < 1. This means that equation (9) is linear in a neighborhood of 0. We also assume that equation (9)
admits a homoclinic solution ` = {`(t) : t ∈ R} containing the segments {(0, y) : 0 < y < 2ε} and
{(x, 0) : 0 < x < 2ε}.

Let S1 = [0, 2π) denote the unit circle and let p, q : R2×S1 → R be C∞ functions such that p = q = 0
on B(0, 2ε)× S1. We now introduce the perturbed system

(10)



dx

dt
= αx+ f(x, y) + µp(x, y, θ)

dy

dt
= βy + g(x, y) + µq(x, y, θ)

dθ

dt
= ω.

Here ω ∈ R is the frequency of the forcing functions and µ > 0 represents the strength of the pertur-
bation. We assume that µ and ε satisfy 0 6 µ� ε < 1.
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The orbit γ = {(0, 0, θ) : θ ∈ S1} is a hyperbolic periodic orbit of equation (10) for all µ. For µ = 0,
Γ = ` × S1 is contained in both the stable manifold and the unstable manifold of γ. We define the
Poincaré sections

Σ− = {(x, y, θ) : 0 6 x 6 C1µ, y = ε, θ ∈ S1}
Σ+ = {(x, y, θ) : x = ε, C−1

2 µ 6 y 6 C2µ, θ ∈ S1}
where µ ∈ [0, µ0], C1 > 0 is such that C1µ0 � ε, and C2 is suitably chosen. We study a situation in
which one can define flow-induced maps M : Σ− → Σ+ and N : Σ+ → Σ−. The composition N ◦ M

produces a one-parameter family {Fµ = N ◦M : µ ∈ [0, µ0]} of maps from Σ− to Σ−.

3.1.1. The map N : Σ+ → Σ−. The flow from Σ+ to Σ− is defined by the differential equations
dx

dt
= −αx(11a)

dy

dt
= βy(11b)

dθ

dt
= ω.(11c)

Let (ε, ŷ, θ̂) ∈ Σ+. Let T (ŷ) denote the time at which the orbit emanating from (ε, ŷ, θ̂) intersects
Σ−. Write N(ε, ŷ, θ̂) = (x1, ε, θ1). Integrating (11b), we have ε = eβT (ŷ)ŷ, so T (ŷ) = log(εŷ−1)/β.
Integrating (11a) yields x1 = e−αT (ŷ)ε = ε1−α/β ŷα/β. The local map N is therefore given by

(12)


x1 = ε

1−α
β ŷ

α
β

θ1 = θ̂ +
ω

β
log(εŷ−1).

3.1.2. The map M : Σ− → Σ+. Let (x0, ε, θ0) ∈ Σ−. Write M(x0, ε, θ0) = (ε, ŷ, θ̂). We assume
that for µ ∈ [0, µ0],

ŷ = λx0 + µϕ(x0, θ0)

θ̂ = θ0 + ξ1 + µψ(x0, θ0).

Here 0 < λ < 1 and ξ1 > 0 are fixed. The functions ϕ and ψ are C∞ functions on Σ−. We assume
that ϕ(x0, θ0) > 0 for all (x0, θ0) ∈ Σ−. This ensures that the stable and unstable manifolds are pulled
apart by the periodic forcing (see Figure 2). More precisely, we assume that p and q are such that

ψ(x0, θ0) = ξ2

ϕ(x0, θ0) = B(1 +A sin θ0).

Here ξ2 ∈ R, B > 0, and 0 < A < 1. The global map M is therefore given by

(13)

{
ŷ = λx0 + µB(1 +A sin θ0)

θ̂ = θ0 + ξ1 + µξ2.

3.1.3. The map Fµ = N ◦ M : Σ− → Σ−. Let (x0, ε, θ0) ∈ Σ−. Computing Fµ(x0, ε, θ0) =
(x1, ε, θ1) using (12) and (13), we have

x1 = ε
1−α

β
[
λx0 + µB(1 +A sin(θ0)

]α
β

θ1 = θ0 + ξ1 + µξ2 +
ω

β
log
(

ε

λx0 + µB(1 +A sin(θ0))

)
.

Using the spatial rescaling x 7→ µX, we obtain

X1 = ε
1−α

β µ
α
β−1[

λX0 +B(1 +A sin(θ0)
]α

β(14a)

θ1 = θ0 + ξ1 + µξ2 +
ω

β
log
(

εµ−1

λX0 +B(1 +A sin(θ0))

)
.(14b)
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Using this formula for Fµ, Afraimovich and Shilnikov [1, 2] conclude that Fµ has a horseshoe for
large ω.

3.2. Geometry of Fµ. Dissipation and shear are the 2 primary mechanisms responsible for the
presence of rank 1 chaos in the family {Fµ}. Figure 4 illustrates the flow-induced map on the annulus
Σ+.

lift ∼ µ

global flow

Σ+

dissipation: α > β
θ

x

β

y

−α

local flow

Figure 4: The flow-induced map on Σ+.

If the ‘lift’ (µ) is small, then Σ+ spends a long time near the hyperbolic periodic orbit γ as it flows
forward. The flow contracts volume in a neighborhood of {(0, 0, θ) : θ ∈ S1} because α > β. Therefore,
the flow-induced map on Σ+ is dissipative if µ is small and the dissipation becomes stronger as µ
decreases.

Shear produces stretch-and-fold geometry in phase space and generates expansion in the singular
limit. Figure 5 demonstrates the origin and effect of shear on a curve V ⊂ Σ−. Let 0 < S < C1 and
define V ⊂ Σ− by V = {(S, θ) : θ ∈ S1}. The global map M causes the slice V to become curved. We
have

M(V ) =
{
(λS +B(1 +A sin(θ − ξ1 − µξ2)), θ) : θ ∈ S1

}
.

In particular, the Y -coordinates of the points in M(V ) depend nontrivially on θ. Since the time needed
for a point (Y (θ), θ) ∈ M(V ) to reach Σ− under the local flow is roughly log((µY (θ))−1), it follows
that the local map N stretches and folds M(V ).

3.3. Theory of rank 1 attractors. In this subsection we first introduce admissible rank 1 maps
following [48, 52, 53] and we then prove that {Fµ} is an admissible family of rank 1 maps using the
techniques of [49].

3.3.1. Misiurewicz maps and admissible 1D families. The definition of an admissible family of
1D maps is rather long and technical. It could therefore present a nontrivial hurdle for the reader.
We feel obligated to present this definition for completeness. Readers wishing to skip the material on
admissible 1D families can safely jump to Proposition 3.3. Proposition 3.3 contains the only result
from the 1D aspect of the theory of rank 1 maps that we need for the results of this paper.

We start with Misiurewicz maps. For f ∈ C2(S1,S1), let C = C(f) = {f ′ = 0} denote the critical
set of f and let Cδ denote the δ-neighborhood of C in S1. For x ∈ S1, let d(x,C) = minx̂∈C |x− x̂|.

Definition 3.1. We say that f ∈ C2(S1,S1) is a Misiurewicz map and we write f ∈ E if the following
hold for some δ0 > 0.
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Σ−

V

M(V )

x

θ

time ∼ log((µY (θ))−1)
x

x

y

N(M(V ))

Σ−

Σ+

local flow

disturbance from global flow

y

−αβ

result of local flow

Figure 5: Stretch-and-fold geometry is produced by the combined effects of the global flow and the
hyperbolic periodic orbit.

(1) Outside of Cδ0. There exist λ0 > 0, M0 ∈ Z+, and 0 < c0 6 1 such that
(a) for all n > M0, if x, f(x), · · · , fn−1(x) 6∈ Cδ0 , then |(fn)′(x)| > eλ0n;
(b) if x, f(x), · · · , fn−1(x) 6∈ Cδ0 and fn(x) ∈ Cδ0 for any n, then |(fn)′(x)| > c0e

λ0n.
(2) Inside Cδ0.

(a) We have f ′′(x) 6= 0 for all x ∈ Cδ0 .
(b) For all x̂ ∈ C and n > 0, d(fn(x̂), C) > δ0.
(c) For all x ∈ Cδ0 \ C, there exists p0(x) > 0 such that f j(x) 6∈ Cδ0 for all j < p0(x) and

|(fp0(x))′(x)| > c−1
0 eλ0p0(x)/3.

We remark that Misiurewicz maps are among the simplest maps with nonuniform expansion. The
phase space is divided into two regions, Cδ0 and S1 \ Cδ0 . Condition (1) in Definition 3.1 says that on
S1 \ Cδ0 , f is essentially uniformly expanding. Condition (2c) says that for x ∈ Cδ0 \ C, even though
|f ′(x)| is small, the orbit of x does not return to Cδ0 again until its derivative has regained a definite
amount of exponential growth. In particular, if n is the first return time of x ∈ Cδ0 to Cδ0 , then
|(fn)′(x)| > c−1

0 eλ0n/3.
We now define admissible families of 1D maps. Let F : S1 × [a1, a2] → S1 be a C2 map. The

map F defines a 1-parameter family {fa ∈ C2(S1,S1) : a ∈ [a1, a2]} via fa(x) = F (x, a). We assume
that there exists a∗ ∈ (a1, a2) such that fa∗ ∈ E. For each c ∈ C(fa∗), there exists a continuation
c(a) ∈ C(fa) provided a is sufficiently close to a∗.

Let C(fa∗) = {c(1)(a∗), . . . , c(q)(a∗)}, where c(i)(a∗) < c(i+1)(a∗) for 1 6 i 6 q−1. For c(a∗) ∈ C(fa∗),
we define β(a∗) = fa∗(c(a∗)). For all parameters a sufficiently close to a∗, there exists a unique
continuation β(a) of β(a∗) such that the orbits

{fn
a∗(β(a∗)) : n > 0} and {fn

a (β(a)) : n > 0}
have the same itineraries with respect to the partitions of S1 induced by C(fa∗) and C(fa). This means
that for all n > 0, fn

a∗(β(a∗)) ∈ (c(j)(a∗), c(j+1)(a∗)) if and only if fn
a (β(a)) ∈ (c(j)(a), c(j+1)(a)) (here

c(q+1) = c(1)). Moreover, the map a 7→ β(a) is differentiable (see Proposition 4.1 in [51]).

Definition 3.2. Let F : S1 × [a1, a2] → S1 be a C2 map. The associated 1-parameter family {fa : a ∈
[a1, a2]} is admissible if
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(1) there exists a∗ ∈ (a1, a2) such that fa∗ ∈ E;
(2) for all c ∈ C(fa∗), we have

(15) ξ(c) =
d

da
(fa(c(a))− β(a))

∣∣∣∣
a=a∗

6= 0.

The next proposition contains all that we need from the 1D aspect of the theory of rank 1 maps for
this paper.

Proposition 3.3 ([49, 50, 22]). Let Ψ(θ) : S1 → R be a C3 function with non-degenerate critical points
and let Φ(θ, a) : S1 × [a0, a1] → R be such that

‖Φ(θ, a)‖C3(S1×[a0,a1]) <
1

100
.

We define a 1-parameter family of circle maps {fa : a ∈ [0, 2π]} by

fa(θ) = θ + Φ(θ, a) + a+ KΨ(θ)

where K is a constant. There exists K, determined by Ψ alone, such that if K > K, then {fa} is an
admissible family of 1D maps.

The special case of this proposition in which Φ(θ, a) = 0 was first proved in [49]. That proof can
easily be extended to prove Proposition 3.3. See also Proposition 2.1 in [50] and Appendix C in [22].

3.3.2. Admissible families of rank 1 maps. We now move to the theory of rank 1 maps (see [48,
52, 53]). We focus on the special case in which the phase space is 2-dimensional.

Let I ⊂ R be an interval. Let B0 ⊂ R be a set with a limit point at 0 and let [a0, a1] ⊂ R. A
2-parameter C3 family {Fa,b(X, θ) : a ∈ [a0, a1], b ∈ B0} of embeddings of Σ = I × S1 into Σ is an
admissible family of rank 1 maps if the following hold.
(C1) There exists a C2 function Fa,0(X, θ) of (a,X, θ) such that as b→ 0,

‖Fa,b(X, θ)− (0, Fa,0(X, θ))‖C3([a0,a1]×Σ) → 0.

(C2) The family {fa(θ) = Fa,0(0, θ) : a ∈ [a0, a1]} is an admissible family of 1D maps.
(C3) For all a ∈ [a0, a1] and for every critical point θ̂ of the 1D map fa(θ), we have

∂

∂X
Fa,0(X, θ̂)

∣∣∣∣
X=0

6= 0.

Proposition 3.4 ([48, 52, 53]). Let Fa,b : Σ → Σ be an admissible family of rank 1 maps. There exists
b̂ > 0 such that for all |b| < b̂, there exists a set ∆b of values of a with positive Lebesgue measure such
that for a ∈ ∆b, Fa,b admits an ergodic SRB measure ν. If we also have λ0 > log(10), where λ0 is as
in Definition 3.1, then ν is the only ergodic SRB measure1 that Fa,b admits on Σ.

Remark 3.5. See [48, 53] for a complete dynamical profile of Fa,b with a ∈ ∆b.

More is true if the global distortion bound (C4) holds.
(C4) There exists C > 0 such that for all a ∈ [a0, a1], b ∈ B0, (X, θ) ∈ Σ, and (X ′, θ′) ∈ Σ, we have∣∣∣∣ detDFa,b(X, θ)

detDFa,b(X ′, θ′)

∣∣∣∣ < C.

Proposition 3.6 ([48, 52, 53]). Let Fa,b be an admissible family of rank 1 maps satisfying (C4) and
suppose that λ0 > log(10), where λ0 is as in Definition 3.1. Then for all |b| < b̂ and a ∈ ∆b, Lebesgue
almost every point in Σ is generic with respect to the unique ergodic SRB measure on Σ.

1This is proved in [49].
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3.3.3. {Fµ} is an admissible family of rank 1 maps. We show that {Fµ} satisfies hypothe-
ses (C1)–(C4). Letting µ → 0 in (14a), we see that X1 → 0 because α > β. However, the term
ω
β log(µ−1) (mod 2π) fails to converge as µ→ 0. The fact that θ1 is computed modulo 2π allows us to
introduce the parameter a and thereby obtain a 2-parameter family {Fa,b} with a well-defined singular
limit.

We regard p = log(µ−1) as the fundamental parameter associated with {Fµ}. Notice that we now
have p ∈ [log(µ−1

0 ),∞). Think of µ = e−p as a function of p. Define γ : (0, µ0] → R by

γ(µ) =
ω

β
log(µ−1).

Let N ∈ N satisfy ω
β log(µ−1

0 ) < N . Let (µn) be the decreasing sequence of values of µ such that
γ(µn) = N + 2π(n − 1) for every n ∈ N. We think of µ as a measure of dissipation and we therefore
set bn = µn. For a ∈ S1 and n ∈ N, define

µ(n, a) = γ−1(γ(µn) + a)

p(n, a) = log(µ(n, a)−1) = log(µ−1
n ) +

β

ω
a.

The map Fa,bn is defined by Fa,bn = Fp(n,a).
The family {Fa,bn} has a well-defined singular limit. As n→∞, Fa,bn converges in the C3 topology

to the map Fa,0 defined by

F
〈1〉
a,0 (X0, θ0) = 0

F
〈2〉
a,0 (X0, θ0) = θ0 + ξ1 +

ω

β
log(ε) + a− ω

β
log(λX0 +B(1 +A sin(θ0))).

This proves (C1).
Restricting F 〈2〉a,0 to the circle {(X0, θ0) : X0 = 0}, we obtain the 1-parameter family of circle maps

fa(θ) = θ + ξ1 +
ω

β
log(ε) + a− ω

β
log(B(1 +A sin(θ))).

It follows directly from Proposition 3.3 that fa is an admissible family of 1D maps provided ωβ−1 is
sufficiently large. This proves (C2). Hypotheses (C3) and (C4) follow from direct computation.

We have shown that the family {Fa,bn} is an admissible family of rank 1 maps and therefore Proposi-
tions 3.4 and 3.6 apply. We conclude that if |ω| is sufficiently large, then there exists a set ∆ω of positive
Lebesgue measure such that for µ ∈ ∆ω, Fµ admits a strange attractor on Σ− with a unique ergodic
SRB measure ν and Lebesgue almost every point on Σ− is generic with respect to ν. Furthermore, the
set ∆ω has positive lower Lebesgue density at 0, meaning that

lim
r→0+

Leb(∆ω ∩ [0, r])
r

> 0

where Leb(·) denotes Lebesgue measure.

4. Normal forms around the homoclinic loop

4.1. Outline and setup. In this section we return to the general setting of Section 2 and we introduce
a sequence of coordinate changes to transform equation (6) into certain normal forms. In Section 4.2
we work in a sufficiently small neighborhood Uε of (0, 0) in the (x, y)-plane. In Section 4.3 we work in
a small neighborhood around the entire length of the homoclinic loop ` outside of Uε2/4. In Section 4.4
we define the Poincaré sections Σ± which we will use to compute the flow-induced maps. Points on Σ±

are represented by various sets of variables introduced in Sections 4.2 and 4.3. We discuss the issue of
coordinate conversion in Section 4.4.

In the rest of this paper, α, β, ρ ∈ [ρ1, ρ2] and ω > ω0 (it suffices to assume ω > 0) are all regarded
as fixed constants. The size of the neighborhood on which all of the coordinate transformations in
Section 4.2 are performed is determined by a small number ε > 0. The quantity ε is also regarded as
a fixed constant. We regard µ as the only parameter of equation (6).
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4.1.1. Two small scales. The quantities µ� ε� 1 represent two small scales of different magnitude.
The quantity ε represents the size of a small neighborhood of (x, y) = (0, 0) in which the local analysis
of Section 4.2 is valid. Define

Uε = {(x, y) : x2 + y2 < 4ε2} and Uε = Uε × S1.

Let L+ and −L− be the respective times at which the homoclinic solution `(t) enters Uε/2 in the
positive and negative directions. The quantities L+ and L− are completely determined by ε and `.
The parameter µ (µ� ε) controls the magnitude of the time-periodic forcing.

4.1.2. Notation. Quantities that are independent of phase variables, time and µ are regarded as
constants and K is used to denote a generic constant, the precise value of which is allowed to change
from line to line. On occasion, a specific constant is used in different places. We use subscripts to
denote such constants as K0,K1, · · · . We will also distinguish between constants that depend on ε and
those that do not by making such dependencies explicit. A constant that depends on ε is written as
K(ε). A constant written as K is independent of ε.

4.2. Normal form near the stationary point. In this subsection we study equation (6) in a suffi-
ciently small neighborhood of (0, 0) in the (x, y)-plane. We introduce a sequence of coordinate changes
to transform equation (6) into a certain normal form. Table 1 summarizes the purpose of each coordi-
nate transformation.

Table 1: Transformations near the stationary point.

Transformation Purpose
(x, y) → (ξ, η) linearize the flow defined by (4) in a neighborhood of (0, 0)
(ξ, η) → (X,Y ) standardize the location of the hyperbolic periodic orbit

(X,Y ) → (X,Y) flatten the local invariant manifolds
(X,Y) → (X,Y) rescale by the factor 1/µ

4.2.1. First coordinate change: (x, y) → (ξ, η). Let (ξ, η) be such that

(16) ξ = x+ q1(x, y), η = y + q2(x, y)

where q1(x, y) and q2(x, y) are analytic terms of order at least 2 in x and y. Formula (16) defines a
near-identity coordinate transformation (x, y) → (ξ, η), the inverse of which we write as

(17) x = ξ +Q1(ξ, η), y = η +Q2(ξ, η).

Proposition 4.1. Assume that α and β satisfy the nonresonance condition (H1)(a). Then there
exists a neighborhood U of (0, 0), the size of which is completely determined by equation (4) and d1 and
d2 in (H1)(a), such that on U there exists an analytic coordinate transformation (16) that transforms
equation (4) into the linear system

dξ

dt
= −αξ, dη

dt
= βη.

Proof of Proposition 4.1. See [15] for a proof. �

We now use the coordinate transformation of Proposition 4.1 to transform equation (6). Observe
that by definition, q1(x, y) and q2(x, y) satisfy

(1 + ∂xq1(x, y))(−αx+ f(x, y)) + ∂yq1(x, y)(βy + g(x, y)) = −αξ(18a)

(1 + ∂yq2(x, y))(βy + g(x, y)) + ∂xq2(x, y)(−αx+ f(x, y)) = βη.(18b)
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We derive the form of (6) in terms of ξ and η. We have

dξ

dt
= (1 + ∂xq1(x, y))(−αx+ f(x, y)− µ(ρh(x, y) + sin(θ)))

+ ∂yq1(x, y)(βy + g(x, y) + µ(ρh(x, y) + sin(θ)))

= −αξ − µ(1 + ∂xq1(x, y)− ∂yq1(x, y))(ρh(x, y) + sin(θ))

where (18a) is used for the second equality. Similarly, we have

dη

dt
= (1 + ∂yq2(x, y))(βy + g(x, y) + µ(ρh(x, y) + sin(θ)))

+ ∂xq2(x, y)(−αx+ f(x, y)− µ(ρh(x, y) + sin(θ)))

= βη + µ(1 + ∂yq2(x, y)− ∂xq2(x, y))(ρh(x, y) + sin(θ)).

Writing the functions of x and y as functions of ξ and η using (17), the form of (6) in terms of ξ and
η is given by

(19)



dξ

dt
= −αξ − µ(1 + h1(ξ, η))(ρH(ξ, η) + sin(θ))

dη

dt
= βη + µ(1 + h2(ξ, η))(ρH(ξ, η) + sin(θ))

dθ

dt
= ω

where h1(ξ, η) = ∂xq1(x, y) − ∂yq1(x, y), h2(ξ, η) = ∂yq2(x, y) − ∂xq2(x, y) are such that h1(0, 0) =
h2(0, 0) = 0 and H(ξ, η) = h(x, y).

4.2.2. Second coordinate change: (ξ, η) → (X,Y ). With the forcing added, the hyperbolic sta-
tionary point (x, y) = (0, 0) of equation (4) becomes a hyperbolic periodic solution of (6) with period
2πω−1. We denote this periodic solution in (ξ, η, θ)-coordinates as ξ = µφ(θ;µ), η = µψ(θ;µ).

Proposition 4.2. For equation (19), there exists a unique solution of the form

ξ = µφ(θ;µ), η = µψ(θ;µ), θ = ωt

satisfying

φ(θ;µ) = φ(θ + 2π;µ), ψ(θ;µ) = ψ(θ + 2π;µ).

The C3 norms of the functions φ(θ;µ) and ψ(θ;µ), regarded as functions of θ and µ, are bounded by a
constant K.

Proof of Proposition 4.2. Write φ = φ(θ;µ), ψ = ψ(θ;µ). The functions φ and ψ should satisfy

(20)
ω
dφ

dθ
= −αφ− (1 + h1(µφ, µψ))(ρH(µφ, µψ) + sin(θ))

ω
dψ

dθ
= βψ + (1 + h2(µφ, µψ))(ρH(µφ, µψ) + sin(θ)).

From (20) it follows that

φ(θ;µ) = e−αω−1(θ−θ0)φ(θ0;µ)− ω−1

∫ θ

θ0

eαω−1(s−θ)[1 + h1(µφ(s;µ), µψ(s;µ))]×

[ρH(µφ(s;µ), µψ(s;µ)) + sin(s)] ds

ψ(θ;µ) = eβω−1(θ−θ0)ψ(θ0;µ) + ω−1

∫ θ

θ0

e−βω−1(s−θ)[1 + h2(µφ(s;µ), µψ(s;µ))]×

[ρH(µφ(s;µ), µψ(s;µ)) + sin(s)] ds.
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To solve for φ and ψ we let θ = θ0 + 2π and set φ(θ0 + 2π;µ) = φ(θ0;µ), ψ(θ0 + 2π;µ) = ψ(θ0;µ),
obtaining

(21)

φ(θ;µ) =
−ω−1

1− e−2αω−1π

∫ 2π

0
eαω−1(s−2π)[1 + h1(µφ(s+ θ;µ), µψ(s+ θ;µ))]×

[ρH(µφ(s+ θ;µ), µψ(s+ θ;µ)) + sin(s+ θ)] ds

ψ(θ;µ) =
ω−1

1− e2βω−1π

∫ 2π

0
e−βω−1(s−2π)[1 + h2(µφ(s+ θ;µ), µψ(s+ θ;µ))]×

[ρH(µφ(s+ θ;µ), µψ(s+ θ;µ)) + sin(s+ θ)] ds.

The existence and uniqueness of φ(θ;µ) and ψ(θ;µ) follows directly from an application of the con-
traction mapping theorem to (21). The asserted bound on partial derivatives with respect to θ and µ
follows from differentiating (21) with respect to θ and µ. �

We now introduce new variables (X,Y ) by defining

(22) X = ξ − µφ(θ;µ), Y = η − µψ(θ;µ).

We have
dX

dt
= −αX − αµφ− µω

dφ

dθ
− µ(1 + h1(X + µφ, Y + µψ))(ρH(X + µφ, Y + µψ) + sin(θ))

dY

dt
= βY + βµψ − µω

dψ

dθ
+ µ(1 + h2(X + µφ, Y + µψ))(ρH(X + µφ, Y + µψ) + sin(θ)).

Using (20), the form of (6) in terms of X, Y and θ is given by

(23)



dX

dt
= −αX + µF (X,Y, θ;µ)

dY

dt
= βY + µG(X,Y, θ;µ)

dθ

dt
= ω

where

F (X,Y, θ;µ) = −[h1(X + µφ, Y + µψ)− h1(µφ, µψ)](ρH(X + µφ, Y + µψ) + sin(θ))

− ρ(1 + h1(µφ, µψ))(H(X + µφ, Y + µψ)−H(µφ, µψ))

G(X,Y, θ;µ) = [h2(X + µφ, Y + µψ)− h2(µφ, µψ)](ρH(X + µφ, Y + µψ) + sin(θ))

+ ρ(1 + h2(µφ, µψ))(H(X + µφ, Y + µψ)−H(µφ, µψ))

are such that F (0, 0, θ;µ) = G(0, 0, θ;µ) = 0. Observe that in the new coordinates (X,Y, θ), the
solution ξ = µφ(θ;µ), η = µψ(θ;µ) is represented by X = Y = 0. We remark that on

{(X,Y, θ;µ) : ‖(X,Y )‖ < ε, θ ∈ S1, 0 6 µ 6 µ0},

(1) F (X,Y, θ;µ) and G(X,Y, θ;µ) are analytic functions bounded by Kε;
(2) it follows from Proposition 4.2 that the C3 norms of both F and G as functions of (X,Y, θ)

and µ are bounded by a constant K.

4.2.3. Third coordinate change: (X,Y ) → (X,Y). The periodic solution (X,Y, θ) = (0, 0, ωt) of
equation (23) has a local unstable manifold, which we write as

X = µW u(Y, θ;µ),

and a local stable manifold, which we write as

Y = µW s(X, θ;µ).
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Proposition 4.3. There exists ε > 0 and µ0 = µ0(ε) > 0 such that W u(Y, θ;µ) and W s(X, θ;µ) are
analytically defined on

(−ε, ε)× S1 × [0, µ0]
and satisfy

W u(0, θ;µ) = 0, W s(0, θ;µ) = 0.
The C3 norms of W u(Y, θ;µ) and W s(X, θ;µ), regarded as functions of all three of their arguments,
are bounded by a constant K.

Proof of Proposition 4.3. We regard X, Y , θ, and µ in equation (23) as complex variables. The exis-
tence and smoothness of local stable and unstable manifolds follows from a standard argument based
on the contraction mapping theorem. See [15] for instance. �

By definition, W u(Y, θ;µ) satisfies

(24)
−αW u(Y, θ;µ) + F (µW u(Y, θ;µ), Y, θ;µ) = ω∂θW

u(Y, θ;µ)

+ ∂YW
u(Y, θ;µ)(βY + µG(µW u(Y, θ;µ), Y, θ;µ)).

Similarly, W s(X, θ;µ) satisfies

(25)
βW s(X, θ;µ) +G(X,µW s(X, θ;µ), θ;µ) = ω∂θW

s(X, θ;µ)

+ ∂XW
s(X, θ;µ)(−αX + µF (X,µW s(X, θ;µ), θ;µ)).

Define the new variables X and Y by

(26) X = X − µW u(Y, θ;µ), Y = Y − µW s(X, θ;µ).

By using (23), (24), and (25), the form of (6) in terms of (X,Y, θ) is given by

(27)



dX
dt

= (−α+ µF(X,Y, θ;µ))X

dY
dt

= (β + µG(X,Y, θ;µ))Y

dθ

dt
= ω.

where F and G are analytic functions of X, Y, θ, and µ defined on Uε × S1 × [0, µ0]. The C3 norms
of F and G are bounded by a constant K. Tracing back to the variables (ξ, η), we have

X = ξ − µ (φ(θ;µ) +W u(η − µψ(θ;µ), θ;µ))(28a)

Y = η − µ (ψ(θ;µ) +W s(ξ − µφ(θ;µ), θ;µ)) .(28b)

4.2.4. Fourth coordinate change: (X,Y) → (X,Y). The final coordinate change is a rescaling of X
and Y by the factor µ−1. Let

(29) X = µ−1X, Y = µ−1Y.

We write equation (27) in X and Y as

(30)



dX
dt

= (−α+ µF(X,Y, θ;µ))X

dY
dt

= (β + µG(X,Y, θ;µ))Y

dθ

dt
= ω

where
F(X,Y, θ;µ) = F(µX, µY, θ;µ), G(X,Y, θ;µ) = G(µX, µY, θ;µ)

are analytic functions of X, Y, θ, and µ defined on

D = {(X,Y, θ, µ) : µ ∈ [0, µ0], (X,Y, θ) ∈ Uε}
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where
Uε = {(X,Y, θ) : ‖(X,Y)‖ < 2εµ−1, θ ∈ S1}.

Remark 4.4. We remind the reader that all constants represented by K in Section 4.2 are independent
of ε and µ.

4.3. A normal form around the homoclinic loop. In this subsection we derive a normal form for
equation (6) around the homoclinic loop of equation (4) outside of Uε2/4. Some elementary estimates
are also included.

4.3.1. Derivation of the normal form. Let us regard t in `(t) = (a(t), b(t)) not as time, but as a
parameter that parametrizes the curve ` in (x, y)-space. We replace t by s and write the homoclinic
loop as `(s) = (a(s), b(s)). We have

(31)

da(s)
ds

= −αa(s) + f(a(s), b(s))

db(s)
ds

= βb(s) + g(a(s), b(s)).

Define

(u(s), v(s)) =
∥∥∥∥ dds`(s)

∥∥∥∥−1 d

ds
`(s).

We have

(32)

u(s) =
−αa(s) + f(a(s), b(s))√

(−αa(s) + f(a(s), b(s)))2 + (βb(s) + g(a(s), b(s)))2
,

v(s) =
βb(s) + g(a(s), b(s))√

(−αa(s) + f(a(s), b(s)))2 + (βb(s) + g(a(s), b(s)))2
.

Let
e(s) = (v(s),−u(s)).

The vector e(s) is the inward unit normal vector to ` at `(s). We now introduce the new variable z
such that

(x, y) = `(s) + ze(s).
That is,

(33) x = x(s, z) = a(s) + v(s)z, y = y(s, z) = b(s)− u(s)z.

We derive the form of (6) in terms of the new variables (s, z) defined through (33). Differentiat-
ing (33), we obtain

(34)

dx

dt
= (−αa(s) + f(a(s), b(s)) + v′(s)z)

ds

dt
+ v(s)

dz

dt
dy

dt
= (βb(s) + g(a(s), b(s))− u′(s)z)

ds

dt
− u(s)

dz

dt

where u′(s) = du(s)
ds and v′(s) = dv(s)

ds . Denote

F (s, z) = −α(a(s) + zv(s)) + f(a(s) + zv(s), b(s)− zu(s))

G(s, z) = β(b(s)− zu(s)) + g(a(s) + zv(s), b(s)− zu(s))

H(s, z) = h(a(s) + zv(s), b(s)− zu(s)).

Using (6) and (34), we have

ds

dt
=
v(s)G(s, z) + u(s)F (s, z) + µ(v(s)− u(s))(ρH(s, z) + sin(θ))√

F (s, 0)2 +G(s, 0)2 + z(u(s)v′(s)− v(s)u′(s))
dz

dt
= v(s)F (s, z)− u(s)G(s, z)− µ(u(s) + v(s))(ρH(s, z) + sin(θ)).
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We rewrite these equations as

(35)

ds

dt
= 1 + zw1(s, z, θ;µ) +

µ(v(s)− u(s))(ρH(s, 0) + sin(θ))√
F (s, 0)2 +G(s, 0)2

dz

dt
= E(s)z + z2w2(s, z)− µ(u(s) + v(s))(ρH(s, z) + sin(θ))

dθ

dt
= ω

where

E(s) = v2(s)(−α+ ∂xf(a(s), b(s))) + u2(s)(β + ∂yg(a(s), b(s)))

− u(s)v(s)(∂yf(a(s), b(s)) + ∂xg(a(s), b(s)))

H(s, 0) = h(a(s), b(s)).

Equation (35) is defined on

{s ∈ [−2L−, 2L+], µ ∈ [0, µ0], θ ∈ S1, |z| < K0(ε)µ},
where K0(ε) is independent of µ. The C3 norms of the functions w1(s, z, θ;µ) and w2(s, z) are bounded
by a constant K(ε).

Finally, we rescale the variable z by letting

(36) Z = µ−1z.

We arrive at the equations
ds

dt
= 1 + µw̃1(s, Z, θ;µ)(37a)

dZ

dt
= E(s)Z + µw̃2(s, Z, θ;µ)− (u(s) + v(s))(ρH(s, 0) + sin(θ))(37b)

dθ

dt
= ω(37c)

defined on
D = {(s, Z, θ;µ) : s ∈ [−2L−, 2L+], |Z| 6 K0(ε), θ ∈ S1, µ ∈ [0, µ0]}.

We assume that µ0 is sufficiently small so that

µ� min
s∈[−2L−,2L+]

(F (s, 0)2 +G(s, 0)2).

The C3 norms of the functions w̃1 and w̃2 are bounded by a constant K(ε) on D.
System (37a)–(37c) is the one we need. The function E(s) appears in the integrals A, C, and S

in (H2).

Remark 4.5. Observe that all of the generic constants that have appeared thus far in this subsection
have the form K(ε).

4.3.2. Technical estimates. We adopt the following conventions in comparing the magnitude of two
functions f(s) and g(s). We write f(s) ≺ g(s) if there exists K > 0 independent of s such that
|f(s)| < K|g(s)| as s → ∞ (or −∞). We write f(s) ∼ g(s) if in addition we have |f(s)| > K−1|g(s)|
as s→∞ (or −∞). We write f(s) ≈ g(s) if

f(s)
g(s)

→ 1

as s→∞ (or −∞).
Recall that `(s) = (a(s), b(s)) is the homoclinic solution for the hyperbolic stationary point (0, 0) of

equation (4). The vector (u(s), v(s)) is the unit tangent vector to ` at `(s).

Lemma 4.6. As s→ +∞, we have
(1) a(s) ∼ e−αs, a(−s) ≺ e−2βs

(2) b(s) ≺ e−2αs, b(−s) ∼ e−βs
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(3) u(s) ≈ −1, u(−s) ≺ e−βs

(4) v(s) ≺ e−αs, v(−s) ≈ 1.

Proof of Lemma 4.6. We are simply restating the fact that `(s) → (0, 0) with an exponential rate −α
in the positive s-direction along the x-axis and with an exponential rate β in the negative s-direction
along the y-axis. �

Lemma 4.7. Let E(s) be as in (7). As L± → +∞, we have

(a)
∫ 0
−L−(E(s) + α) ds ≺ 1

(b)
∫ L+

0 (E(s)− β) ds ≺ 1
(c)

∫ 0
−L− E(s) ds ≈ −αL−

(d)
∫ L+

0 E(s) ds ≈ βL+.

Proof of Lemma 4.7. Statements (a) and (b) claim that the integrals are convergent as L± → ∞.
For (a), we observe that by adding α to E(s), we can write E(s) +α as a collection of terms such that
each term decays exponentially as s → −∞ by Lemma 4.6. Similarly, taking β away from E(s), we
can write E(s)− β as a collection of terms such that each term decays exponentially as s→∞.

For (c) and (d) we write ∫ 0

−L−
E(s) ds = −αL− +

∫ 0

−L−
(E(s) + α) ds∫ L+

0
E(s) ds = βL+ +

∫ L+

0
(E(s)− β) ds.

Statements (c) and (d) now follow from (a) and (b), respectively. �

Lemma 4.8. All of the integrals defined in (8) are absolutely convergent.

Proof of Lemma 4.8. Let us write

A =
∫ −L0

−∞
(u(s) + v(s))h(a(s), b(s))e−

R s
0 E(τ) dτ ds

+
∫ L0

−L0

(u(s) + v(s))h(a(s), b(s))e−
R s
0 E(τ) dτ ds

+
∫ ∞

L0

(u(s) + v(s))h(a(s), b(s))e−
R s
0 E(τ) dτ ds.

We write the first integral as∫ −L0

−∞
(u(s) + v(s))h(a(s), b(s))eαse−

R s
0 (E(τ)+α) dτ ds

and make L0 sufficiently large so that |E(τ) + α| < α/2 for all τ ∈ (−∞,−L0). This integral is
convergent since the integrand is < Keαs/2 for all s ∈ (−∞,−L0). For the convergence of the third
integral, we rewrite it as ∫ ∞

L0

(u(s) + v(s))h(a(s), b(s))e−βse−
R s
0 (E(τ)−β) dτ ds

and observe that |E(τ) − β| < β/2 for τ ∈ [L0,∞) provided that L0 is sufficiently large. The proofs
for C and S are similar. �

4.4. Poincaré sections and conversion of coordinates. We introduce the Poincaré sections Σ±.
Since various sets of phase variables have appeared in Sections 4.2 and 4.3, we also need to know how
to explicitly convert coordinates from one set to another on Σ±.
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4.4.1. The Poincaré Sections Σ±. Recall that {`(s) : s ∈ (−∞,∞)} is the homoclinic loop of
equation (4). Given ε > 0 sufficiently small, let L+ and −L− be such that

(38)

ξ(−L−) = a(−L−) + q1(a(−L−), b(−L−)) = 0

η(−L−) = b(−L−) + q2(a(−L−), b(−L−)) = ε

ξ(L+) = a(L+) + q1(a(L+), b(L+)) = ε

η(L+) = b(L+) + q2(a(L+), b(L+)) = 0

where ξ and η are the variables defined through (16). Let

K̂0 = max
θ∈S1

µ∈[0,µ0]

{|φ(θ;µ)|, |ψ(θ;µ)|}

where φ(θ;µ) and ψ(θ;µ) are as in Section 4.2.2. We define two sections in Uε, denoted Σ− and Σ+,
as follows.

(39)

Σ− = {(x, y, θ) : s = −L−, |z| 6 (K̂0 + 1)µ, θ ∈ S1}

Σ+ = {(x, y, θ) : s = L+,
1
10

(−ρA)(K̂0 + 1)e
1
2βL+

µ 6 z

6 10(−ρA)(K̂0 + 1)e2βL+
µ, θ ∈ S1}

where s and z are as in (33). We construct the flow-induced map Fµ in two steps.

(1) Starting from Σ−, the solutions of equation (6) move out of Uε, following the homoclinic loop of
equation (4) to eventually hit Σ+. This defines a flow-induced map from Σ− to Σ+, which we
denote as M : Σ− → Σ+. We will prove that M(Σ−) ⊂ Σ+.

(2) Starting from Σ+, the solutions of equation (6) stay inside of Uε, carrying Σ+ into Σ−. This map
we denote as N.

We define Fµ = N ◦M. Observe that the variables (s, Z, θ) of Section 4.3 are suitable for computing
M and (X,Y, θ) are suitable for computing N. To properly compose N and M, we need to know how
to convert from (s, Z, θ) to (X,Y, θ) on Σ± and vice-versa.

4.4.2. The new parameter p. As stated earlier, we regard µ as the only parameter of system (6).
We make a coordinate change on this parameter by letting p = lnµ and we regard p, not µ, as our
bottom-line parameter. In other words, we regard µ as a shorthand for ep and all functions of µ are
thought of as functions of p. Observe that µ ∈ (0, µ0] corresponds to p ∈ (−∞, log(µ0)]. This is a very
important conceptual point because by regarding a function F (µ) of µ as a function of p, we have

∂pF (µ) = µ∂µF (µ).

Therefore, thinking of F (µ) as a function of p produces a C3 norm that is completely different from
the one obtained by thinking of F (µ) as a function of µ.

4.4.3. Notation. In order to apply the theory of rank 1 maps [48, 52, 53], we need to control the
C3 norm of Fµ. In particular, we must estimate the C3 norms of certain quantities with respect to
various sets of variables on relevant domains. The derivation of the flow-induced maps {Fµ} involves a
composition of maps and multiple coordinate changes. To facilitate the presentation, from this point
on we adopt specific conventions for indicating controls on magnitude. For a given constant, we write
O(1), O(ε), or O(µ) to indicate that the magnitude of the constant is bounded by K, Kε, or K(ε)µ,
respectively. For a function of a set V of variables on a specific domain, we write OV (1),OV (ε) or
OV (µ) to indicate that the C3 norm of the function on the specified domain is bounded by K, Kε, or
K(ε)µ, respectively. We choose to specify the domain in the surrounding text rather than explicitly
involving it in the notation. For example, OX0,Y0,θ,µ(ε) represents a function of X0, Y0, θ, and µ, the C3

norm of which is bounded above by Kε on a domain explicitly given in the surrounding text. Similarly,
OZ,θ,p(µ) represents a function of Z, θ, and p, the C3 norm of which is bounded above by K(ε)µ.
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4.4.4. Conversion on Σ−. The section Σ− is defined by s = −L−. A point q ∈ Σ− is uniquely
determined by a pair (Z, θ). First we compute the coordinates X and Y for a point given in (Z, θ)-
coordinates on Σ−. Recall that p = lnµ.

Proposition 4.9. For µ ∈ (0, µ0] and (Z, θ) ∈ Σ−, we have

X = (1 +Oθ,p(ε) + µOZ,θ,p(1))Z −Oθ,p(1)

Y = µ−1ε+OZ,θ,p(1).

Proof of Proposition 4.9. By definition, s = −L− on Σ−. Let q ∈ Σ− be represented by (z, θ). Us-
ing (38), we have

(40)
a(−L−) = Q1(0, ε) = O(ε2)

b(−L−) = ε+Q2(0, ε) = ε+O(ε2).

We also have

(41) u(−L−) = O(ε), v(−L−) = 1−O(ε).

We compute values of X and Y for q. Using (38) and (40),

ξ = a(−L−) + v(−L−)z + q1(a(−L−) + v(−L−)z, b(−L−)− u(−L−)z)

= v(−L−)z + q1(a(−L−) + v(−L−)z, b(−L−)− u(−L−)z)− q1(a(−L−), b(−L−))

= (1 +O(ε) + zhξ(z))z.

Similarly, we have

η = b(−L−)− u(−L−)z + q2(a(−L−) + v(−L−)z, b(−L−)− u(−L−)z)

= ε− u(−L−)z + q2(a(−L−) + v(−L−)z, b(−L−)− u(−L−)z)− q2(a(−L−), b(−L−))

= ε+ (O(ε) + zhη(z))z.

The functions hξ and hη are analytic on |z| < (K̂0 +1)µ and we have hξ(z) = Oz(1) and hη(z) = Oz(1).
Substituting ξ and η above into (28a), we obtain

X = (1 +O(ε) + zhξ(z))z − µφ(θ;µ)− µW u(ε− µψ(θ;µ) + (O(ε) + zhη(z))z, θ;µ)

= (1 +O(ε) + zhξ(z))z − µφ(θ;µ)− µW u(ε− µψ(θ;µ), θ;µ)

− µW u(ε− µψ(θ;µ) + (O(ε) + zhη(z))z, θ;µ) + µW u(ε− µψ(θ;µ), θ;µ).

This implies

(42) X = (1 +Oθ,µ(ε) + zĥ(z, θ;µ))z − µOθ,µ(1)

where ĥ(z, θ;µ) is analytic in z, θ, and µ and satisfies ĥ = Oz,θ,µ(1). Now substitute

X = µX, z = µZ

into (42) and note that |Z| < K̂0 + 1. We obtain the claimed formula for X.
For the Y-component, we substitute ξ and η above into (28b) to obtain

Y = ε+ (O(ε) + zhη(z))z − µψ(θ;µ)− µW s((1 +O(ε) + zhξ(z))z − µφ(θ;µ), θ;µ).

Set Y = µY and z = µZ and note that |Z| < K̂0 + 1. We obtain the claimed formula for Y. �

Corollary 4.10. On Σ−, we have

Z = (1 +Oθ,p(ε) + µOX,θ,p(1))(X +Oθ,p(1)).

Proof of Corollary 4.10. We start with (42). This equality is invertible and we have

(43) z = (1 +Oθ,µ(ε) + Wh̃(W, θ;µ))W

where
W = X + µOθ,µ(1)
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and h̃(W, θ;µ) is analytic in W, θ, and µ and satisfies h̃ = OW,θ,µ(1). Writing (43) in terms of Z and
X, we have

Z = (1 +Oθ,p(ε) + µOX,θ,p(1))(X +Oθ,p(1)).

�

Corollary 4.11. On Σ−, we have
Y = µ−1ε+OX,θ,p(1).

Proof of Corollary 4.11. We first regard Y as a function of Z, θ, and p using the formula for Y in
Proposition 4.9 and then regard Z as a function of X, θ, and p using Corollary 4.10. �

Remark 4.12. Terms of the form µOX,θ,p(1) are not equivalent to terms of the form OX,θ,p(µ). A term
of the form µOX,θ,p(1) has C3 norm bounded above by Kµ while a term of the form OX,θ,p(µ) has C3

norm bounded above by K(ε)µ. In estimates in Section 4.4.4 and 4.4.5, we always have the former,
not the latter.

4.4.5. Conversion on Σ+. On Σ+ we need to write X and Y in terms of Z.

Proposition 4.13. On Σ+ we have

X = µ−1ε+OZ,θ,p(1)

Y = (1 +Oθ,p(ε) + µOZ,θ,p(1))Z −Oθ,p(1).

Proof of Proposition 4.13. On Σ+, s = L+. We have

(44)
a(L+) = ε+Q1(ε, 0) = ε+O(ε2)

b(L+) = Q2(ε, 0) = O(ε2),

and

(45) u(L+) = −1 +O(ε), v(L+) = O(ε).

Let (z, θ) ∈ Σ+. We compute the values of X and Y for this point. Using (16) and (33), we have

ξ = a(L+) + v(L+)z + q1(a(L+) + v(L+)z, b(L+)− u(L+)z)

= ε+O(ε)z + q1(a(L+) + v(L+)z, b(L+)− u(L+)z)− q1(a(L+), b(L+))

= ε+ (O(ε) + zkξ(z))z.

Similarly, we have

η = b(L+)− u(L+)z + q2(a(L+) + v(L+)z, b(L+)− u(L+)z)

= −u(L+)z + q2(a(L+) + v(L+)z, b(L+)− u(L+)z)− q2(a(L+), b(L+))

= (1 +O(ε) + zkη(z))z.

We now write X and Y in terms of z using (28a) and (28b). The rest of the proof is similar to that of
Proposition 4.9. �

Corollary 4.14. If L+ is sufficiently large, then Y > 1 on Σ+.

Proof of Corollary 4.14. This follows directly from the definition of Σ+. �

5. Explicit computation of M and N

In this section we explicitly compute the flow-induced maps M : Σ− → Σ+ and N : Σ+ → Σ−. The
map M : Σ− → Σ+ is computed in Section 5.1. In Section 5.2 we study the time-t map of equation (30).
The map N : Σ+ → Σ− is computed in Section 5.3.
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5.1. Computing M : Σ− → Σ+. Recall that s = −L− on Σ−. Let q0 = (−L−, Z0, θ0) ∈ Σ− and
let (s(t), Z(t), θ(t)) be the solution of system (37a)–(37c) initiated at the point (−L−, Z0, θ0). Let t̃ be
the time such that s(t̃) = L+. By definition, M(q0) = (L+, Z(t̃), θ(t̃)). In this subsection we derive a
specific form of M using (X, θ)-coordinates to uniquely locate points on Σ− and (Z, θ)-coordinates to
uniquely locate points on Σ+. Define

K1(ε) = −ρALe
R L+

0 E(s) ds

where

AL =
∫ L+

−L−
(u(s) + v(s))h(a(s), b(s))e−

R s
0 E(τ) dτ ds

is obtained by changing the integral bounds of the improper integral A in (8) to −L− and L+. Also
define

PL = e
R L+

−L− E(s) ds.

Lemma 5.1.

PL ∼ ε
α
β−

β
α � 1, K1(ε) ∼ ε−

β
α � 1.

Proof of Lemma 5.1. Both estimates follow directly from Lemma 4.7 and the fact that

ε ∼ e−αL+ ∼ e−βL− .

�

Proposition 5.2. Let (X0, θ0) ∈ Σ− and write (Ẑ, θ̂) = M(X0, θ0). We have

(46)
θ̂ = θ0 + ω(L+ + L−) +OX0,θ0,p(µ),

Ẑ = K1(ε)(1 + c1 sin(θ0) + c2 cos(θ0)) + PL(X0 +Oθ0,p(1) +OX0,θ0,p(ε) +OX0,θ0,p(µ)),

where c1 and c2 are constants satisfying
1
4
<
√
c21 + c22 <

1
2
.

Proof of Proposition 5.2. Using (37c), we have

θ(t) = θ0 + ωt.

Integrating (37a) and (37b), for t ∈ [−2L−, 2L+] we have

s(t) = −L− + t+Ot,Z0,θ0,p(µ).

Inverting the last equality, we obtain

t(s) = s+ L− +Os,Z0,θ0,p(µ).

Substituting θ(t) and t(s) into (37b), we obtain

(47)
dZ

ds
= E(s)Z − (u(s) + v(s))(ρH(s, 0) + sin(θ0 + ωL− + ωs)) +Os,Z0,θ0,p(µ).

Note that in (47), (s, Z0, θ0, p) is such that s ∈ [−2L−, 2L+], (Z0, θ0) ∈ Σ−, and p = log(µ) ∈
(−∞, log(µ0)]. Using (47), we obtain

(48) Z(s) = Ps · (Z0 − Φs(θ0) +Os,Z0,θ0,p(µ))

where

(49)
Ps = e

R s
−L− E(τ) dτ ,

Φs(θ) =
∫ s

−L−
(u(τ) + v(τ))(ρH(τ, 0) + sin(θ + ωL− + ωτ)) · e−

R τ
−L− E(τ̂) dτ̂ dτ.

From (48), it follows that

(50)
θ̂ = θ0 + ω(L+ + L−) +OZ0,θ0,p(µ),

Ẑ = PL(Z0 − ΦL+(θ0) +OZ0,θ0,p(µ)).
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We want to write the right-hand side of (50) in (X0, θ0)-coordinates. Using Corollary 4.10, we have

(51)
θ̂ = θ0 + ω(L+ + L−) +OX0,θ0,p(µ),

Ẑ = PL (X0 − ΦL+(θ0) +Oθ0,p(1) +OX0,θ0,p(ε) +OX0,θ0,p(µ)) .

Let K2 be such that
|X0 +Oθ0,p(1) +OX0,θ0,p(ε) +OX0,θ0,p(µ)| < K2

on Σ− and observe that by letting

(52) K0(ε) = max
θ∈S1

s∈[−2L−,2L+]

2 |Ps(K2 − Φs(θ))| ,

we conclude from (48) that all solutions of system (37a)–(37c) initiated inside of Σ− will stay inside of

{(s, Z, θ) : s ∈ [−2L−, 2L+], |Z| < K0(ε)}

before reaching s = L+. To finish the proof of Proposition 5.2, it now suffices for us to prove the
following lemma.

Lemma 5.3. For ρ ∈ [ρ1, ρ2], we have

−PLΦL+(θ) = K1(ε)(1 + c1 sin(θ) + c2 cos(θ))

where c1 and c2 are constants satisfying
1
4
<
√
c21 + c22 <

1
2
.

Proof of Lemma 5.3. Recall that in (49), H(s, 0) = h(a(s), b(s)). We have

PLΦL+(θ) = e
R L+

0 E(τ) dτ ·
∫ L+

−L−
(u(s) + v(s))(ρh(a(s), b(s))

+ sin(θ + ωL− + ωs))e−
R s
0 E(τ) dτ ds

= e
R L+

0 E(τ) dτ · (ρAL + (CL cos(ωL−)− SL sin(ωL−)) sin(θ)

+ (SL cos(ωL−) + CL sin(ωL−)) cos(θ))

where

AL =
∫ L+

−L−
(u(s) + v(s))h(a(s), b(s))e−

R s
0 E(τ) dτ ds,

CL =
∫ L+

−L−
(u(s) + v(s)) cos(ωs)e−

R s
0 E(τ) dτ ds,

SL =
∫ L+

−L−
(u(s) + v(s)) sin(ωs)e−

R s
0 E(τ) dτ ds.

Observe that A, C, and S in (H2) are obtained by letting L± = ∞ in AL, CL, and SL. We now write

(53) PLΦL+(θ) = ρALe
R L+

0 E(τ) dτ · (1 + c1 sin(θ) + c2 cos(θ))

where

c1 =
(CL cos(ωL−)− SL sin(ωL−))

ALρ
,

c2 =
(SL cos(ωL−) + CL sin(ωL−))

ALρ
.

We have

c21 + c22 =
(C2

L + S2
L)

A2
Lρ

2
.
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Using (H2), for L± sufficiently large we have

|AL −A| < 1
100

|A|,∣∣∣∣(C2
L + S2

L)
1
2 − (C2 + S2)

1
2

∣∣∣∣ < 1
100

(C2 + S2)
1
2 .

Therefore, for ρ ∈ [ρ1, ρ2], where

(54) ρ1 = −202
99

(C2 + S2)
1
2

A
, ρ2 = −396

101
(C2 + S2)

1
2

A
,

we have
1
4
<
√
c21 + c22 <

1
2
.

Notice that because of the way in which ρ1 and ρ2 are defined, we have −ρAL > 0. We also have

K1(ε) = −ρALe
R L+

0 E(τ) dτ ∼ e−
β
α

from Lemma 5.1. Equation (53) for PLΦL+(θ) is now in the asserted form. �

By using Lemma 5.3, we can now rewrite (51) as (46). This finishes the proof of Proposition 5.2. �

Remark 5.4. Observe that in formula (46) for Ẑ, the term with K1(ε) in front dominates the second
term because K1(ε) � PL. The inclusion M(Σ−) ⊂ Σ+ follows directly from (46).

5.2. On the time-t map of equation (30). The computation of N : Σ+ → Σ− contains two major
steps. The first step is to compute the time-t map of equation (30) inside Uε. This is done in Section 5.2.
The second step is to compute the time it takes for a solution of equation (30) initiated in Σ+ to reach
Σ−. This is done in Section 5.3. These computations are technically involved because we need to
control the C3 norm of the map N on Σ+ × (−∞, log(µ0)], where the interval in the product is the
domain of the parameter p.

We start with the first step. Let W (Σ+) be a small open neighborhood surrounding Σ+ in the space
(X,Y, θ). In this subsection we let (X0,Y0, θ0) ∈W (Σ+) and regard p = log(µ) ∈ (−∞, log(µ0)] as the
parameter of equation (30). We study the time-t map of equation (30) assuming that up to time t,
all solutions initiated from W (Σ+) are completely contained inside Uε. Recall that in equation (30),
F(X,Y, θ;µ) and G(X,Y, θ;µ) are analytic on

D = {(X,Y, θ, µ) : µ ∈ [0, µ0], (X,Y, θ) ∈ Uε}

where
Uε = {(X,Y, θ) : ‖(X,Y)‖ < 2εµ−1, θ ∈ S1}.

For q0 = (X0,Y0, θ0) ∈W (Σ+), let

q(t, q0;µ) = (X(t, q0;µ),Y(t, q0;µ), θ(t, q0;µ))

be the solution of equation (30) initiated from q0 at t = 0. Using (30), we have

(55)

X(t, q0;µ) = X0e
R t
0 (−α+µF(q(s,q0;µ);µ)) ds,

Y(t, q0;µ) = Y0e
R t
0 (β+µG(q(s,q0;µ);µ)) ds,

θ(t, q0;µ) = θ0 + ωt.

We now introduce the functions U(t, q0;µ) and V (t, q0;µ) and rewrite (55) as

(56)

X(t, q0;µ) = X0e
(−α+U(t,q0;µ))t,

Y(t, q0;µ) = Y0e
(β+V (t,q0;µ))t,

θ(t, q0;µ) = θ0 + ωt.
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Using (56), we have

(57)
U(t, q0;µ) = t−1 log

(
X(t, q0;µ)

X0

)
+ α,

V (t, q0;µ) = t−1 log
(

Y(t, q0;µ)
Y0

)
− β.

We also have

(58)
U(t, q0;µ) = t−1

∫ t

0
µF(q(s, q0;µ);µ) ds,

V (t, q0;µ) = t−1

∫ t

0
µG(q(s, q0;µ);µ) ds.

In the next proposition we regard U = U(t, q0;µ) and V = V (t, q0;µ) as functions of t, q0, and p and
we write U = Ut,q0,p and V = Vt,q0,p, respectively. We define the domain of these two functions as
follows. Let

Dt,q0,p = {q0 ∈W (Σ+), p ∈ (−∞, log(µ0)], t ∈ [1, T (q0, p)]}
where the upper bound T (q0, p) on t is designed to keep the solution inside Uε.

Proposition 5.5. There exists K > 0 such that

‖Ut,q0,p‖C3(Dt,q0,p) < Kµ, ‖Vt,q0,p‖C3(Dt,q0,p) < Kµ.

Proposition 5.5 is proved in Section 7.1.

Remark 5.6. By combining Proposition 5.5 and (56), we can now write the time-t map from W (Σ+)
to Uε as

(59)

X(t,X0,Y0, θ0;µ) = X0e
(−α+Ot,X0,Y0,θ0,p(µ))t,

Y(t,X0,Y0, θ0;µ) = Y0e
(β+Ot,X0,Y0,θ0,p(µ))t,

θ(t,X0,Y0, θ0;µ) = θ0 + ωt.

5.3. Estimates on T (Z0, θ0, p). For q0 = (Z0, θ0) ∈ Σ+, let q(t, q0;µ) be the solution of equation (30)
initiated at q0 and let T be the time this solution reaches Σ−. In this subsection we regard T as a
function of Z0, θ0, and p and we obtain a well-controlled formula for T that is explicit in the variables
Z0, θ0, and p. Since the images of M are expressed in (Z, θ)-coordinates through (46), we must write
the initial conditions for N in (Z, θ)-coordinates on Σ+ to facilitate the intended composition of N and
M.

Estimates on T (Z0, θ0, p) are complicated partly because as a function of Z0 and θ0, it is implicitly
defined through equations written in (X,Y, θ)-coordinates on Σ±. The computational process therefore
must involve (59) and the coordinate transformations on Σ± presented in Sections 4.4.4 and 4.4.5. Be-
fore presenting the desired quantitative estimates, we explain how to obtain T (Z0, θ0, p) in a conceptual
way. Using (56), we obtain

(60)

X(T,X0,Y0, θ0;µ) = X0e
(−α+U(T,X0,Y0,θ0;p))T ,

Y(T,X0,Y0, θ0;µ) = Y0e
(β+V (T,X0,Y0,θ0;p))T ,

θ(T,X0,Y0, θ0;µ) = θ0 + ωT.

In (60), X0 and Y0 are not independent variables. These quantities satisfy

(61)
X0 = µ−1ε+OZ0,θ0,p(1),

Y0 = (1 +Oθ0,p(ε) + µOZ0,θ0,p(1))Z0 −Oθ0,p(1)

by Proposition 4.13. We write

X(T ) = X(T,X0,Y0, θ0;µ),

Y(T ) = Y(T,X0,Y0, θ0;µ),

θ(T ) = θ0 + ωT.
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By definition, X(T ), Y(T ), and θ(T ) are also related through Corollary 4.11. For the benefit of a clear
exposition, we write the conclusion of Corollary 4.11 as

Y = εµ−1 + f(X, θ; p)
where

f(X, θ; p) = OX,θ,p(1).
We have

(62) Y(T ) = εµ−1 + f(X(T ), θ(T ); p).

We use (60) to implicitly define T (Z0, θ0; p). We have

(63) Y(T ) = Y0e
(β+V (T,X0,Y0,θ0;p))T .

The right-hand side of (63) is relatively simple: we only need to substitute for X0 and Y0 using (61).
The left-hand side of (63) is conceptually more complicated. We need to
(1) Write Y(T ) as a function of X(T ), θ(T ), and p using (62).
(2) Substitute for X(T ) and θ(T ) using (60), thereby obtaining Y(T ) in terms of T , X0, Y0, θ0, and p.
(3) Use (61) to write X0 and Y0 in terms of Z0 and θ0.
After all of these substitutions are made, we regard (63) as the equation that implicitly defines
T (Z0, θ0; p). We use this equation as the basis for the computation of T (Z0, θ0; p).

Proposition 5.7. As a function of Z0, θ0, and p, the map T satisfies∥∥∥∥T − 1
β

log(µ−1)
∥∥∥∥

C3

< K.

Proposition 5.7 is proved in Section 7.2.

5.4. Computing N : Σ+ → Σ−. We derive a formula for the induced map Np : Σ+ → Σ−. For
(Z0, θ0) ∈ Σ+, we write (X1, θ1) = Np(Z0, θ0). We start with U and V in (60).

Lemma 5.8. On Σ+ × (−∞, log(µ0)], we have

U(T,X0,Y0, θ0; p) = µOZ0,θ0,p(1),

V (T,X0,Y0, θ0; p) = µOZ0,θ0,p(1).

Proof of Lemma 5.8. We write U and V as functions of (Z0, θ0, p) using Proposition 5.7 for T (Z0, θ0; p)
and (61) for X0 and Y0. This lemma is established by applying the chain rule and using Proposition 5.5,
Proposition 5.7, and (61). �

Proposition 5.9. The flow-induced map Np : Σ+ → Σ− is given by

(64)
X1 =

(
µ

ε+ µOZ0,θ0,p(1)

)(α̃/β̃)−1

([1 +Oθ0,p(ε) + µOZ0,θ0,p(1)]Z0 −Oθ0,p(1))α̃/β̃ ,

θ1 = θ0 +
ω

β + µOZ0,θ0,p(1)
log
(

(ε+ µOZ0,θ0,p(1))µ−1

[1 +Oθ0,p(ε) + µOZ0,θ0,p(1)]Z0 −Oθ0,p(1)

)
,

where
α̃ = α+ µOZ0,θ0,p(1), β̃ = β + µOZ0,θ0,p(1).

Proof of Proposition 5.9. Using (62), (63) and Lemma 5.8, we have

(65)
T =

1
β + µOZ0,θ0,p(1)

log
(
Y (T )
Y0

)
=

1
β + µOZ0,θ0,p(1)

log
(

(ε+ µf(X(T ), θ(T ); p))µ−1

Y0

)
.

By using Proposition 5.7 and the fact that f(X, θ; p) = OX,θ,p(1), we have

f(X(T ), θ(T ); p) = OZ0,θ0,p(1).
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Now (65) gives

(66) T =
1

β + µOZ0,θ0,p(1)
log
(

µ−1(ε+ µOZ0,θ0,p(1))
[1 +Oθ0,p(ε) + µOZ0,θ0,p(1)]Z0 −Oθ0,p(1)

)
.

Here we use (61) for Y0.
The desired formula for θ1 now follows from θ1 = θ0 + ωT . For X1 we use

X1 = µ−1(ε+ µOZ0,θ0,p(1))e−(α+µOZ0,θ0,p(1))T

and substitute for T using (66). �

6. Proof of Theorem 1

In Section 6.1 we compute Fp = N ◦M by using Propositions 5.9 and 5.2. In Section 6.2.1 we apply
the theory of rank 1 maps to the family {Fp}, thereby proving the existence of rank 1 chaos as claimed
in Theorem 1.

6.1. The flow-induced map F = N ◦ M. We regard p as the fundamental parameter of the
flow-induced map F : Σ− → Σ−. For (X0, θ0) ∈ Σ−, let (X1, θ1) = (N ◦ M)(X0, θ0). We compute
Fp : (X0, θ0) 7→ (X1, θ1) by combining (64) and (46).

Proposition 6.1. The map Fp : Σ− → Σ− is given by

X1 = (µ(ε+OX0,θ0,p(µ))−1)(α̃/β̃)−1(67a)

×
(
(1 +O∂X0〈µ〉

X0,θ0,p(ε) +OX0,θ0,p(µ))Z−O∂X0〈µ〉
X0,θ0,p(1)

)α̃/β̃
,

θ1 = θ0 + ω(L+ + L−) +OX0,θ0,p(µ)(67b)

+
ω

β +OX0,θ0,p(µ)
log

 (ε+OX0,θ0,p(µ))µ−1

(1 +O∂X0〈µ〉
X0,θ0,p(ε) +OX0,θ0,p(µ))Z−O∂X0〈µ〉

X0,θ0,p(1)

 ,

where

Z = K1(ε)(1 + c1 sin(θ0) + c2 cos(θ0)) + PL[X0 +Oθ0,p(1) +OX0,θ0,p(ε) +OX0,θ0,p(µ)],

α̃ = α+OX0,θ0,p(µ),

β̃ = β +OX0,θ0,p(µ),

and the superscript ∂X0〈µ〉 on a given term indicates that the partial derivative of the term with respect
to X0 is O(µ). We also have

K1(ε) ∼ ε−
β
α ,

1
4
<
√
c21 + c22 <

1
2
.

Proof of Proposition 6.1. We first examine the formulas for α̃ and β̃. The error terms in Proposition 5.9
have the form

µOẐ,θ̂,p(1)

and Ẑ and θ̂ are given in terms of X0, θ0, and p by (46). Using (46), we see that the C3 norms of Ẑ
and θ̂ are < K(ε). It follows from the chain rule that

µOẐ,θ̂,p(1) = OX0,θ0,p(µ).
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We follow the same line of reasoning to compute X1 and θ1. We replace Z0 and θ0 with Ẑ and θ̂
in (64) and then substitute for Ẑ and θ̂ using (46). Using (64), we have

(68)

X1 =

(
µ

ε+ µOẐ,θ̂,p(1)

)(α̃/β̃)−1 (
[1 +Oθ̂,p(ε) + µOẐ,θ̂,p(1)]Ẑ −Oθ̂,p(1)

)α̃/β̃
,

θ1 = θ̂ +
ω

β + µOẐ,θ̂,p(1)
log

(
(ε+ µOẐ,θ̂,p(1))µ−1

[1 +Oθ̂,p(ε) + µOẐ,θ̂,p(1)]Ẑ −Oθ̂,p(1)

)
.

In (68), terms of the form µOẐ,θ̂,p(1) are rewritten in the form OX0,θ0,p(µ) using (46). Terms of the

form Oθ̂,p(ε) are rewritten in the form O∂X0〈µ〉
X0,θ0,p(ε) because the C3 norm of θ̂ is bounded by a constant

K independent of ε and because ∂θ̂/∂X0 = O(µ). Reasoning analogously, terms of the form Oθ̂,p(1)

are rewritten in the form O∂X0〈µ〉
X0,θ0,p(1). �

6.2. Proof of Theorem 1. We are finally ready to prove Theorem 1.

6.2.1. The two-parameter family {Fa,bn}. We write {Fp} as a 2-parameter family {Fa,bn} of 2D
maps. Both a and bn are derived from µ = ep as follows. Let µ0 > 0 be sufficiently small. Define
γ : (0, µ0] → R via γ(µ) = ω

β log(µ−1). For n ∈ Z+ satisfying n > (2πβ)−1ω log(µ−1
0 ), let µn ∈ (0, µ0]

be such that γ(µn) = n. Notice that µn → 0 monotonically. Set bn = µn. For µ ∈ (µn+1, µn] and
a ∈ [0, 2π) = S1, we define

µ(n, a) = γ−1(γ(µn) + a) = µne
−β

ω a

and
p(n, a) = log(µ(n, a)) = log(µn)− β

ω
a.

Define
Fa,bn = Fp(n,a).

6.2.2. Verification of (C1)–(C4). We prove Theorem 1 by applying Propositions 3.4 and 3.6. We
verify (C1)–(C4) for {Fa,bn}. Proposition 6.2 establishes (C1).

Proposition 6.2. We have

(69) ‖Fa,bn(X, θ)− (0,Fa,0(X, θ))‖C3(Σ−×[0,2π)) → 0

as bn → 0, where

Fa,0(X, θ) = θ + ω(L+ + L−) + a+
ω

β
log(εK1(ε)−1)

− ω

β
log
[

(1 +Oθ,p(ε))
(

1 + c1 sin(θ) + c2 cos(θ)

+
PL

K1(ε)
(X +Oθ,p(1) +OX,θ,p(ε))

)
−K1(ε)−1Oθ,p(1)

]
.

(70)

Proof of Proposition 6.2. The only problematic term in (67b) has the form
ω

β +OX0,θ0,p(µ)
log(µ−1),

which we write as
ω

β
log(µ−1) +

ω · OX0,θ0,p(µ)
β(β +OX0,θ0,p(µ))

log(µ−1).

Observe that the C3 norm of the second term → 0 as bn → 0 and the first term may be computed
modulo 2π and is therefore equal to a. Viewing µ as a function of a, the C3 norm of X1 is bounded by

K(ε)µ(α̃/β̃)−1

and therefore decays to 0 as bn → 0 provided that (H1)(b) holds. �
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For (C2) we apply Proposition 3.3 to the family of circle maps

Fa,0(0, θ) = θ + ω(L+ + L−) + a+
ω

β
log(εK1(ε)−1)

− ω

β
log
[

(1 +Oθ,p(ε))
(

1 + c1 sin(θ) + c2 cos(θ)

+
PL

K1(ε)
(Oθ,p(1) +OX,θ,p(ε))

)
−K1(ε)−1Oθ,p(1)

]
.

(71)

To apply Proposition 3.3 to the family {Fa,0(0, θ)}, we set

K =
ω

β
,

Ψ(θ) = − log(1 + c1 sin(θ) + c2 cos(θ)),

Φ(θ, a) = Fa,0(0, θ)− γ − θ − a−KΨ(θ)

where

γ = ω(L+ + L−) +
ω

β
log(εK1(ε)−1).

The assumption on the C3 norm of Φ is satisfied if ε is sufficiently small.
Hypothesis (C3) follows directly from (70). Hypothesis (C4) follows from a direct computation

using (68). Finally, to apply Proposition 3.6 we need to verify that λ0 > log(10). This follows if ω is
sufficiently large. The proof of Theorem 1 is complete.

7. Computational proofs

7.1. Proof of Proposition 5.5. Let F = F(X,Y, θ;µ) and G = G(X,Y, θ;µ) be as in equation (30).
For a combination Z = Xd1Yd2µd3 of powers of the variables X, Y, and µ, let ∂k

Z denote the corresponding
partial derivative operator, where k = d1 + d2 + d3 is the order. There exists K3 > 0 such that for
every Z of order 6 3 and 0 6 i 6 3, we have

(72) |∂k
Z(∂i

θiF · Z)| < K3, |∂k
Z(∂i

θiG · Z)| < K3

on Dt,q0,p. This is because the C3 norms of F(X,Y, θ;µ) and G(X,Y, θ;µ) are bounded on Uε× [0, µ0)
and because F(X,Y, θ;µ) = F(µX, µY, θ;µ) and G(X,Y, θ;µ) = G(µX, µY, θ;µ).

7.1.1. C0 estimates. Using (72) with i = k = 0 and (58), we have

(73) ‖U‖C0(Dt,q0,p) < K3µ, ‖V ‖C0(Dt,q0,p) < K3µ.

7.1.2. C1 estimates. We now estimate the first derivatives.

On ∂Y0U and ∂Y0V . Using θ(t) = θ0 + ωt, we have ∂Y0θ = 0. Using (58), we have

∂Y0U = µt−1

∫ t

0
(∂XF · ∂Y0X + ∂YF · ∂Y0Y) ds,(74a)

∂Y0V = µt−1

∫ t

0
(∂XG · ∂Y0X + ∂YG · ∂Y0Y) ds.(74b)

To make these formulas useful, we need to write ∂Y0X and ∂Y0Y in terms of ∂Y0U and ∂Y0V . For this
purpose we use (57). We have

(75)
∂Y0X = tX∂Y0U,

∂Y0Y = tY∂Y0V +
Y
Y0
.
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Combining (74a), (74b), and (75), we obtain

(76)
∂Y0U = µt−1

∫ t

0
(∂XF · X · s∂Y0U + ∂YF · Y · s∂Y0V ) ds+ µt−1

∫ t

0
∂YF · Y

Y0
ds,

∂Y0V = µt−1

∫ t

0
(∂XG · X · s∂Y0U + ∂YG · Y · s∂Y0V ) ds+ µt−1

∫ t

0
∂YG · Y

Y0
ds.

Using (72), we have

|∂XF · X| < K3, |∂XG · X| < K3, |∂YF · Y| < K3, |∂YG · Y| < K3.

Using (76), we have

(77)
|∂Y0U | 6 Kµt−1

∫ t

0
(|s∂Y0U |+ |s∂Y0V |) ds+Kµ,

|∂Y0V | 6 Kµt−1

∫ t

0
(|s∂Y0U |+ |s∂Y0V |) ds+Kµ,

from which it follows that
|∂Y0U | < Kµ, |∂Y0V | < Kµ.

On ∂X0U and ∂X0V . Mimic the proof above.

On ∂θ0U and ∂θ0V . We follow similar lines of computation. Since ∂θ0θ = 1, we have

∂θ0U = µt−1

∫ t

0
(∂XF · ∂θ0X + ∂YF · ∂θ0Y + ∂θF) ds,

∂θ0V = µt−1

∫ t

0
(∂XG · ∂θ0X + ∂YG · ∂θ0Y + ∂θG) ds.

Analogous to (75), we have
∂θ0X = tX∂θ0U, ∂θ0Y = tY∂θ0V.

Arguing as above, we conclude that

|∂θ0U | < Kµ, |∂θ0V | < Kµ.

On ∂pU and ∂pV . We follow similar lines of computation. Note that we have

∂pµ = µ, ∂pF = µ∂µF,

and so on. Starting with (58), we have

(78)
∂pU = µt−1

∫ t

0
F ds+ µt−1

∫ t

0
(∂XF · ∂pX + ∂YF · ∂pY + µ∂µF) ds,

∂pV = µt−1

∫ t

0
G ds+ µt−1

∫ t

0
(∂XG · ∂pX + ∂YG · ∂pY + µ∂µG) ds,

and using (57) we have

(79)
∂pX = tX∂pU,

∂pY = tY∂pV.

Now argue as above.

On ∂tU and ∂tV . The partial derivatives of U and V with respect to t are easier to estimate because
when differentiating with respect to t using (58), no derivatives are involved on the right-hand side so
the estimates on ∂tU and ∂tV are obtained directly from C0 estimates. We have

|∂tU | < Kµ, |∂tV | < Kµ.

This completes the desired estimates on the first derivatives.



DISSIPATIVE HOMOCLINIC LOOPS AND RANK 1 ATTRACTORS 33

7.1.3. C2 estimates. We now move to the second derivatives. We estimate ∂2
Y0Y0

U and ∂2
Y0Y0

V first.
Using (74a), we have

∂2
Y0Y0

U =µt−1

∫ t

0

(
∂2

XXF · (∂Y0X)2 + 2∂2
XYF · (∂Y0X)(∂Y0Y) + ∂YY(F · ∂Y0Y)2

)
ds

+ µt−1

∫ t

0

(
∂XF · ∂2

Y0Y0
X + ∂YF · ∂2

Y0Y0
Y
)
ds.

Using (75), we have

(80)
∂2

Y0Y0
X = t∂Y0X · ∂Y0U + tX∂2

Y0Y0
U,

∂2
Y0Y0

Y = t∂Y0Y · ∂Y0V + tY · ∂Y0Y0V +
∂Y0Y
Y0

− Y
Y2

0

.

Therefore, ∂2
Y0Y0

U is given by

∂2
Y0Y0

U =µt−1

∫ t

0

(
∂2

XXF · (∂Y0X)2 + 2∂2
XYF · (∂Y0X)(∂Y0Y) + ∂YY(F · ∂Y0Y)2

)
ds

+ µt−1

∫ t

0
(∂XF · ∂Y0X · s∂Y0U + ∂YF · ∂Y0Y · s∂Y0V ) ds

+ µt−1

∫ t

0
∂YF ·

(
∂Y0Y
Y0

− Y
Y2

0

)
ds

+ µt−1

∫ t

0

(
∂XF · X · s∂2

Y0Y0
U + ∂YF · Y · s∂2

Y0Y0
V
)
ds.

(81)

To estimate the first three integrals in (81), we use (75) for ∂Y0X and ∂Y0Y. Using the first derivative
estimates and using (72) repeatedly, we bound these integrals by Kµ. Note that we also need Y0 > 1
(see Corollary 4.14) for the third integral. Together with an analogous formula for ∂2

Y0Y0
V in which we

replace F with G, we conclude that

|∂2
Y0Y0

U | < Kµ, |∂2
Y0Y0

V | < Kµ.

All other second derivatives are estimated similarly. Here we skip the details to avoid repetitive
computations.

7.1.4. C3 estimates. Third derivatives are estimated in the same spirit. Since the formulas for a
given third derivative depend on previous computations of relevant second derivatives, here we estimate
∂3

Y0Y0pU and ∂3
Y0Y0pV as a representative example. Of all of the third derivatives, these are the most

tedious to compute.
To compute ∂3

Y0Y0pU we apply ∂p to (81). The explicit factor µ written in front of all integrals
generates a collection of terms that is identical to the right-hand side of (81). We showed when
estimating second derivatives that the size of each of these terms in bounded by Kµ.

The remaining terms are produced by applying ∂p to the functions inside of the integrals in (81).
The terms produced from the first three integrals are estimated using the C2 estimates. Estimate (72)
is used repeatedly. It is critically important that potentially problematic terms in the form of powers
of Y and X, introduced by using the likes of (75), (79) and (80), are always matched perfectly with
corresponding partial derivatives with respect to F or G. Applying ∂p to the fourth integral, we obtain
an integral term of the form

(I) = µt−1

∫ t

0

(
∂XF · X · s∂3

Y0Y0pU + ∂YF · Y · s∂3
Y0Y0pV

)
ds

and a collection of other terms that can be treated the same way as the terms produced by differentiating
the first three integrals. We have

|(I)| 6 Kµt−1

∫ t

0

(
|s∂3

Y0Y0pU |+ |s∂3
Y0Y0pV |

)
ds.
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Combining this analysis with analogous estimates for |∂3
Y0Y0pV |, we obtain

|∂3
Y0Y0pU | < Kµ, |∂3

Y0Y0pV | < Kµ.

This completes the proof of Proposition 5.5.

7.2. Proof of Proposition 5.7. The proof of this proposition is lengthy because of the complicated
composition process explained earlier in Section 5.3.

7.2.1. C0 estimates. We first establish a C0 control on T .

Lemma 7.1. There exist constants K4 < K5 independent of ε such that for all q0 ∈ Σ+, we have
K4 log(µ−1) < T (q0;µ) < K5 log(µ−1).

Proof of Lemma 7.1. Using
Y(T ) = Y0e

(β+V (T ))T

we obtain

T =
1

β + V (T )
log
(

Y(T )
Y0

)
.

Since (X(T ),Y(T ), θ(T )) is on Σ−, Proposition 4.9 implies that

Y(T ) ≈ µ−1ε

and the desired estimates follow from |V (T )| < Kµ and 1 < Y0 < K(ε). �

Lemma 7.2. We have µ−1e−αT < 1.

Proof of Lemma 7.2. We substitute

T =
1

β + V (T )
log
(

Y(T )
Y0

)
into (60) to obtain

X(T ) =
(

Y0

Y(T )

)α−U(T )
β+V (T )

X0.

We then use Y(T ) ≈ εµ−1, X0 ≈ εµ−1, |U(T )| < Kµ, |V (T )| < Kµ, and α > β to conclude that
X(T ) � ε. We have

1
10
εµ−1e−αT < X0e

(−α+U(T ))T = X(T ) � ε.

For the first inequality, we use X0 ≈ εµ−1 and |U(T )T | < Kµ log(µ−1) � 1. This proves the lemma. �

7.2.2. C1 estimates. We present C1 estimates with respect to (Z0, θ0, p), where (Z0, θ0) ∈ Σ+ and
p ∈ (−∞, log(µ0)).

Lemma 7.3. There exist constants K7 and K8 independent of ε such that

‖X(T )‖C1 < K7 +K8‖T‖C1 , ‖θ(T )‖C1 < K7 +K8‖T‖C1 .

Proof of Lemma 7.3. The bound on θ(T ) is trivial because θ(T ) = θ0 + ωT . For X(T ), we have

X(T ) = X0e
(−α+U(T ))T

= εµ−1e(−α+U(T,X0,Y0,θ0;p))T +OZ0,θ0,p(1)e(−α+U(T,X0,Y0,θ0;p))T .

Notice that for the second equality, (61) is used for X0. We regard X0 and Y0 as functions of Z0, θ0,
and p defined by (61). The desired estimate follows from using Proposition 5.5 for U and (61) for X0

and Y0. We also use Lemma 7.2. �

Lemma 7.4. We have ∥∥∥∥T − 1
β

log(µ−1)
∥∥∥∥

C1

< K.
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Proof of Lemma 7.4. Using (62), we write (63) as

µ−1(ε+ µf(X(T ), θ(T ); p)) = Y0e
(β+V (T ))T .

Solving for T , we obtain

T − 1
β

log(µ−1) = − V (T )
β(β + V (T ))

log(µ−1)− 1
β + V (T )

log(Y0)

+
1

β + V (T )
log(ε+ µf(X(T ), θ(T ); p)).

(82)

In (82), V (T ) = V (T,X0,Y0, θ0; p), and X0 and Y0 are written in terms of Z0, θ0, and p using (61).
Using Proposition 5.5, we have ∥∥∥∥T − 1

β
log(µ−1)

∥∥∥∥
C0

< K.

First derivatives of T are estimated by directly differentiating (82). We estimate ∂Z0T as a repre-
sentative example. Differentiating (82), we have

∂Z0T = (I) + (II)∂Z0T,

where (I) is a collection of terms that do not depend on ∂Z0T and (II) is a function of Z0, θ0, and p.
Using Proposition 5.5 for V (T ), (61) for X0 and Y0, and Lemma 7.3 for ∂Z0X(T ) and ∂Z0θ(T ), we have
|(I)| < K and |(II)| � 1. �

7.2.3. Higher derivative estimates. With the first derivatives controlled by Lemmas 7.3 and 7.4,
we estimate the second derivatives by first proving a version of Lemma 7.3 and then proving a version
of Lemma 7.4 for the C2 norms. We then do the same for the C3 norms. This completes the proof of
Proposition 5.7.

8. Application to a Duffing equation

In this section we apply Theorem 1 to a periodically-perturbed Duffing equation.

8.1. A periodically-perturbed Duffing equation. We start with the second-order equation

(83)
d2q

dt2
− q + q3 = 0.

We define p = dq/dt and write (83) as the first-order system

(84)
dq

dt
= p,

dp

dt
= q − q3.

Using the simple linear change of coordinates

x =
1
2
(q − p), y =

1
2
(q + p),

we write equation (84) in (x, y) as

(85)
dx

dt
= −x+

1
2
(x+ y)3,

dy

dt
= y − 1

2
(x+ y)3.

Notice that (x, y) = (0, 0) is a saddle that is not dissipative. The curve

a(t) =
2
√

2e3t

(1 + e2t)2
, b(t) =

2
√

2et

(1 + e2t)2
.

is a homoclinic solution such that (a(0), b(0)) = (
√

2/2,
√

2/2) and

lim
t→±∞

(a(t), b(t)) = (0, 0).

Define
` = {`(t) = (a(t), b(t)) : t ∈ R}.
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We construct systems with rank 1 attractors in two steps. First, we add certain autonomous per-
turbations to (85), obtaining

(86)

dx

dt
= −x+

1
2
(x+ y)3 + γ(y + x)2(y − x),

dy

dt
= y − λy − 1

2
(x+ y)3 − γ(y + x)2(y − x).

Here λ, γ ∈ R are parameters. Notice that for λ ∈ (0, 1), (x, y) = (0, 0) is a dissipative saddle. The
following proposition provides a set of values of (λ, γ) for which (86) admits a homoclinic solution.

Proposition 8.1 ([16]). There exists λ0 > 0 such that for all λ ∈ (0, λ0), there exists γλ satisfying
|γλ| < 10λ such that the following hold for γ = γλ.
(1) System (86) has a homoclinic solution for (x, y) = (0, 0), which we denote as

`λ = {`λ(t) = (aλ(t), bλ(t)) : t ∈ R}.
(2) For any given L > 0, there exists K0(L) independent of λ such that for all t ∈ [−L,L],

‖`λ(t)− `0(t)‖ < K0(L)λ

where `0(t) = `(t) = (a(t), b(t)).

Now let λ ∈ (0, λ0) and let γ = γλ.
We add time-periodic forcing to (86), obtaining

(87)

dx

dt
= −x+

1
2
(x+ y)3 + γλ(y + x)2(y − x)

− µ(ρ(y + x)2(y − x) + sin(ωt)),
dy

dt
= (1− λ)y − 1

2
(x+ y)3 − γλ(y + x)2(y − x)

+ µ(ρ(y + x)2(y − x) + sin(ωt)).

We will apply Theorem 1 to system (87). Before doing so, we show that (87) is equivalent to (3).
To this end, q = x+ y and (87) imply

(88)
d2q

dt2
= β1q − β2q

3 − (a− bq2)
dq

dt
+ (1− λ)µ sin(ωt)

where

β1 = (1− λ),

β2 =
[
1− 1

2
λ− (γλ(1− λ) + µρ(1− λ))

λ

2− λ

]
,

a = λ,

b = −(γλ(1− λ) + µρ(1− λ))
(

1− λ

2− λ

)
.

Rescaling t and q by

t̃ = t
√
β1, q̃ = q

√
β2

β1
,

equation (88) becomes

(89)
d2q

dt2
− q + q3 + (ã− b̃q2)

dq

dt
= µ̃ sin(ωt),

where

ã =
a

β
1/2
1

, b̃ =
bβ

1/2
1

β2
, µ̃ = µ

(1− λ)
β1

√
β2

β1
, ω̃ =

ω

β
1/2
1

.
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8.2. On the unperturbed system. Let A0, C0, and S0 denote the integrals A, C, and S, respectively,
associated with the homoclinic loop ` of (85). These integrals are defined by (8). We compute A0, C0,
and S0 in this subsection. Recall that

(90) `(t) = (a(t), b(t)) =

(
2
√

2e3t

(1 + e2t)2
,

2
√

2et

(1 + e2t)2

)
is a homoclinic solution of (85). The unit tangent vector

(u(t), v(t)) =
∥∥∥∥ ddt`(t)

∥∥∥∥−1 d

dt
`(t)

is given by

(91)

u(t) =
−(e2t − 3)√

(e2t − 3)2 + (e−2t − 3)2
,

v(t) =
e−2t − 3√

(e2t − 3)2 + (e−2t − 3)2
.

We write (85) as

(92)
dx

dt
= −x+ f(x, y),

dy

dt
= y + g(x, y),

where
f(x, y) =

1
2
(x+ y)3, g(x, y) = −1

2
(x+ y)3.

The quantity E defined by (7) is given by

E(t) = v2(t)(−1 + ∂xf(a(t), b(t))) + u2(t)(1 + ∂yg(a(t), b(t)))

− u(t)v(t)(∂yf(a(t), b(t)) + ∂xg(a(t), b(t))).

Using (90) and (91), we have

(93) E(t) = −(e−2t − 3)2 − (e2t − 3)2

(e2t − 3)2 + (e−2t − 3)2

(
1− 12e2t

(1 + e2t)2

)
.

Define

(94) V (s) = −
∫ s

0
E(τ) dτ.

Lemma 8.2. For s ∈ (−∞,∞), we have

V (s) =
1
2

log
(

8e2s((1− 3e2s)2 + e4s(e2s − 3)2)
(e2s + 1)6

)
.

Proof of Lemma 8.2. Let x = e2t. We have

V (s) =
1
2

∫ e2s

1

(
1
x

)(
(1− 3x)2 − x2(x− 3)2

(1− 3x)2 + x2(x− 3)2

)(
1− 12x

(1 + x)2

)
dx.

Observe that

(95) (1− 3x)2 + x2(x− 3)2 = ((x− a)2 + a2)((x− b)2 + b2)

where a, b > 0 satisfy a+ b = 3 and ab = 1
2 . We have

V (s) =
1
2

∫ e2s

1

(−x4 + 6x3 − 6x+ 1)(x2 − 10x+ 1)
x(x+ 1)2((x− a)2 + a2)((x− b)2 + b2)

dx

=
1
2

∫ e2s

1

(
1
x
− 6

1 + x
+

4x3 − 18x2 + 36x− 6
((x− a)2 + a2)((x− b)2 + b2)

)
dx

=
1
2

∫ e2s

1

(
1
x
− 6

1 + x
+

2(x− a)
(x− a)2 + a2

+
2(x− b)

(x− b)2 + b2

)
dx.
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We then have

V (s) =
1
2

log
(

8e2s((e2s − a)2 + a2)((e2s − b)2 + b2)
(e2s + 1)6

)
=

1
2

log
(

8e2s((1− 3e2s)2 + e4s(e2s − 3)2)
(e2s + 1)6

)
.

�

Using Lemma 8.2, we obtain

A0 =
∫ ∞

−∞
(u(s) + v(s))(b(s) + (a(s))2(b(s)− a(s))e−

R s
0 E(τ) dτ ds =

16
15
,(96) ∫ ∞

−∞
u(s)b(s)e−

R s
0 E(τ) dτ ds = −

∫ ∞

−∞
v(s)a(s)e−

R s
0 E(τ) dτ ds =

2
3
,∫ ∞

−∞
v(s)b(s)e−

R s
0 E(τ) dτ ds =

∫ ∞

−∞
u(s)a(s)e−

R s
0 E(τ) dτ ds = 0.

We now compute C0 and S0. The equalities

a(−t) = b(t), b(−t) = a(t), u(−t) = −v(t), v(−t) = −u(t)

imply that the functions E and u+ v are odd. Therefore, we have

C0 = 0,

S0 = 2
∫ ∞

−∞
u(s) sin(ωs)e−

R s
0 E(τ) dτ ds.

We compute S0 using the residue theorem. Define

(97)
ξc(ω) =

∫ ∞

−∞
u(s) cos(ωs)e−

R s
0 E(τ) dτ ds,

ξs(ω) =
∫ ∞

−∞
u(s) sin(ωs)e−

R s
0 E(τ) dτ ds.

Lemma 8.3. We have

ξc(ω) =
√

2πω2

e−
1
2
ωπ + e

1
2
ωπ
, ξs(ω) = −

( √
2πω

e−
1
2
ωπ + e

1
2
ωπ

)
.

Using Lemma 8.3, we obtain

S0 = 2ξ(ω) = −

(
2

√
2πω

e−
1
2
ωπ + e

1
2
ωπ

)
.

Proof of Lemma 8.3. Using Lemma 8.2, we have

ξc(ω) = −2
√

2Ic, ξs(ω) = −2
√

2Is

where

Ic =
∫ ∞

−∞

e3s(e2s − 3)
(e2s + 1)3

· cos(ωs) ds,

Is =
∫ ∞

−∞

e3s(e2s − 3)
(e2s + 1)3

· sin(ωs) ds.

Let I = Ic + iIs. We have

I =
∫ ∞

−∞

e3s(e2s − 3)
(e2s + 1)3

· eiωs ds.
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We evaluate I as follows. On the z = x+ iy plane, let ζ1 be the real axis, oriented from left to right,
and let ζ2 be the line {x+ πi : x ∈ R} oriented from right to left. Define

f(z) =
e3z(e2z − 3)
(e2z + 1)3

· eiωz.

We have ∫
`1

f(z) dz = I,

∫
`2

f(z) dz = e−ωπI.

So by the residue theorem, we have

(1 + e−ωπ)I = 2πiRes
(
f,
πi

2

)
.

Setting t = z − πi/2, we write f(z) as

f(z) = −ie−
1
2ωπ e

3t(e2t + 3)
(e2t − 1)3

· eiωt

= − i
8
e−

1
2ωπ e(5+iω)t + 3e(3+iω)t

t3(1 + t+ 2
3 t

2 +O(t3))3
.

We have
e(5+iω)t + 3e(3+iω)t = 4 + (14 + 4iω)t+ (26 + 14iω − 2ω2)t2 +O(t3),

and

(1 + t+
2
3
t2)−3 = 1− 3t+ 4t2 +O(t3).

Consequently,

Res
(
f,
πi

2

)
= − i

4
e−

1
2ωπ(iω − ω2),

from which it follows that

I =
πe−

1
2ωπ

2(1 + e−ωπ)
(iω − ω2).

In conclusion, we have

ξc(ω) =
√

2πω2

e−
1
2ωπ + e

1
2ωπ

, ξs(ω) = −

( √
2πω

e−
1
2ωπ + e

1
2ωπ

)
.

�

8.3. Application of Theorem 1. We apply Theorem 1 to system (87). Let λ0 satisfy Proposition 8.1
and let ∆ ⊂ (0, λ0) be such that for λ ∈ ∆ we have

(98) |n− (1− λ)m| > λ2
0(n+m)−2

for all n,m ∈ Z+ such that m+ n > 0. Let λ ∈ ∆ and γ = γλ be fixed in system (86). We write (86)
as

(99)

dx

dt
= −x+ fλ(x, y),

dy

dt
= (1− λ)y + gλ(x, y),

where

fλ(x, y) = −gλ(x, y) =
1
2
(x+ y)3 + γλ(y + x)2(y − x).

System (99) is naturally in the form assumed for the unperturbed equation (4) in Section 2 with

α = 1, β = 1− λ.
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The point (x, y) = (0, 0) is a dissipative homoclinic saddle for (99) and the homoclinic solution `λ =
(aλ(t), bλ(t)) is that of Proposition 8.1(1). System (87), which we write as

(100)

dx

dt
= −x+ fλ(x, y)− µ(ρ(y + x)2(y − x) + sin(ωt)),

dy

dt
= (1− λ)y + gλ(x, y) + µ(ρ(y + x)2(y − x) + sin(ωt)),

assumes the form of (5) with
h(x, y) = (y + x)2(y − x).

We regard (99) as the unperturbed system and (100) as the forced equation. Let

(uλ(t), vλ(t)) =
∥∥∥∥ ddt`λ(t)

∥∥∥∥−1 d

dt
`λ(t).

Writing E(t) from (7) and A, C, and S from (8) as Eλ(t), Aλ, Cλ, and Sλ, respectively, we have

Eλ(t) = v2
λ(t)(−1 + ∂xfλ(aλ(t), bλ(t))) + u2

λ(t)(1− λ+ ∂ygλ(aλ(t), bλ(t)))

− uλ(t)vλ(t)(∂yfλ(aλ(t), bλ(t)) + ∂xgλ(aλ(t), bλ(t))),
(101)

Aλ =
∫ ∞

−∞
(uλ(s) + vλ(s))h(aλ(s), bλ(s))e−

R s
0 Eλ(τ) dτ ds,

Cλ =
∫ ∞

−∞
(uλ(s) + vλ(s)) cos(ωs)e−

R s
0 Eλ(τ) dτ ds,

Sλ =
∫ ∞

−∞
(uλ(s) + vλ(s)) sin(ωs)e−

R s
0 Eλ(τ) dτ ds.

(102)

We let Aλ,L, Cλ,L, and Sλ,L be the integrals obtained by changing the integral bounds from ±∞ to ±L
in (102).

Lemma 8.4. There exist λ0 sufficiently small and L0 sufficiently large such that for any given L > L0,
we have

|Aλ −Aλ,L| < 103e−
1
2
L, |Cλ − Cλ,L| < 103e−

1
2
L, |Sλ − Sλ,L| < 103e−

1
2
L,

for all λ ∈ [0, λ0).

Proof of Lemma 8.4. Observe that for t ∈ (−∞,−L), we have Eλ(t) < −1
2 and for t ∈ (L,∞), Eλ(t) >

1
2 provided that L is sufficiently large and λ sufficiently small. �

Lemma 8.5. For any given L > 0, there exists K1(L) independent of λ such that

|Aλ,L −A0,L| < K1(L)λ, |Cλ,L − C0,L| < K1(L)λ, |Sλ,L − S0,L| < K1(L)λ.

Proof of Lemma 8.5. This lemma follows from Proposition 8.1(2). �

8.3.1. Verification of the hypotheses of Theorem 1. Let λ ∈ ∆. Hypothesis (H1)(a) follows
from (98) and (H1)(b) holds because α = 1, β = 1 − λ. For (H2) we use Lemmas 8.3, 8.4, and 8.5
together with (96). To prove Aλ 6= 0, we first choose L > L0 sufficiently large so that

103e−
1
2L < 10−3A.

Note that A = 16
15 from (96). It then follows from Lemma 8.4 that

|Aλ −Aλ,L| < 10−3A, |A0 −A0,L| < 10−3A.

Next we let λ0 be sufficiently small so that

|Aλ,L −A0,L| < K1(L)λ0 < 10−3A

where K1(L) is as in Lemma 8.5. We obtain

Aλ > A0 − |A0 −A0,L| − |Aλ,L −A0,L| − |Aλ −Aλ,L| > 1.

Hypothesis (H2)(b) is proved in a similar manner using S0 and Sλ.
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