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Abstract. Dynamical systems driven by nonlinear delay SDEs with small noise can exhibit im-
portant rare events on long timescales. When there is no delay, classical large deviations theory
quantifies rare events such as escapes from nominally stable fixed points. Near such fixed points
one can approximate nonlinear delay SDEs by linear delay SDEs. Here, we develop a fully explicit
large deviations framework for (necessarily Gaussian) processes Xt driven by linear delay SDEs
with small diffusion coefficients. Our approach enables fast numerical computation of the action
functional controlling rare events for Xt and of the most likely paths transiting from X0 = p to
XT = q. Via linear noise local approximations, we can then compute most likely routes of escape
from metastable states for nonlinear delay SDEs. We apply our methodology to the detailed dynam-
ics of a genetic regulatory circuit, namely the co-repressive toggle switch, which may be described
by a nonlinear chemical Langevin SDE with delay.

1. Introduction

Dynamical processes are often influenced by small random fluctuations acting on a variety of
spatiotemporal scales. Small noise can dramatically affect the underlying deterministic dynam-
ics by transforming stable states into metastable states and giving positive probability to “rare
events” of high interest, such as excursions away from nominally stable states or transitions be-
tween metastable states. These rare events play important functional roles in a wide range of
applied settings, including genetic circuits [15], molecular dynamics, turbulent flows [8] and other
systems with multiple timescales [7].

The main goal of this paper is to present an explicit computational and theoretical large devia-
tions analysis of rare events for Gaussian diffusion processes with delays. We are motivated in part
by the importance of delay for the dynamics of genetic regulatory circuits. Indeed, we apply our
approach to a bistable genetic switch driven by a delay stochastic differential equation (delay SDE)
of Langevin type.

Consider a family of random processes Xε(t) indexed by a small parameter ε > 0 and driven by
the following generic small-noise SDE with drift b, diffusion

√
εσ, and no delays:

dXε(t) = b(Xε(t)) dt+
√
εσ(Xε(t)) dW (t).

Large deviations theory for SDEs of this form was developed by Freidlin and Wentzell [16]. Freidlin-
Wentzell theory estimates the probability that the process Xε(t) lies within a small tube around
any given continuous path ψ ∈ C([0, T ],Rd) in terms of the action ST (ψ) of ψ:

Px

{
sup

06t6T
|Xε(t)− ψ(t)| 6 δ

}
≈ exp

(
−ε−1ST (ψ)

)
.

Here Px denotes probability conditioned on Xε(0) = x and we assume that ψ(0) = x.
The Freidlin-Wentzell action functional 0 6 ST (ψ) 6 ∞ was originally defined for uniformly

bounded coefficients b, σ and uniformly elliptic σσ∗ by an explicit time integral involving b(ψt),
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σσ∗(ψt)−1, and ψ′t. These remarkable results were widely extended by S. Varadhan [2] to arbitrary
sets of trajectories and by R. Azencott [2] to hypoelliptic diffusions with unbounded coefficients.
Numerous extensions and applications to broad classes of stochastic processes have been published
by D. Strook, R. Ellis, A. Dembo, O. Zeitouni, G. Dupuis, and many others. For SDEs with
delays, large deviations principles have been established or reasonably justified under a variety of
hypotheses [5, 11,17,26,35,36,39].

For fixed time T and points p, q in the state space, the path ψ̂ that minimizes ST (ψ) (under the
constraints ψ(0) = p and ψ(T ) = q) is the most likely transition path starting at p and reaching q
at time T . A second minimization over T provides the most likely transition path from p to q and
the energy V (p, q) associated with this optimal path. Often called the quasi-potential, V is central
to the quantification of large deviations on long timescales [16].

A computational framework has been developed for the application of Freidlin-Wentzell theory.
This framework includes the minimum action method [14], an extension called the geometric min-
imum action method that synthesizes the minimum action method and the string method [22], as
well as variants of these approaches (see e.g. [27, 28]).

For nonlinear delay SDEs, it is possible to compute a linear noise approximation [9] that is valid
in a neighborhood of a given metastable state. Since linear noise approximations are Gaussian
diffusions with delays, we have deliberately focused the present paper on Gaussian diffusions with
delays. For such diffusions, we rigorously develop and implement a fully explicit large deviation
framework enabling fast numerical computation of optimal transition paths and the quasi-potential.
Our methodology does not require the numerical solution of Hamilton-Jacobi equations, a significant
positive since Hamilton-Jacobi equations are computationally costly in even moderately high spatial
dimension.

We thus center our study on the Itô delay SDE

(1)
{

dXε
t = (a+BXε

t + CXε
t−τ ) dt+ εΣ dWt,

Xε
t = γ(t) for t ∈ [−τ, 0].

Here Xε
t ∈ Rd, t denotes time, τ > 0 is the delay, a ∈ Rd, B and C are real d × d matrices, Wt

denotes standard n-dimensional Brownian motion, Σ ∈ Rd×n denotes the diffusion matrix, and
ε > 0 is a small noise parameter. The initial history of the process is given by the Lipschitz
continuous curve γ : [−τ, 0] → Rd. We work with fixed delay to simplify the presentation – all of
our results apply just as well to multiple delays and to random delay distributed over a finite time
interval.

The Gaussian diffusion (1) arises via linear noise approximation of nonlinear delay SDEs near
metastable states in the following way. Suppose the nonlinear delay SDE

dxt = f(x(t), x(t− τ)) dt+ εg(x(t), x(t− τ)) dWt

has a metastable state z; that is, z is a stable fixed point of the deterministic limit ODE

dxt = f(x(t), x(t− τ)) dt.

Writing x(t) = z + ξ(t) and expanding f and g around z yields the linear noise approximation

dξt = [D1f(z, z)ξ(t) +D2f(z, z)ξ(t− τ)] dt+ εg(z, z) dWt.

This is (1) with a = 0, B = D1f(z, z), C = D2f(z, z), and Σ = g(z, z).
We demonstrate the utility of our approach by computing optimal escape trajectories for the co-

repressive toggle switch, a bistable genetic circuit driven by a nonlinear delay Langevin equation.
The paper is organized as follows. In Section 2, we review the theory of large deviations for

Gaussian processes and present optimal transition path theory for (1). We detail our numerical
implementation of this theory in Section 3. Section 4 discusses the general idea of linear noise
approximation. We present our computational study of a bistable genetic toggle switch in Section 5.
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2. Theory

In this section we develop a rigorous large deviations framework for (1).

2.1. Outline. For brevity, we will often omit the superscript ε, writing Xt instead of Xε
t . We

first show that the process Xt driven by (1) is in fact a Gaussian process in Section 2.2. This is
expected since (1) is linear, but not immediately obvious because of the presence of delay. Since
Xt is a Gaussian process, it is completely determined by its mean m(t) = E[Xt] and covariance
matrices E[XsX

∗
t ]−m(s)m(t)∗. Here ∗ denotes matrix transpose. We derive and analytically solve

delay ODEs verified by the mean and lagged covariance matrix of Xt in Sections 2.3–2.7.
To develop the large deviations theory for Gaussian diffusions with delay, we first summarize the

general theory of large deviations for Gaussian measures in Section 2.8. The main known result
(Theorem 2.3) is a large deviations principle for centered Gaussian measures (defined in Section 2.8)
on Hilbert spaces. We will then use this result to identify the action functional (Definition 2.2) for
Gaussian diffusions with delay.

For Gaussian diffusions with delay, the action functional is linked to the Cramer transform of
Gaussian probability measures on path spaces. Since the large deviations principle of interest
here concerns centered Gaussian measures, we center Xt by writing Xt = m(t) + εZt. Call ν the
probability distribution of the process Zt on the space C0([0, T ]) of continuous paths f starting
at f(0) = 0. The Cramer transform λ(f) of ν is defined for all such paths f by Definition 2.2.
Proposition 2.5 expresses λ(f) in terms of the integral operator determined by the covariance
function ρ(s, t) of Zt. This expression will be suitably transformed to derive explicit computational
schemes.

To complete this program, we will explicitly derive the most likely transition path between two
points p and q by first minimizing the Cramer transform over paths that begin at p and reach q at
time T and then minimizing over T .

2.2. Solution of (1) is a Gaussian process. We show that (1) defines a Gaussian process by
first discretizing and then taking an L2-limit.

Proposition 2.1. The delay SDE (1) has a unique strong solution Xt, which is a Gaussian process.

Proof of Proposition 2.1. The existence of a unique strong solution Xt is classical (see e.g. [32]).
To see that Xt is Gaussian, we consider Euler-Maruyama discretizations [23]. For positive integers
N , let ∆ = τ/N denote time step size. The Euler-Maruyama approximate solution Y (∆)

t to (1) is
defined first at nonnegative integer multiples of ∆ by

Y
(∆)

(k+1)∆ = Y
(∆)
k∆ + (a+BY

(∆)
k∆ + CY

(∆)
k∆−τ )∆ + εΣ(W(k+1)∆ −Wk∆)

and then on [0, T ] by interpolation. Much is known about the convergence of EM schemes for
dSDEs (see e.g. [3, 33]). In particular, we have

lim
∆→0

E
[

sup
06t6T

|Y (∆)
t −Xt|2

]
= 0

by Theorem 2.1 of [33]. Since Y (∆)
t is Gaussian by construction, this L2-convergence implies that

Xt is Gaussian as well. �

2.3. Delay ODE for the mean of Xt. Writing (1) in integral form, we have

(2) Xt = X0 +
∫ t

0
(a+BXz + CXz−τ ) dz + εΣWt.

Taking the expectation of (2) and applying Fubini gives

m(t) = m(0) +
∫ t

0
(a+Bm(z) + Cm(z − τ)) dz,



4 LARGE DEVIATIONS FOR GAUSSIAN DIFFUSIONS WITH DELAY

or, in differential form, a delay ODE for m(t):

(3)
{
m′(t) = a+Bm(t) + Cm(t− τ)
m(t) = γ(t) for t ∈ [−τ, 0].

2.4. The centered Gaussian process Zt. The process Xt is clearly not centered in general. The
centered process Zt defined by Xt = m(t) + εZt is a centered Gaussian diffusion with delay. Since
Xt verifies (1) and m(t) verifies (3), elementary algebra shows that Zt verifies the delay SDE

(4)
{

dZt = (BZt + CZt−τ ) dt+ Σ dWt,

Zt = 0 for t ∈ [−τ, 0]

Note that this delay ODE does not depend on ε. This is a crucial point further on because our key
large deviations estimates will be stated in path space for the centered Gaussian process εZt . So
for the rest of the paper our large deviations computations will essentially involve the deterministic
mean path of Xt and the covariance function ρ(s, t) of the process Zt.

2.5. Delay ODEs for the covariances of Zt. We now find delay ODEs for the covariance of Zt.
Denote A∗ the matrix transpose of A, and let

ρ(s, t) = E[ZsZ∗t ]

be the covariance matrix of Zs and Zt. Since the history of Zt anterior to t = 0 is deterministic,
ρ(s, t) = 0 when either s or t are in [−τ, 0]. Fix t ∈ [0, T ], and let s vary. We have

E[ZsZ∗t ] =
∫ s

0
(BE[ZuZ∗t ] + CE[Zu−τZ∗t ]) du+ ΣE[WsZ

∗
t ].

We thus obtain

ρ(s, t) =
∫ s

0
(Bρ(u, t) + Cρ(u− τ, t)) du+ ΣE[WsZ

∗
t ].(5)

Let G(s, t) = E[WsZ
∗
t ]. Differentiating ρ(s, t) with respect to s gives

(6) ∂ρ

∂s
(s, t) = Bρ(s, t) + Cρ(s− τ, t) + Σ∂G

∂s
(s, t),

which is a first-order delay ODE in s for each fixed t. To close (6), we compute a differential
equation for ∂G

∂s (s, t). Proceeding as just done for (5), one checks that the function G(s, t) satisfies
the ODE

(7) ∂G

∂t
(s, t) =

{
G(s, t)B∗ +G(s, t− τ)C∗ + Σ∗ (t ≤ s);
G(s, t)B∗ +G(s, t− τ)C∗ (t > s),

where G(s, t) = 0 for t ∈ [−τ, 0]. Let H(x) denote the Heaviside function

H(x) =
{

0 x < 0
1 x ≥ 0

.

We can rewrite (7) as

(8) ∂G

∂t
(s, t) = G(s, t)B∗ +G(s, t− τ)C∗ + Σ∗H(s− t).

Note that the partial derivative of the Heaviside distribution H(s− t) is classically given by
∂H

∂s
(s− t) = δ(s− t),
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where the distribution x → δ(x) is the Dirac point mass concentrated at x = 0. By definition of
G(s, t) and by (8), the function G(s, t) is continuous for all s and t and differentiable in s and t for
s 6= t. We will denote, for s 6= t,

(9) F (s, t) := ∂G

∂s
(s, t)

so that F verifies the initial condition F (s, t) = 0 for s 6= t and t ∈ [−τ, 0].
Differentiating (8) in s for s 6= t and switching the order of partial derivatives yields a linear

delay ODE in t > 0 for F (s, t), namely

(10) ∂F

∂t
(s, t) = F (s, t)B∗ + F (s, t− τ)C∗ + Σ∗δ(s− t)

with initial condition F (s, t) = 0 for all t ∈ [−τ, 0].
Once F (s, t) is determined, the covariance ρ(s, t) for each fixed t ∈ [0, T ] will be computed by

solving the delay ODE

(11) ∂ρ

∂s
(s, t) = Bρ(s, t) + Cρ(s− τ, t) + ΣF (s, t).

We now describe how to successively solve the delay ODEs driving m(t), F (s, t), and ρ(s, t).

2.6. Analytical solution of the delay ODE verified by the mean. First-order delay ODEs
can be analytically solved by a natural stepwise approach, sometimes called “method of steps,” a
terminology which we will avoid since it is has a different meaning in classical numerical analysis.
The basic idea is to convert each one of our delay ODE into a finite sequence of nonhomogeneous
ODEs in which the delay terms successively become known terms. Consider first the delay ODE
(3) for m(t) with t ∈ [−τ, T ]. The delay term Cm(t − τ) is unknown for t ∈ (τ, T ] but is known
for t ∈ [0, τ ]. So we can solve the delay ODE (analytically or numerically) on the interval [0, τ ] as
a linear non-homogeneous first-order ODE. Then, for t ∈ [τ, 2τ ], the delay ODE turns again into
a linear non-homogeneous first-order ODE where the delay term has actually just been computed.
One can thus successively solve the delay ODE on intervals [kτ, (k + 1)τ ] to get a full step-by-step
solution on all of [0, T ].

We first describe the explicit solution of the mean m(t) on [−τ, T ]. For x ∈ R, denote bxc as the
greatest integer less than or equal to x. Partition the interval [−τ, T ] into closed subintervals of
the form [(k − 1)τ, kτ ] where k = 0, 1, 2, . . . , bTτ c with final partition interval

[
bTτ cτ, T

]
. Let mk(t)

denote the solution to the DDE on the interval [(k− 1)τ, kτ ] and mbT
τ
c+1(t) denote the solution of

m(t) on the final partition interval. When k = 0, we have m0(t) = γ(t). Now, when k = 1, the
intial condition gives the following ODE for m1(t), the solution of m(t) on [0, τ ]:{

m′1(t) = a+Bm1(t) + Cγ(t− τ)
m1(0) = γ(0).

We can write the solution m1(t) as

m1(t) = etB
∫ t

0
e−uB (a+ Cγ(u− τ)) du+ etBγ(0).

Call mk(t) the solution m(t) on the interval Jk = [(k − 1)τ, kτ ] for k = 0, 1, 2, . . . , bTτ c. Given
mk−1(t) for t in Jk−1, we can similarly compute mk(t) by

mk(t) = e(t−(k−1)τ)B
∫ t

(k−1)τ
e−uB (a+ Cmk−1(u− τ)) du+ e(t−(k−1)τ)Bmk−1((k − 1)τ).

Finally, piecing together all the mk(t) yields the full solution m(t) on all of [−τ, T ]. Note that
many characteristics of the initial segment γ , such as continuity, differentiability, discontinuities,
etc., will essentially propagate through to the solution m(t) at each step. More precisely, if γ is
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of class Cq on [−τ, 0] for some integer q ≥ 0, then m(t) will be of class q + 1 for all t except
possibly at integer multiples of τ. Since we assume here that γ is Lipschitz continuous, m(t) will
be differentiable except possibly at integer multiples of τ .

2.7. Analytical solutions of the delay ODEs verified by F (s, t) and ρ(s, t). We can extend
the preceding method to the ODE in s verified by F (s, t) for each fixed s and then to the ODE
in t verified by ρ(s, t). We first focus on F (s, t). Fix s ∈ [0, T ]. Due to the delay ODE (10), the
distribution φs defined on R+ by

φs(t) = F (s, t) + Σ∗H(s− t)

clearly verifies the delay ODE

(12) ∂φs
∂t

(t)− φs(t)B∗ − φs(t− τ)C∗ = −Σ∗H(s− t)B∗ − Σ∗H(s− t+ τ)C∗

with initial condition
φs(t) = Σ∗H(s− t) for all t ∈ [−τ, 0].

Note that for each fixed s > 0 this initial condition is a bounded and continuous function of
t ∈ [−τ, 0]. For each fixed s, the right hand side of equation (12) is the function θs defined for t ≥ 0
by

θs(t) = −Σ∗H(s− t)B∗ − Σ∗H(s− t+ τ)C∗

which is uniformly bounded in t, and is continuous in t except for the two points t = s and
t = s + τ . As was done above for m(t), one can perform the iterative analysis of the delay
ODE (12) on successive time intervals Jk = [(k − 1)τ, kτ ]. Since both the initial condition and
the right-hand side θs are known, the kth step of this iterative construction amounts to solving a
first order linear ODE with constant coefficients and known right-hand side. So this construction
is essentially stepwise explicit and proves by recurrence on k that the distribution φs(t) is actually
a bounded function of t which is differentiable except maybe at the points t = kτ and t = s+ kτ .

For each s ≥ 0, once the full solution φs has been constructed for t ∈ [−τ, T ] as just outlined,
we immediately obtain F (s, t) = φs(t)− Σ∗H(s− t).

At this stage F (s, t) is theoretically known for all s ≥ 0 and t ∈ [−τ, T ] and can be plugged
into the delay ODE in s verified by ρ(s, t) for each fixed t, with initial conditions ρ(s, t) = 0 for
(s, t) ∈ [−τ, 0]× [−τ, 0]. For each fixed t ∈ [0, T ], this delay ODE for s→ ρ(s, t) can again be solved
iteratively on the successive time intervals Jk.

The preceding approaches can easily be numerically implemented to derive explicit solution to
the three types of delay ODEs involved. Each reduction to a succession of roughly T/τ linear
ODEs enables the use of classical numerical schemes to compute m(t) and ρ(s, t). We have used
the approach of [6], which implements the step-wise analysis presented above, along with standard
numerical ODE methods. This numerical implementation is described explicitly in Section 3.

The key role played below by m(t) and ρ(s, t) is that these two functions essentially determine
the rate functional of large deviations theory for the Gaussian diffusion with delay Xt.

2.8. General large deviations framework. We present, without proof, a brief overview of large
deviations theory of Gaussian measures and processes (refer to Chapter 6 in [2] for proofs of
theorems). We will then apply these principles to Gaussian diffusions with delay. The following
notations and definitions will be used throughout this section.

• H is any separable Hilbert space, with scalar product denoted 〈t, x〉 := t(x) for t, x ∈ H.
• µ is any probability on the Borel σ-algebra B(H).
• For t ∈ H, the image probability t(µ) is defined on R by [t(µ)](A) := µ(t−1(A)) for all Borel
subsets A of R.
• µ is called centered iff t(µ) is centered for all t ∈ H.
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• µ is called Gaussian iff for all t ∈ H, the image probability t(µ) is a Gaussian distribution
on R.

Large deviations concepts demand all t(µ) to have at least finite first-order moment. But most
applicable results require all t(µ) to have some finite exponential moments since they depend on
the Laplace tranform µ̂(t) of µ, defined as follows for t ∈ H,

µ̂(t) =
∫
H
e〈t,x〉 dµ(x).

For a full treatment of large deviations concepts for probabilities on general infinite dimensional
Frechet vector spaces, refer to Chapters 2 and 3 of [2]. Here we only consider Borel probabilities µ
on separable Hilbert spaces H. Later on below, H will be an L2-space of process paths and µ will be
Gaussian. Probabilities of rare events under µ can be estimated via a key non-negative functional
defined for x ∈ H: the Cramer transform λ(x) of µ. The following definition of λ(x) is actually
Theorem 3.2.1 in [2].

Definition 2.2. The Cramer transform λ of µ, also called the large deviations rate functional of
µ, is defined for x ∈ H by

λ(x) = sup
t∈H

[〈t, x〉 − log µ̂(t)] .

Note that 0 ≤ λ(x) ≤ +∞. The Cramer set functional Λ(A) is then defined for all A ⊆ H by
Λ(A) = inf

x∈A
λ(x).

The set functional Λ(A) quantifies the probabilities of rare events by the following key large
deviations inequalities initially formalized by S. Varadhan.

Theorem 2.3. Let µ be a probability measure on a separable Hilbert space H. Let Z be an H-valued
random variable with probability distribution µ. Let Λ be the Cramer set functional of µ. For every
Borel subset A of H one has
(13) − Λ(A◦) ≤ lim inf

ε→0
ε2 logP(εZ ∈ A) ≤ lim sup

ε→0
ε2 logP(εZ ∈ A) ≤ −Λ(Ā).

where A◦ and Ā are resp. the interior and the closure of A.

Whenever Λ(A◦) = Λ(Ā), which is necessarily the case when Ā is the closure of A◦, then the
limits in (13) exist and

−Λ(A) = lim
ε→0

ε2 logP(εZ ∈ A).

In particular for small ε, one has the rough estimate by

logP(εZ ∈ A) ≈ −Λ(A)
ε2 .

In our applications below, Z is the random path of a centered Gaussian diffusion with delay
so that the probability distribution ν of Z will be a centered Gaussian probability on the Hilbert
space H = L2[0, T ]. So we now focus on Gaussian probabilities on Hilbert spaces.

2.9. Gaussian probabilities on Hilbert spaces. Let H be a separable Hilbert space, and let
ν be a centered Gaussian probability on the Borel subsets of H. With no loss of generality, we
assume that the only closed vector subspace F of H such that ν(F ) = 1 is H itself. The covariance
kernel Cov(s, t) of ν is defined for all s, t ∈ H by

Cov(s, t) =
∫
H
〈s, x〉〈t, x〉dν(x) = 〈s,Γt〉 = 〈Γs, t〉,

where the linear operator Γ : H → H is known to be a bounded, positive, self-adjoint operator
with finite trace. The positive operator

√
Γ then exists and is unique. The following theorem gives
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a fairly concrete form for λ(x). This result can be applied in path space to centered Gaussian
processes, once the covariance operator Γ has been computed.

Theorem 2.4. Let ν be a centered Gaussian probability on a separable Hilbert space H. Let
Γ : H → H be the self-adjoint covariance operator of ν. Let U be the orthogonal complement in
H of the null space ker Γ = ker

√
Γ. The restriction S of

√
Γ to U is injective and maps U onto√

Γ(H). Then the Cramer transform λ of ν is given by

λ(x) =
{

1
2
∥∥S−1x

∥∥2
x ∈
√

Γ(H)
∞ otherwise

.

2.10. Application to Gaussian processes. Let Zs : Ω → R with s ∈ [0, T ] be a centered
Gaussian stochastic process with almost surely continuous trajectories and continuous covariance
function

ρ(s, t) =
∫

Ω
Zs(ω)Zt(ω) dP(ω).

Call C([0, T ]) the Banach space of continuous functions on [0, T ] endowed with its Borel σ-algebra.
One can trivially construct a version of Zs with surely continuous trajectories. This defines a
C([0, T ])-valued random path Z, where Z(ω) is the path s → Zs(ω) with 0 ≤ s ≤ T . The
probability distribution ν of the random path Z is then a centered Gaussian probability on the Borel
sets of C([0, T ]). We now state the main large deviations result used below, which is essentially an
application of Theorem 2.4 to the separable Hilbert space L2[0, T ] and appears as Proposition 6.3.7
in [2].

Proposition 2.5. Consider a centered continuous Gaussian process Zs : Ω → R defined for s
in [0, T ] with continuous covariance function ρ(s, t). The linear operator R : L2[0, T ] → L2[0, T ]
defined by

Rf(s) =
∫ T

0
ρ(s, u)f(u) du

takes values in C([0, T ]). Moreover, R is self-adjoint, positive, compact, and has finite trace. Let
U = (ker(R))⊥ ⊂ L2([0, T ]) and let S be the restriction of

√
R to U . Then S : U → L2[0, T ] is

injective and maps U onto
√
R(L2[0, T ]). On the path space C[0, T ], the probability distribution ν

induced by the process Zt has Cramer transform λ defined for f ∈ C[0, T ] by

λ(f) =
{1

2
∥∥S−1f

∥∥2
L2[0,T ] , if f ∈

√
R(L2[0, T ]);

∞, otherwise.

Note that by duality, R also acts on the space of all bounded Radon measures π on [0, T ], via
the natural formula

Rπ(s) =
∫ T

0
ρ(s, u) dπ(u).

Since the integral operator R is positive and self-adjoint, the square-root operator
√
R exists and

is also an integral operator of the form
√
Rf(s) =

∫ T

0
k(s, u)f(u) du

where k(s, u) is uniquely defined by the relation
∫ T

0 k(s, u)k(u, v) du = ρ(s, v) for all s, v ∈ [0, T ].
The value λ(f) of the Cramer transform can be viewed as the “energy” of the path f . In particu-

lar, for a small multiple εWt of the Brownian motionWt, the Cramer transform is indeed the kinetic
energy λ(f) = 1

2 ‖f
′‖2L2[0,T ] (Proposition 6.3.8 in [2]). Further on, we will apply Proposition 2.5 to

the centered Gaussian process εZt = Xt −mt associated to the Gaussian diffusion with delay Xt.
Indeed, since the mean trajectory mt is deterministic, probability estimates for the random paths
of Zt immediately translate into probability estimates for the random paths of Xt.
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2.11. Large deviation rate functional for Gaussian diffusions with delay. Recall that
Xt = m(t) + εZt denotes Gaussian diffusion with delay under study. In this section we minimize
the Cramer transform associated with Zt. For points p, q ∈ Rd and time T > 0, define

Path(p, q;T ) =
{
f ∈ C([0, T ],Rd) : f(0) = p, f(T ) = q

}
.

Random paths of Xt lie in Path(p, q;T ). To study Zt, we must shift this space of paths by the
mean m(t). Define

C0([0, T ],Rd) =
{
f ∈ C([0, T ],Rd) : f(0) = 0

}
,

Path(0, q −m(T );T ) =
{
f ∈ C0([0, T ],Rd) : f(T ) = q −m(T )

}
.

We now minimize the Cramer transform λ associated with Zt over Path(0, q −m(T );T ). The
Cramer transform is linked to the covariance operator R of Zt by

λ(f) = 1
2〈R

−1f, f〉L2[0,T ]

for paths f ∈
√
R(L2[0, T ]). Since Path(0, q − m(T );T ) is determined by linear constraints on

f , we minimize the quadratic form λ(f) for f ∈ Path(0, q − m(T );T ) using Lagrange multiplier
theory [29].

For f ∈ C0([0, T ],Rd), define the Lagrangian

Lf,µ := 1
2〈R

−1f, f〉+ µ · (f(T )− (q −m(T ))),

where · is the usual dot product in Rd and µ ∈ Rd is the Lagrange multiplier vector. Setting the
derivative DLf,µ(ϕ) for ϕ ∈ C0([0, T ],Rd) equal to zero, we have

DLf,µ(ϕ) = lim
∆→0

Lf+∆ϕ,µ − Lf,µ
∆ = 〈R−1f, ϕ〉+ µ · ϕ(T ) = 0,

yielding the condition
〈R−1f, ϕ〉 = −µ · ϕ(T ) = −µ · δT (ϕ).

Here δT denotes the Dirac mass at time T . The minimizing path g is therefore given by
(14) g = R(−µ · δT ).
The right side of (14) may be expressed in terms of the covariance function ρ of Zt:

(15) R(−µ · δT )(s) = −
∫ T

0
ρ(s, u)µ dδT (u) = −ρ(s, T )µ.

Since g(T ) = q −m(T ), (15) implies
q −m(T ) = −ρ(T, T )µ,

so the Lagrange multiplier is given by
−µ = ρ(T, T )−1(q −m(T )).

The trajectory that minimizes the Cramer transform therefore takes the form
gT (s) = ρ(s, T )[ρ(T, T )−1(q −m(T ))] (0 6 s 6 T ),

and has Cramer transform

(16) λ(gT ) = 1
2[ρ(T, T )−1(q −m(T ))] · [q −m(T )].

Notice that gT =
√
R(ĝ), where

ĝ(s) = k(s, T )[ρ(T, T )−1(q −m(T ))]
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and k is the kernel defined by

(
√
Rf)(s) =

∫ T

0
k(s, u)f(u) du.

For the Gaussian diffusion with delay Xt = m(t) + εZt, the most likely path hT (s) realizing
X0 = p and XT = q is hence given by

(17) hT (s) = m(s) + gT (s) = m(s) + ρ(s, T )[ρ(T, T )−1(q −m(T ))] (0 6 s 6 T )

and has energy

(18) λ(hT ) = 1
2[ρ(T, T )−1(q −m(T ))] · [q −m(T )].

Below we interpret most likely path in a precise probabilistic sense. Minimizing λ(hT ) over T
produces the most likely time T of transition from X0 = p to XT = q, the most likely transition
path, and the associated energy.

2.12. Probabilistic interpretation. For any path from p to q over time interval [0, T ] in Rd, the
large deviations principle in Theorem 2.3 yields quantitative information about the probability that
the process Xt remains within a small tube of the given path over [0, T ]. To apply Theorem 2.3,
we first shift the given tube by subtracting the mean m(t) of Xt so that we may work with the
centered process εZt. Once the large deviations principle has been applied to εZt, we then add
m(t) to recover information about Xt. Crucially, both the Cramer transform associated with Zt
and the path that minimizes it are independent of ε. The application of Theorem 2.3 proceeds as
follows.

First assume q 6= m(T ). For any path f ∈ Path(0, q −m(T );T ) and small radius r > 0, define
the tube

Tube(f, r) =
{
ϕ ∈ C0([0, T ],Rd) : sup

06t6T
|ϕ(t)− f(t)| 6 r

}
.

Since Tube(f, r) is the closure of its interior in C0([0, T ],Rd), Theorem 2.3 gives

lim
ε→0

ε2 log(P(εZT ∈ Tube(f, r))) = −Λ(Tube(f, r)),

where ZT denotes the set of paths generated by Zt over [0, T ]. In particular, for the path gT that
minimizes the Cramer transform, we have

lim
ε→0

ε2 log(P(εZT ∈ Tube(gT , r))) = −Λ(Tube(gT , r)) = −λ(gT ).

In this sense, Tube(gT , r) is the most likely route of passage for εZt, and shifting Tube(gT , r) by
m(t) yields the most likely route of passage from p to q over [0, T ] for Xt.

Note that q = m(T ) is a special case. Here, Xt will remain within a small tube around m(t)
with probability converging to one as ε → 0. That is, the most likely transition path from p to q
over [0, T ] is simply the path of the mean in this case.

To effectively compute the most likely transition path from p to q for Xt, we have implemented
a numerical scheme in three steps:

• Solve several ODEs with delay to compute the mean path m(t) of Xt and the covariance
function ρ(s, t) of Zt.
• For fixed T, p, q, compute the most likely transition path h = hT from X0 = p to XT = q,
and its energy λ(hT ), as given by (17) and (18).
• Compute the optimal transition time Topt by minimizing λ(hT ) over all times T > 0.
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3. Numerical implementation

3.1. Numerical solution of three delay ODEs. Each delay ODE of interest here is iteratively
solved on the time intervals Jk = [(k−1)τ, kτ ] for k = 1, 2, . . . (1+[T/τ ]). For each k, this amounts
to solving numerically a linear ODE with known right-hand side. For this, we use a backward
Euler scheme, which is known to be stable for equations of this form [6, 19]. To compute m(t), we
discretize [0, T ] into subintervals of equal length ∆t = τ/N . Backward Euler is given by

m(t)−m(t−∆t) = [a+Bm(t) + Cm(t− τ)]∆t.

which yields the recursive equation

m(t) = (I −∆tB)−1m(t−∆t) + ∆t(I −∆tB)−1[a+ Cm(t− τ)].

The initial history of the mean is used to numerically compute the solution m(t) = m1(t) on
the initial interval J1. To numerically generate the solution m(t) = mk(t) on Jk, we proceed by
iteration on k, using the discretized expressions just stated above. This yields a full numerical
approximation of m(t) on [0, T ]. We apply a completely similar strategy to compute for each s the
function t → φs(t) as defined by (12). However both s and t will be constrained to belong to the
finite grid

Grid(N) = {jτ/N : j = 1, . . . ,M and M = N(1 + bT/τc)} .
After the computation of φs(t), we generate the F (s, t) values for s and t in Grid(N) by the explicit
formula F (s, t) = φs(t)− ΣH(s− t) where H(s− t) is a Heaviside function.

We then proceed to compute ρ(s, t) for s and t in Grid(N). For each fixed t in Grid(N), the
Backward Euler discretization of the delay ODE verified by the function s → ρ(s, t) yields the
recursive relation

(19) ρ(s, t) = (I −∆sB)−1ρ(s−∆s, t) + ∆s(I −∆sB)−1[Cρ(s− τ, t) + ΣF (s, t)]

where ∆s = τ/N. The initial values ρ(s, t) = 0 for s ∈ [−τ, 0] and the recursive relation (19) enable
the computation of ρ(s, t) for s ∈ J1. Keeping t fixed, one then uses (19) as above and the values
of ρ(·, t) on Jk to compute the values of ρ(·, t) on Jk+1. Repeating this operation for each t in
Grid(N) finally provides ρ(s, t) for s and t in Grid(N).

3.2. Numerical minimization of the Cramer transform. Fix T > 0. For the Gaussian
diffusion with delay Xt, the most likely transition path h from X0 = p to XT = q and its energy
λh(T ) have been explicitly expressed in terms of the functions m(t) and ρ(s, t) (see (17) and (18)).
Plugging into these two formulas the values of m(t) and ρ(s, t) numerically computed for s and t
in Grid(N) immediately provides numerical approximations of h(s) for s in Grid(N) and of λh(T )
for a fixed terminal time T .

To compute the most likely time at which Xt will reach q, whenever this rare event is realized, we
have to minimize u(T ) = λh(T ) in T . So we select a large terminal time Tlarge, and we numerically
minimize the function u(T ) on the interval [0, Tlarge]. If on that time interval u(T ) exhibits an actual
minimum at Topt, this gives us an approximate most likely transition time Topt. Otherwise, we set
Topt =∞.

3.3. Exit path from nominally stable stationary states. As ε→ 0, the limit dynamics of Xt

is a deterministic dynamic system xt driven by an obvious first-order ODE with delay. Let p be
a stable stationary state of xt, and let V be a small neighborhood of p. Determining for small ε
the most likely path followed by Xt to exit from V when X0 = p is a problem of practical interest
in many contexts. Our numerical computation of the most likely transition path from X0 = p
to XT = q with q on the boundary of V will enable us to numerically solve these types of exit
problems. We now illustrate this approach with the detailed study of a specific dynamical system
from biochemistry.
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4. Linear noise approximations for excitable systems

4.1. Excitable systems from biochemistry. We begin by explaining the importance of noise,
delay, and metastability for the dynamics of genetic regulatory circuits. Such circuits may be
described by delay SDEs [9, 20] and represent a significant class of systems to which our approach
can be applied.

Cellular noise and transcriptional delay shape the dynamics of genetic regulatory circuits. Stochas-
ticity within cellular processes arises from a variety of sources. Sequences of chemical reactions at
low molecule numbers produce an intrinsic form of noise. Multiple other types of variability affect
dynamics across spatial and temporal scales. Examples include fluctuations in environmental con-
ditions, metabolic processes, energy availability, et cetera. Noise functions constructively in both
microbial and eukaryotic cells and on multiple timescales. It enables probabilistic differentiation
strategies for cell populations, such as stochastic state-switching in bistable circuits and transient
cellular differentiation in excitable circuits (e.g. [12, 15,41]).

Certain circuit architectures such as toggle switches and excitable circuits enable noise-induced
rare events. These architectures allow cellular populations to probabilistically switch states in
response to environmental fluctuations [15].

Bistability is a central characteristic of biological switches. It is essential in the determination of
cell fate in multicellular organisms [24], the regulation of cell cycle oscillations during mitosis [21],
and the maintenance of epigenetic traits in microbes [38]. Metastable states can be created by
positive feedback loops. Once a trajectory enters a metastable state, it will typically remain there
for a considerable amount of time before noise induces a transition [15, 25]. This phenomenon
has been studied in many contexts, including the lysis/lysogeny switch of bacteriophage λ [1, 43],
bacterial persistence [4], and synthetically constructed positive feedback loops [18,37].

Many biological systems exhibit excitability [13, 34, 41]. Excitable systems commonly feature
a single metastable state bordered by a sizable, active region of phase space. When stochastic
fluctuations cause a trajectory to exit the basin of attraction of this metastable state, the trajectory
will make a large excursion before returning to the basin. Transient differentiation into a genetically
competent state in Bacillus subtilis, for example, is enabled by an excitable circuit architecture.
Positive feedback controls the threshold for competent event initiation, while a slower negative
feedback loop controls the duration of competence events [10, 30, 31, 40, 41]. Rare events in such
excitable systems manifest as bursts of activity.

4.2. General linear noise approximations (LNAs). We explain how Gaussian diffusions driven
by delay SDEs such as (1) arise from linear noise approximations of nonlinear delay SDEs. Brett
and Galla [9] introduced linear noise approximations for chemical Langevin equations modeling
biochemical reaction networks. Consider the delay SDE

(20) dxt = f(x(t), x(t− τ)) dt+ 1√
N
g(x(t), x(t− τ)) dWt.

Here f : Rd×Rd → Rd, g : Rd×Rd → Rd×n, Wt denotes standard n-dimensional Brownian motion,
and N > 0 denotes system size (characteristic number of molecules in a biochemical system). Notice
that we allow both the drift and the diffusion to depend on the past. Suppose x∞(t) solves the
deterministic limit of (20); that is, x∞(t) solves

(21) dxt = f(x(t), x(t− τ)) dt.

As we have indicated in our introduction, around a stable point z of the limit ODE as N tends to
infinity, one can approximate such a system by a Gaussian diffusion with delay and small diffusion
matrix 1√

N
Σ. Define ξ(t) by

x(t) = x∞(t) + ξ(t).
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Substituting this ansatz into (20) and performing Taylor expansions of f and g based at the
deterministic trajectory yields the linear noise approximation

dξt = [D1f(x∞(t), x∞(t− τ))ξ(t) +D2f(x∞(t), x∞(t− τ))ξ(t− τ)] dt

+ 1√
N
g(x∞(t), x∞(t− τ)) dWt.

(22)

Here D1 and D2 denote differentiation with respect to the first and second sets of d arguments,
respectively. If x∞(t) happens to be a stable fixed point of (21), say x∞(t) ≡ z, then (22) becomes

dξt = [D1f(z, z)ξ(t) +D2f(z, z)ξ(t− τ)] dt+ 1√
N
g(z, z) dWt.

This is (1) with a = 0, B = D1f(z, z), C = D2f(z, z), Σ = g(z, z), and ε = 1√
N
.

5. A bistable biochemical system

5.1. Chemical Langevin equation. The genetic toggle switch we study consists of two protein
species, each of which represses the production of the other. We model the switch using the chemical
Langevin equation

dx =
(

β

1 + y(t− τ)2/k
− γx

)
dt+ 1√

N

(
β

1 + y(t− τ)2/k
+ γx

)1
2

dW1(23a)

dy =
(

β

1 + x(t− τ)2/k
− γy

)
dt+ 1√

N

(
β

1 + x(t− τ)2/k
+ γy

)1
2

dW2,(23b)

where x and y denote the concentrations of the two protein species, β denotes maximal protein
production rate, k is the protein level at which production is cut in half, γ is the dilution rate, N
denotes system size, andW1 andW2 are independent standard Brownian motions. Notice that (23)
is a symmetric system. In the deterministic limit as N → ∞, the co-repressive toggle switch is
described by the reaction rate equations

dx =
(

β

1 + y(t− τ)2/k
− γx

)
dt(24a)

dy =
(

β

1 + x(t− τ)2/k
− γy

)
dt.(24b)

System (24) has two stable stationary states, (xlow, yhigh) and (xhigh, ylow), as well as a saddle
stationary state (xs, ys). See [20, Figure 7] or [42, Figure 3A, inset] for a phase portrait of (24).

In the stochastic (N < ∞) regime, a typical trajectory of the co-repressive toggle switch will
spend most of its time near the metastable states, occasionally hopping from one to the other [42,
Figure 3A]. Such rare events raise interesting questions. For large N , is the co-repressive toggle
switch well-approximated by a two-state Markov chain on long timescales? If so, what are the
transition rates? To determine these rates, one would need to compute both a quasipotential and
a formula of Eyring-Kramers type.

Here, we focus on the problem of optimal escape from neighborhoods of metastable states. We
fix a neighborhood of (xlow, yhigh) (Figure 1, black curve) and ask: What is the most likely route of
escape from this neighborhood for (23)? In Section 5.2, we compute a linear noise approximation
of (23) that is valid near (xlow, yhigh). Since this linear noise approximation is a Gaussian diffusion
with delay, the framework of the present paper applies to it. We use this framework to compute
most likely routes of escape for the linear noise approximation and thereby obtain (approximate)
most likely routes of escape for (23).
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Figure 1. Sample trajectory segments of (23) in a neighborhood of the metastable state
(xlow, yhigh). We simulated 1000 trajectories over the time interval [0, 5]. We then chose
three sample trajectories that exited the disk D and extracted a segment from each of them.
The blue, red, and magenta trajectory segments begin near the metastable state (small black
disk) at the coordinates (0.0817, 1.0668), (0.0673, 1.1233), and (0.1272, 1.0733), respectively,
and cover time intervals [2.799, 3.399], [3.099, 3.599], and [1.699, 2.299]. The history of each
simulated trajectory over the time interval [0, 5] is taken to be fixed at (xlow, yhigh) over the
time interval [−τ, 0]. Trajectories have been generated using Euler-Maruyama with time
step ∆t = τ/1000 = 0.001. Parameters: β = 0.73, k = 0.05, γ = ln(2), τ = 1, N = 30.

5.2. Approximation by Gaussian Diffusions with delays. We study an approximation of (23)
by Gaussian diffusions with delay that is valid in a neighborhood of (xlow, yhigh) =: (v, w). Writing

x(t) = v + ξ1(t), y(t) = w + ξ2(t),

the Gaussian diffusion with delay is given by

(25)
dξ1(t) =

(
−γξ1(t)− 2βw

k[1 + w2/k]2 ξ2(t− τ)
)

dt+ 1√
N

(
β

1 + w2/k
+ γv

)1/2
dW1(t),

dξ2(t) =
(
−γξ2(t)− 2βv

k[1 + v2/k]2 ξ1(t− τ)
)

dt+ 1√
N

(
β

1 + v2/k
+ γw

)1/2
dW2(t).

We are now in position to apply the large deviations framework of our paper to (25). Before
doing so, we perform a preliminary numerical calculation and comment on the role of trajectory
histories.

We numerically compute the stationary points of (24). We work with the parameter set β = 0.73,
k = 0.05, γ = ln(2), and τ = 1, a parameter set for which (24) has two stable stationary states and
one saddle stationary state. We find these states by setting the drift expressions in (24) equal to
zero along with x(t−τ) = x and y(t−τ) = y. Approximate solutions can be found numerically using
many well-known iterative methods. The two stable stationary states are approximately (v, w) ≈
(0.0498, 1.0033) and (1.0033, 0.0498). The stationary saddle is approximately (0.3306, 0.3306).

Notice that since the Gaussian diffusion (25) contains delay, one must specify a trajectory history
over the time interval [−τ, 0] in order to properly initialize the equation. Trajectory history will
influence the evolution of the mean of the Gaussian diffusion with delay and will therefore affect the
computation of optimal large deviations trajectories. In general, this history may be deterministic
or random. For our current study, we work with deterministic histories and take them to be constant
on [−τ, 0]. See Figure 2 for examples of the evolution of the mean of the Gaussian diffusion using
various histories. Finally, note that although the process ξ(t) is Gaussian, it will not be centered
if the history is not identically zero. To be consistent with the notation of Section 2.11, we write
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the process that locally approximates the delay chemical Langevin equation as m(t) + εZt, where
m(t) = E[ξ(t)], ε = 1√

N
, and Zt satisfies (25) with no small parameter (N = 1) and history zero.

5.3. Optimal escape trajectories and exit points - analysis. We now apply our large devi-
ations framework to the Gaussian diffusion that approximates the delay chemical Langevin equa-
tion (23) near (v, w). We begin with an analytical view and then follow with numerical simulation.

We find the most likely exit path with constant initial history m(0) that exits the disk

D =
{

(z1, z2) : (z1 − v)2 + (z2 − w)2 6 R2
}
.

(We choose R = 0.3 for the numerical computations in Section 5.4 so that the neighborhood of
(v, w) has size of order one but remains bounded away from the separatrix.) To find this optimal
path, we first find the path of least energy that exits D at a preselected point q ∈ ∂D and at a
preselected time T . We then optimize over T and q. For fixed exit time T and exit point q ∈ ∂D,
the optimal escape path and associated energy are given by

h(s) = ρ(s, T )
[
ρ(T, T )−1(q −m(T ))

]
+m(s)

λh(T, q) = 1
2
[
ρ(T, T )−1(q −m(T ))

]
· (q −m(T ))

using (17) and (18). Here, s ranges over [0, T ] and ρ(s, t) is the covariance matrix of Zt at times
s, t ∈ [0, T ]. Note that we are using the terms “exit time” and “escape path” loosely since we do
not impose the a priori condition that h remain inside D until it reaches q at time T .

In order to optimize over q and T , we first fix T and optimize λh(T, q) over points q ∈ ∂D. Notice
that λh(T, q) is a classical quadratic form on R2 for fixed T , so we apply standard minimization
techniques to find the minimizer q̂(T ) analytically. The minimization problem for fixed T is

(26) min
q
λh(T, q) subject to (q1 − v)2 + (q2 − w)2 = R2.

Using a Lagrange multiplier µ ∈ R, define the Lagrangian

Lµ(q) := λh(T, q)− µ((q1 − v)2 + (q2 − w)2 −R2).

Calculating the gradient ∇q(Lµ(q)) and setting the gradient equal to zero yields the equation

(27) ρ(T, T )−1(q −m(T )) = 2µ(q − (v, w)∗).

Notice that if m(T ) = (v, w)∗, then (27) becomes an eigenvalue problem for ρ(T, T )−1. In
this case, the optimal exit point q̂(T ) is such that q̂(T ) − (v, w)∗ is the eigenvector of ρ(T, T )−1

corresponding to the smallest eigenvalue, and the energy of the optimal path that exits D at time
T is proportional to this smallest eigenvalue.

This observation has two implications. First, if the history of the linear noise process is taken
to be m(t) = (v, w)∗ on [−τ, 0], then we will have m(t) = (v, w)∗ for all t > 0 as well. In this
case, minimizing λh(T, q) over T and q to find the optimal escape time Topt and the optimal escape
point q̂(Topt) amounts to minimizing the smallest eigenvalue of ρ(T, T )−1 over T . Since (25) is
essentially an Ornstein-Uhlenbeck process with delay, we expect the smallest eigenvalue of ρ(T, T )−1

to decrease monotonically toward a limiting value as T →∞. See Figure 4 for numerical evidence.
There exists no minimizer of λh(T, q) in this case, as we would have Topt =∞.

Second, regardless of the initial history of the linear noise process, m(T ) → (v, w)∗ as T → ∞
for the parameters we have selected. Consequently, (27) is approximately an eigenvalue problem
for large values of T , so for such T the optimal exit point q̂(T ) will be such that q̂(T )− (v, w)∗ is
close to the eigenvector of ρ(T, T )−1 corresponding to the smallest eigenvalue.
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5.4. Numerical results. We compute the optimal path of escape, the optimal exit time Topt, and
the optimal exit point q̂(Topt) ∈ ∂D for the linear noise process (25) that approximates the toggle
switch (23) in the disk D. Along the way, we discuss interesting related computations.
Parameter selection. We set β = 0.73, k = 0.05, γ = ln(2), and τ = 1 for the toggle switch.

System size for the linear noise approximation (25) is N = 1000. The history of the linear noise
process is taken to be the constant position (0.0453, 1.1323) over the time interval [−τ, 0]. We
choose R = 0.3 for the radius of D so that this neighborhood of (v, w) has size of order one but
remains bounded away from the separatrix.
Optimization algorithm. To compute the optimal escape path, exit time, and exit point, we

execute the following algorithm.
• Simulate the mean and covariance equations for a sufficiently large Tlarge using step sizes

∆t = ∆s = τ/500.
• Discretize the boundary of the disk D using discretization ∆r = 0.006 of [−R,R].
• For each time tj = (j − 1)∆t ∈ [0, Tlarge] and each point qk on the discretized boundary of the
disk, compute the optimal trajectory that exits at time tj through qk as well as the energy
Ej,k of this trajectory.
• Minimize over the entries of the matrix E in order to find the optimal exit time and exit point
(and hence the overall optimal path of escape).

Mean and covariance. We first compute the mean and covariance of the linear noise process.
Figure 2 (blue curves) illustrates the evolution of the mean for our parameter set. As expected,
the mean converges to the stationary state (v, w) (moved to (0, 0) in Figure 2). It is important
to choose Tlarge sufficiently large so that the covariance matrix ρ(Tlarge, Tlarge) has stabilized and
the mean is close to the stationary state. Fig. 3 and Fig. 4 provide evidence that this stabilization
occurs by time T = 20 for our parameter set. In particular, the variances of the two components of
Zt stabilize by time 20 (Fig. 3). Fig. 4 illustrates that the smallest eigenvalue of ρ(t, t)−1 stabilizes
as well.
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Figure 2. Evolution of the mean of the linear noise process. Here the stationary state
(v, w) has been shifted to the origin. (2a) Blue curve: evolution of the mean using the
constant history (0.0453, 1.1323) (or (−0.0046, 0.1289) in local coordinates). Red and black
curves: evolution of the mean using trajectory segments of (23) for histories. In all three
cases, the mean converges to the stationary state. (2b) Another view of the blue curve from
Fig. 2a.

Numerical optimization results. We first examine the behavior of optimal paths and optimal
path energies for fixed exit times. Fig. 5a illustrates the behavior of optimal path energy as a
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Figure 3. Evolution of the variances of the two components of Zt over time. (3a) The
variance of the first component stabilizes to approximately 0.0567 by time 20. (3b) A linear
relationship exists between the evolutions of variances of the first and second components.
By time 20, the variance of the second component has stabilized to approximately 1.1409.
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Figure 4. The smallest eigenvalue of the covariance matrix ρ(t, t)−1 stabilizes to approxi-
mately 0.874 by time 20.

function of exit point over the upper half of ∂D for the fixed exit time T = 10. Note that optimal
path energy is minimized near the top of ∂D. Fig. 5c depicts three different optimal escape paths
for fixed escape time T = 20 and three different exit points. Notice that these trajectories follow
the mean for some time before breaking away toward their respective exits. This behavior should
not occur for the optimal exit time Topt and the optimal exit point q̂(Topt). Fig. 5d (blue curve)
illustrates the overall optimal escape trajectory. This trajectory exits at time Topt = 1.482 and exit
point q̂(Topt) = (0.0384, 1.3031). Observe that the overall optimal escape trajectory diverges from
the mean immediately.

Fig. 6 depicts overall optimal escape trajectories using three different constant initial histories.
Notice that if the initial history is located in the lower half of D, then the overall optimal escape
trajectory exits through the lower half of ∂D. This happens for the upper half of D as well. This
behavior is natural, since moving ‘across’ the stationary state should not be energetically optimal.
For the initial history corresponding to the blue curve in Fig. 6, the optimal escape path that exits
through the bottom half of ∂D does so through (0.0162,−0.2996) (in local coordinates) at exit time
∞ with energy 0.0394. This energy is strictly larger than that of the blue curve in Fig. 6 (0.0348).
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Figure 5. Optimal exit data. (5a) Energy of the optimal exit path at time T = 10 as a
function of chosen exit point on the upper half of ∂D. The energy is minimized near the
top of D. (5b) Energy of the optimal exit path as a function of exit time T for fixed exit
point (0, 0.3) (the top of D in local coordinates). (5c) Three different optimal escape paths
for fixed escape time T = 20 and three different exit points. Notice that these trajectories
follow the mean for some time before breaking away toward their respective exits. This
behavior should not occur for the optimal exit time Topt and the optimal exit point q̂(Topt).
Energy values associated with the red, magenta, and blue trajectories are 0.0413, 0.4527,
and 0.4661, respectively. (5d) Overall optimal escape trajectory. This trajectory exits at
time Topt = 1.482 and exit point q̂(Topt) = (0.0384, 1.3031) with energy 0.0348.
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Figure 6. Optimal escape trajectories from D for the linear noise process using three
different constant initial histories. Notice that if the initial history is located in the lower
half of D, then the optimal escape trajectory exits through the lower half of ∂D. This
happens for the upper half of D as well. The energy associated with the red, magenta, and
blue trajectories is 0.0389, 0.0074, and 0.0348, respectively.
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