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Abstract. We prove a counterpart of exponential decay of correlations for non-stationary systems.
Namely, given two probability measures absolutely continuous with respect to a reference measure,
their quasi-Hölder distance (and in particular their L1 distance) decreases exponentially under action
by compositions of arbitrarily chosen maps close to those that are both piecewise expanding and
mixing in a certain sense.

1. Introduction

This paper studies statistical properties of time-dependent dynamical systems. In such systems
the dynamical model itself is allowed to vary with time. An important example is the flow generated
by a nonautonomous vector field. Perhaps the vector field depends on physical parameters that
vary with time. We address memory loss for time-dependent dynamical systems, an analog of decay
of correlations.

The memory loss problem has been studied extensively in the contexts of stochastic differential
equations (SDEs), random dynamical systems1, and autonomous (time-independent) deterministic
dynamical systems. An SDE of the form

dxt = a(xt) dt+
n∑
i=1

bi(xt) ◦ dW i
t

gives rise to a stochastic flow of diffeomorphisms in which almost every Brownian path defines a
time-dependent flow (see e.g. [21]). Lyapunov exponents for such flows are known to be well-defined,
nonrandom (they do not depend on the realization of the noise), and constant almost everywhere
in phase space if the system is ergodic. Ergodic systems for which the greatest Lyapunov exponent
λmax is negative exhibit a phenomenon known as random sinks. Under suitable conditions, any
ensemble of initial conditions will coalesce near a unique equilibrium point that evolves in time [23].
This phenomenon occurs in dissipative systems such as the Navier-Stokes system (see e.g. [29, 30])
and in certain coupled oscillator networks modeling neuronal activity [25]. Memory loss also occurs
if λmax > 0, for in this case initial distributions will track random SRB measures (see [24]) rather
than random sinks. For further information about random dynamical systems, see e.g. [2, 3].

We say that an autonomous deterministic system exhibits memory loss in the statistical sense if
there exists a unique invariant measure ν that attracts absolutely continuous distributions ρ0 � ν,
that is ρt → ν as t → ∞ where ρt denotes the dynamical evolution of ρ0. Both the nature and
speed of the convergence are of interest. Statistical memory loss and the closely related notion of
decay of correlations have received a great deal of attention in this context (see e.g. [11, 15, 16, 17,
26, 27, 31, 32, 39, 45, 46]). Since time-dependent deterministic systems are out of equilibrium, we

Date: March 12, 2013.
2010 Mathematics Subject Classification. 37C60, 37D20, 37D50, 82C99.
Key words and phrases. Hilbert metric, memory loss, mixing, nonautonomous dynamical systems, piecewise ex-

panding maps.
1In the context of random dynamical systems, the maps are chosen according to a known distribution.

1



2 CHINMAYA GUPTA, WILLIAM OTT, AND ANDREI TÖRÖK

associate statistical memory loss not with initial distributions converging to invariant measures but
rather with distances between pairs of initial distributions decreasing as the distributions evolve.

Important classes of time-dependent systems include dynamical systems with time-varying pa-
rameters and physical processes that take place in evolving environments. For example, consider
a Lorentz gas (Sinai billiard) in which some of the scatterers move, perhaps due to bombardment
by light particles. See [12] for an effort to model the movement of a heavy particle in this con-
text. Stenlund, Young, and Zhang introduce a model of Sinai billiards with moving scatterers and
prove an exponential memory loss result for this model [41]. Open systems (systems with holes)
provide another important example, for perhaps the holes move over time. Mohapatra and Ott
formulate a notion of conditional memory loss for time-dependent open systems and prove that this
type of memory loss occurs at an exponential rate for a class of one-dimensional piecewise-smooth
expanding maps with holes [33].

We do not assume any a priori knowledge of any statistical properties of the evolution of the
dynamical model. Indeed, the stationarity of the process is irrelevant from our point of view.
By contrast, knowledge of the statistical properties of the process typically plays a central role in
random dynamical systems.

In this paper we focus on time-dependent discrete-time systems: compositions of the form fn ◦
fn−1 ◦ · · · ◦ f1, where (fi)i is a finite or infinite sequence of maps from a space X into itself. Identify
probability measures absolutely continuous with respect to the reference measure µ on X with their
their density functions (Radon-Nikodym derivatives with respect to µ). We say that the system
exhibits exponential memory loss in the statistical sense if given any initial densities ϕ0 and ψ0, the
evolved densities ϕt and ψt satisfy ‖ϕt − ψt‖L1(µ) 6 Cϕ0,ψ0e

−Λt for some Λ > 0 independent of the
initial measures.

We focus specifically on time-dependent piecewise C1+α expanding systems in dimension at least
two. Here the phase space X is a Riemannian manifold and for each map fi, there exists a finite or
countably infinite collection {Uij} of pairwise disjoint open subsets of X such that

⋃
j Uij has full

Riemannian volume for each i and fi|Uij is smooth for all relevant i and j. The time-independent
case (iterates of a single piecewise smooth expanding map) has received substantial attention,
particularly with respect to the existence of absolutely continuous invariant probability measures
and exponential decay of correlations [1, 5, 7, 8, 9, 10, 13, 18, 20, 34, 38, 40, 42, 43, 44].

The ergodic theory of a time-independent piecewise smooth expanding system can be subtle in
higher dimension because the domains on which the map is smooth can have complicated bound-
aries. This subtlety is magnified in the time-dependent case, wherein both the maps and the
domains on which the maps are smooth can vary with time.

In this paper we prove that certain time-dependent piecewise C1+α expanding systems in higher
dimension exhibit exponential memory loss in the statistical sense. The current work builds on
previous work covering time-dependent expanding systems and time-dependent piecewise expanding
systems in one dimension [22, 37]. This previous work uses the method of coupling, introduced in [46]
and developed later in e.g. [6, 11, 12]. Here we use cones and the Hilbert projective metric (see
e.g. [4, 26, 35, 36]. One could argue that coupling and the cone method are preferable to the spectral
approach when dealing with time-dependent deterministic systems. For many random dynamical
systems, one can study an averaged Perron-Frobenius operator (see e.g. [14]); one cannot average
in the time-dependent deterministic context.

2. Statement of results

We begin by defining a class of piecewise C1+α expanding maps with good ergodic properties.
The setup is based on that introduced by Saussol [40]. We describe perturbations of these maps and
define the space of quasi-Hölder densities. Saussol proved that maps in this class admit finitely many
ergodic absolutely continuous invariant probability measures (ACIPs) with quasi-Hölder densities.
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We state the local and global versions of our results at the end of this section; the global statement
is a straightforward consequence of the local result.

Remark 2.1. Throughout this paper we use a fixed Hölder exponent 0 < α 6 Lip; unless otherwise
stated, the maps are (piecewise) C1+α. For maps in C1+Lip we use α = 1 in the computations.

For f : U ⊂ Rk → R` use as C1+α and C2 norms

(2.1) ‖f‖C1+α := ‖f‖C0 + ‖Df‖Cα , ‖f‖C2 := ‖f‖C0 + ‖Df‖C0 + ‖D2f‖C0 .

These extend in a straightforward way to the case when the domain or range is a subset of a compact
manifold.2

Remark 2.2. For simplicity of exposition we consider only maps on the N -dimensional torus.
However, one can extend the proofs to arbitrary compact manifolds.

Let TN = RN/ZN denote the N -dimensional torus and µ the normalized Lebesgue measure on
TN . For a set S ⊂ TN and ε > 0, define

Bε(S) :=
⋃
x∈S

Bε(x),

where Bε(x) or B(x, ε) stand for the open ball of radius ε centered at x.

2.1. Domains for piecewise continuous maps; the classes R(K), C(A) and C(R). Abusing
notation, we refer to a family of open pairwise disjoint sets that covers TN up to measure zero (e.g.,
A ∈ R below) as an open partition. The maps we consider are piecewise continuous on such open
partitions.

Definition 2.3 (partitions). Consider in TN a finite family of pairwise disjoint open sets A :=
{Ui : 1 6 i 6M}.

We say that A ∈ R(K) if it covers TN up to measure zero and each Ui has boundaries bounded
piecewise in C2 by K. More precisely:

(1) µ(TN \
⋃
i Ui) = 0;

(2) for each i there are finitely many compact C2 embedded codimension-one submanifolds {Γij}j
of TN such that ∂Ui is contained in the union

⋃
j Γij;

(3) the C2 norm of each Γij is strictly less than K; that is, for each Γij there are finitely many
C2 charts Φ`;ij : BN ⊂ RN → W`;ij ⊂ TN , where BN is the unit ball of RN , such that each
Φ`;ij and Φ−1

`;ij have C2-norm less than K and Γij ⊂
⋃
` Φ`;ij(BN ∩ (RN−1 ⊕ {0})).

Denote by R the union
⋃
K>0 R(K).

For A ∈ R we define, using the above notation

κ(A) := sup
x∈TN

#{Γij : x ∈ Γij},

which gives the maximum number of boundary components to which a point belongs.

Definition 2.4 (nearby partitions). We say that two open partitions A = {Ui}i and Ã = {Ũi}i in
R(K) are δ-close if:

(1) the families A and Ã have the same number of elements, and there is also a correspondence

between the bounding submanifolds Γij and Γ̃ij;

(2) for each i, dHausd(Ui, Ũi) < δ, where dHausd denotes Hausdorff distance;3

2The particular formulas used for the norms in (2.1) are not important.
3Recall that dHausd(A,B) := max{sup{dist(x,B) | x ∈ A}, sup{dist(y,A) | y ∈ B}}.
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(3) for each i, j, the bounding submanifolds Γij and Γ̃ij are less than δ apart in Hausdorff distance.

This defines a topology on R(K).4 It is not hard to see that

Lemma 2.5. Given A ∈ R(K), there is δ > 0 such that κ(Ã) 6 κ(A) for each Ã ∈ R(K) that is
δ-close to A.

Proof. Indeed, if xn ∈ TN is a point in k boundary components of An with An being δn-close to A,
δn → 0, then we can select a subsequence so that xn → x and xn ∈ ∩(i,j)∈JΓnij for a set J with k
elements, with each boundary component Γnij of An being δn-close to the corresponding boundary
component Γij of A. As n→∞, this implies that x ∈ ∩JΓij. �

Definition 2.6 (piecewise continuous maps). For A ∈ R, we write f ∈ C(A) for functions f :
TN → TN that are continuous on each U ∈ A. Denote by C(R) the union of all C(A) with A ∈ R.

2.2. Piecewise expanding maps; the classes M and M∗. We describe next the piecewise C1+α

expanding maps that we consider.
The main estimate we need, a Lasota-Yorke inequality derived by Saussol [40, Lemma 4.1],

requires the properties described later in Definition 4.1; we consider a class M∗ of maps satisfying
those. We first introduce a class of piecewise expanding maps M that is easier to describe.

Notation 2.7. Denote by ξN = πN/2/(N/2)! the volume of the unit ball in RN .5

Definition 2.8 (the class M). For 0 < s < 1, K > 0, κ > 0 such that (2.2) holds,

(2.2) sα +

(
4sκ

1− s

)(
ξN−1

ξN

)
< 1,

denote by M(s,K, κ) the piecewise C1+α maps f : TN → TN that satisfy the following properties:

(1) f ∈ C(A1) with A1 = {Ui : 1 6 i 6M} ∈ R(K); we will refer to A1 by A1(f)

(2) (backward contraction) for each i, f |Ui is injective with a differentiable inverse and ‖D[(f |Ui)−1]‖ <
s

(3) for each i, both f |Ui and all its partial derivatives extend to continuous functions on the
closure of Ui

(4) for each i, ‖f |Ui‖1+α < K

(5) κ(A1) 6 κ.

Definition 2.9 (the class M∗). Denote by M∗(s,K, κ, ε0) the set of maps f ∈M(s,K, κ) that can be
extended to a neighborhood of the original sets Ui as follows (we use the notations of Definition 2.8):
for each i, there is an open set Vi ⊃ Ui and an extension f(i) : Vi → TN of f |Ui such that

(1) f(i)(Vi) ⊃ Bε0(f(Ui))

(2) f(i) is a C1 diffeomorphism from Vi to its image

(3) (backward contraction of extensions) ‖D[f−1
(i) ]‖ < s on f(i)(Vi)

(4) ‖f(i)‖1+α < K on Vi.

Remark 2.10. For iterates of a single piecewise expanding map, not requiring a balance between
complexity and expansion (as is condition (2.2)) can lead to maps with no ACIPs (see [9]).

4One can define a fundamental system of neighborhoods, as we do later in Section 2.3 for maps.
5(N/2)! stands for Γ(N/2 + 1).
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2.3. Perturbations of maps in M; the neighborhoods N(f, δ; s,K, κ). We describe next
perturbations of f ∈M. This is similar to the topology used in [14, §2.4] and [19].

Definition 2.11 (nearby maps; N(f, δ; s,K, κ)). Let f, f̃ ∈ M(s,K, κ). We say that f̃ is a δ-

perturbation of f , denoted f̃ ∈ N(f, δ) = N(f, δ; s,K, κ), if the following hold.

(1) f̃ ∈ C(Ã1) with Ã1 ∈ R(K) δ-close to A1(f), as described in Definition 2.4; 6

(2) outside a δ-neighborhood of the boundaries,7 the maps are δ-close in C1+α:

‖f |Wi
− f̃ |Wi

‖C1+α < δ for each i,

where
Wi := {x ∈ Ui ∩ Ũi | dist(x, U c

i ) > δ, dist(x, Ũ c
i ) > δ}.

It is not difficult to check that as f and δ vary, the sets N(f, δ; s,K, κ) form a fundamental system
of neighborhoods,8 so they define a topology on M(s,K, κ).

2.4. Mixing maps; the class E. Arbitrary compositions of piecewise C1+α expanding maps in
M∗ do not necessarily exhibit exponential loss of memory. Indeed, a system defined by iterating a
single piecewise C1+α expanding map may not even be ergodic, and decay of correlations (memory
loss) in this context requires mixing. We therefore formulate a type of mixing condition.

Definition 2.12 (the class E). Let ζ1 ∈ (0, 1) and ζ2 ∈ (1,∞). We say a map f : TN → TN belongs
to E(ζ1, ζ2) if for every finite partition H of TN into hypercubes, there exists J(H, ζ1, ζ2) such that
for every H1, H2 ∈ H, we have

(2.3) ζ1 <
µ(H1 ∩ f−i(H2))

µ(H1)µ(H2)
< ζ2

for every i > J(H, ζ1, ζ2).

Remark 2.13. For fixed ζ1, ζ2, H, and i, (2.3) is an open condition with respect to the topology
we have defined on M∗. This is precisely how we use (2.3) in the proof of Theorem 2.16.

2.5. Densities; the set D. We consider densities that are quasi-Hölder. These quasi-Hölder spaces
were considered by Saussol [40], where more details can be found.

For ϕ ∈ L1(µ) and a Borel set S ⊂ TN , define the oscillation of ϕ on S by

osc(ϕ, S) := Esup(ϕ, S)− Einf(ϕ, S).

Given ε0 > 0, define the seminorm

|ϕ|α,ε0 := sup
0<ε6ε0

ε−α
∫
TN

osc(ϕ,Bε(x)) dµ(x).

The seminorms |ϕ|α,ε0 are equivalent for different ε0’s.9 Define

OSCα := {ϕ ∈ L1(µ) : |ϕ|α,ε0 <∞}.

This space does not depend on ε0, and contains the α-Hölder functions. Define the norm ‖·‖α,ε0 on
OSCα by

(2.4) ‖ϕ‖α,ε0 := ‖ϕ‖L1(µ) + |ϕ|α,ε0 .

6Note that one can represent an f ∈M with more than one choice of A1(f).
7By Definition 2.4, the boundaries of A1 and Ã1 have Hausdorff distance at most δ.
8If g ∈ N(f1, δ1; s,K, κ) ∩ N(f2, δ2; s,K, κ) then N(g, δ; s,K, κ) ⊂ N(f1, δ1; s,K, κ) ∩ N(f2, δ2; s,K, κ) for some

δ > 0.
9For 0 < ε1 < ε2 there are finitely many vectors vi such that Bε2(x) ⊂ ∪iBε1(x+ vi) for all x.
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Equipped with this norm, OSCα is a Banach space and the unit ball of OSCα is precompact in
L1(µ).

Our memory loss results hold for densities in the set

D := {ϕ ∈ OSCα : ϕ > 0, ‖ϕ‖L1(µ) = 1}.

Remark 2.14. Saussol [40] proves that maps somewhat more general10 than those in M∗ admit
an ACIP, whose density is in D. This is obtained by proving that the Perron-Frobenius operator
satisfies a Lasota-Yorke inequality on OSCα, and therefore is quasi-compact.

2.6. Results. As mentioned earlier, we need both sufficient expansion (for condition (2.2) to hold),
and some form of mixing (of the type exhibited by maps in E).

We formulate two types of results: local, governing arbitrary compositions of maps chosen from
a small neighborhood of a fixed map in E ∩M∗, and global, wherein we move through a union of
such neighborhoods; the latter is a simple consequence of the former.

We begin by setting some notation.

Notation 2.15. Given maps fi : TN → TN for i ∈ N, denote Fm,k := fm ◦ · · · ◦ fk if m > k. Write
Fm for Fm,1.

For a (non-singular) map f : TN → TN , denote by Pf : L1(µ) → L1(µ) the associated Perron-
Frobenius operator:∫

TN
(ϕ ◦ f) · ψ dµ =

∫
TN
ϕ · Pf (ψ) dµ ϕ ∈ L∞(µ), ψ ∈ L1(µ).

In other words, the Perron-Frobenius map Pf describes the action of f on ACIMs:

f ∗(ψ dµ) = Pf (ψ) dµ.

Recall that Pf does not increase the L1-norm,

(2.5) ‖Pf (ψ)‖L1 6 ‖ψ‖L1 .

2.6.1. Local result. The main local theorem states that given two densities in D, their distance with
respect to ‖·‖α,ε0 decreases at an exponential rate under action by arbitrary composition of maps
that are close to a single map in E ∩M∗.

Theorem 2.16. Let g ∈ E(ζ1, ζ2) ∩ M∗(s,K, κ, ε0). There exist Λ < 1 and δ > 0 such that
given ϕ, ψ ∈ D, there exists Cϕ,ψ > 0 with the following property: for any sequence (fi)

∞
i=1 in

N(g, δ; s,K, κ) ∩M∗(s,K, κ, ε0), we have

(2.6)

∫
TN
|PFm(ϕ)− PFm(ψ)| dµ 6 ‖PFm(ϕ)− PFm(ψ)‖α,ε0 6 Cϕ,ψΛm

for all m ∈ N.

One can relax the hypotheses of the above theorem because, by the Whitney extension theorem,
maps in M close to f ∈M∗ are in M∗ provided the boundaries are suitable.

10The main difference is that there can be countable many Ui’s, and their boundaries need not be piecewise
smooth. In that case condition (2.2) is replaced by (PE5), described in Section 4.
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2.6.2. Global result. We note that many global formulations are possible. We give below such a
result, but one can replace continuity of ω with weaker assumptions.

Let a < b and let ω : [a, b]→M∗ be a map. We discretize ω by considering sequences of the form
(ω(ti))i where a 6 t1 6 t2 6 · · · 6 b. Let Ωm := ω(tm) ◦ · · · ◦ ω(t1).

Theorem 2.17. Let ω : [a, b]→M∗(s,K, κ, ε0) be a continuous map. Assume that

ω([a, b]) ⊂
M⋃
i=1

N(gi, δi; s,K, κ)

where gi ∈M∗(s,K, κ, ε0) are maps for which Theorem 2.16 holds with a corresponding δi > 0.
Then there exists Λ < 1 such that the following holds for any discretized sequence (ω(ti))i: for

every ϕ, ψ ∈ D, there exists C ′ϕ,ψ > 0 such that

(2.7)

∫
TN
|PΩm(ϕ)− PΩm(ψ)| dµ 6 ‖PΩm(ϕ)− PΩm(ψ)‖α,ε0 6 C ′ϕ,ψΛm

for all relevant m ∈ N.

3. Proof of Theorem 2.16

We use the theory of cones and a projective metric known as the Hilbert metric (see e.g. [26, 28]).
Saussol [40] uses this theory to obtain precise estimates on rates of correlation decay for maps in
M∗.

The proof proceeds as follows. We define a suitable cone Ca ⊂ OSCα. We then find a time T ∈ N
such that PFi+T−1,i

maps Ca strictly inside itself for all i ∈ N. The diameter of PFi+T−1,i
(Ca) with

respect to the Hilbert metric is bounded uniformly in i. The general theory of cones then implies
that PFi+T−1,i

is a contraction on Ca with a contraction factor that is uniform in i. Theorem 2.16
follows.

3.1. Invariance of a suitable convex cone. The following Lasota-Yorke inequality provides
control of the oscillation seminorm of functions in OSCα under the action of the Perron-Frobenius
operator. It is the crucial estimate that allows us to analyze the action of the Perron-Frobenius
operator on Ca. For completeness we provide the proof in Section 4.

Proposition 3.1 (Lasota-Yorke inequality [40]). Let s and κ be such that (2.2) is satisfied, and
K, ε0 > 0. There are positive constants εLY = εLY (s,K, κ, ε0, N) 6 ε0, γLY = γLY (s,K, κ, εLY ) < 1
and KLY = KLY (s,K, κ, εLY ), such that:

if f ∈M∗(s,K, κ, ε0) then Pf maps OSCα to itself and

(3.1) |Pf (ϕ)|α,εLY 6 γLY |ϕ|α,εLY +KLY ‖ϕ‖L1(µ) ϕ ∈ OSCα .

Proof. See Section 4, where we recall the proof of Saussol [40]. The constants εLY , γLY and KLY

are described there. �

Notation 3.2. We fix the above parameters s, K, κ, ε0; the constants εLY , γLY and KLY are those
given in Proposition 3.1.

We now define Ca and study the action of the Perron-Frobenius operator on it. The following
parameters are used throughout the proof of Theorem 2.16.

(P1) 0 < σ < 1

(P2) εH: choose such that εH 6 εLY . Let H be a partition of TN into hypercubes such that

sup
H∈H

diam(H) 6 εH.
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(P3) T ∈ N: choose such that T > J(H, ζ1, ζ2).

(P4) a > 0: the aperture of the cone Ca. We choose the parameters εH, T , and a such that

ζ1 − ζ2ε
α
Ha > 0,

(ζ1 − ζ2ε
α
Ha)−1

(
γTLY a+

KLY

1− γLY

)
6 σa.

The inequalities in (P4) may be simultaneously satisfied by first choosing T sufficiently large,
then a sufficiently large, then εH sufficiently small, and finally increasing T if necessary so
that (P3) holds.

Once parameter selection is complete, let δ be sufficiently small so that (2.3) holds with ζ1, ζ2,
and H fixed for every composition of T maps chosen from N(g, δ; s,K, κ) ∩M∗(s,K, κ, ε0).

Define

Ca =
{
ϕ ∈ L1(µ) : ϕ 6= 0, ϕ > 0, |ϕ|α,εLY 6 aE[ϕ|H]

}
.

We now show that for every i ∈ N, PFi+T−1,i
maps Ca into Cσa. The following two lemmas

accomplish this.

Lemma 3.3. For every ϕ ∈ Ca and i ∈ N we have

(3.2) (ζ1 − ζ2ε
α
Ha)

∫
TN
ϕ dµ 6 E[PFi+T−1,i

(ϕ)|H] 6 ζ2(1 + aεαH)

∫
TN
ϕ dµ.

Proof of Lemma 3.3. Write F = Fi+T−1,i. For x ∈ TN , let H(x) denote the element of H that
contains x. We have

E[PF (ϕ)|H](x) =
1

µ(H(x))

∫
H(x)

PF (ϕ) dµ

=
1

µ(H(x))

∫
F−1(H(x))

ϕ dµ

=
1

µ(H(x))

∑
H′∈H

∫
H′∩F−1(H(x))

ϕ(z) dµ(z).

Bounding ϕ from below, for µ almost every z in H ′ ∩ F−1(H(x)) we have

ϕ(z) >

(
1

µ(H ′)

∫
H′
ϕ dµ

)
− osc(ϕ,H ′)

>
1

µ(H ′)

(∫
H′
ϕ dµ−

∫
H′

osc(ϕ,B(y, εH)) dy

)
.

Integrating gives

E[PF (ϕ)|H](x) >
∑
H′∈H

1

µ(H(x))

∫
H′∩F−1(H(x))

1

µ(H ′)

(∫
H′
ϕ dµ−

∫
H′

osc(ϕ,B(y, εH)) dy

)
dµ(z)

=
∑
H′∈H

µ(H ′ ∩ F−1(H(x)))

µ(H(x))µ(H ′)

(∫
H′
ϕ dµ−

∫
H′

osc(ϕ,B(y, εH)) dy

)
> ζ1

∫
TN
ϕ dµ− ζ2 |ϕ|α,εLY ε

α
H

> (ζ1 − ζ2ε
α
Ha)

∫
TN
ϕ dµ.
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The upper bound

E[PF (ϕ)|H](x) 6 ζ2(1 + aεαH)

∫
TN
ϕ dµ

is established in a similar fashion.
�

Lemma 3.4. For every i ∈ N we have

PFi+T−1,i
(Ca(H)) ⊂ Cσa(H).

Proof of Lemma 3.4. Write F = Fi+T−1,i. Iterating (3.1) and using (3.2), we have

|PF (ϕ)|α,εLY 6 γTLY |ϕ|α,εLY +
KLY

1− γLY
‖ϕ‖L1(µ)

6 ‖ϕ‖L1(µ)

(
γTLY a+

KLY

1− γLY

)
6 (ζ1 − ζ2ε

α
Ha)−1

(
γTLY a+

KLY

1− γLY

)
E[PF (ϕ)|H]

6 σaE[PF (ϕ)|H].

�

3.2. PFi+T−1,i
is a contraction on Ca. See e.g. [4, 26, 35, 36] for information on cones and the

Hilbert projective metric. Here we briefly introduce what we need in our context.
Define the partial order ≺ on Ca by declaring that ϕ ≺ ψ if ψ − ϕ ∈ Ca. The Hilbert metric Θ is

defined on Ca by

Θ(ϕ, ψ) = log

(
inf {s > 0 : ψ ≺ sϕ}
sup {r > 0 : rϕ ≺ ψ}

)
.

Theorem 3.5 ([4]). Let i ∈ N. Define

∆i = sup
ϕ∗,ψ∗∈PFi+T−1,i

(Ca)

Θ(ϕ∗, ψ∗).

For every ϕ, ψ ∈ Ca, we have

Θ(PFi+T−1,i
(ϕ),PFi+T−1,i

(ψ)) 6 tanh

(
∆i

4

)
Θ(ϕ, ψ).

Here tanh(∞) = 1.

The following lemma provides an upper bound on the diameter of PFi+T−1,i
(Ca) in Ca that is

uniform in i.

Lemma 3.6. For every i ∈ N and all ϕ, ψ ∈ Ca, we have

(3.3) Θ(PFi+T−1,i
(ϕ),PFi+T−1,i

(ψ)) 6 ∆ := 2 log

(
1 + σ

1− σ

)
+ 2 log

(
ζ2(1 + aεαH)

ζ1 − ζ2εαHa

)
Proof of Lemma 3.6. Let ϕ∗, ψ∗ ∈ Cσa. Let r and s be such that

rϕ∗ ≺ ψ∗ ≺ sϕ∗.

Looking at ψ∗ − rϕ∗, we have

|ψ∗ − rϕ∗|α,εLY 6 |ψ
∗|α,εLY + r |ϕ∗|α,εLY

6 σaE[ψ∗|H] + rσaE[ϕ∗|H].
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Therefore ψ∗ − rϕ∗ ∈ Ca if

σaE[ψ∗|H] + rσaE[ϕ∗|H] 6 aE[ψ∗ − rϕ∗|H],

or equivalently,

(3.4) r 6

(
1− σ
1 + σ

)
E[ψ∗|H]

E[ϕ∗|H]
.

Arguing analogously, sϕ∗ − ψ∗ ∈ Ca if

(3.5)

(
1 + σ

1− σ

)
E[ψ∗|H]

E[ϕ∗|H]
6 s.

Bounds (3.4) and (3.5) imply

Θ(ϕ∗, ψ∗) 6 log

((
1 + σ

1− σ

)
Esup

(
E[ψ∗|H]

E[ϕ∗|H]

))
− log

((
1− σ
1 + σ

)
Einf

(
E[ψ∗|H]

E[ϕ∗|H]

))
= 2 log

(
1 + σ

1− σ

)
+ log

(∥∥∥∥E[ψ∗|H]

E[ϕ∗|H]

∥∥∥∥
L∞

∥∥∥∥E[ϕ∗|H]

E[ψ∗|H]

∥∥∥∥
L∞

)
.(3.6)

Now let ϕ, ψ ∈ Ca. Write Fi+T−1,i = F . Using Lemma 3.4, estimate (3.6), and Lemma 3.3, we have

Θ(PF (ϕ),PF (ψ)) 6 ∆ := 2 log

(
1 + σ

1− σ

)
+ 2 log

(
ζ2(1 + aεαH)

ζ1 − ζ2εαHa

)
.

�

Since the diameter of PFi+T−1,i
(Ca) is finite, Theorem 3.5 implies that PFi+T−1,i

is a contraction
on Ca.
Proposition 3.7. For every i ∈ N and all ϕ, ψ ∈ Ca, we have

(3.7) Θ(PFi+T−1,i
(ϕ),PFi+T−1,i

(ψ)) 6 tanh

(
∆

4

)
Θ(ϕ, ψ).

3.3. Comparing the OSCα distance to the Θ distance.

Lemma 3.8. For every m ∈ N and all ϕ, ψ ∈ D ∩ Ca, we have

(3.8) ‖PFmT (ψ)− PFmT (ϕ)‖α,εLY 6 (a(1 + εαH) + (2 + a)) Θ(PFmT (ψ),PFmT (ϕ)).

Proof of Lemma 3.8. Write F = FmT . Suppose r, s > 0 are such that r 6 1 6 s and

rPF (ϕ) ≺ PF (ψ) ≺ sPF (ϕ).

Estimating the L1 norm of PF (ψ)− PF (ϕ), we have

‖PF (ψ)− PF (ϕ)‖L1(µ) =

∫
TN
|PF (ψ)− (r + (1− r))PF (ϕ)| dµ

6
∫
TN
|PF (ψ)− rPF (ϕ)| dµ+ (1− r)

6 |PF (ψ)− rPF (ϕ)|α,εLY ε
α
H +

∫
TN
PF (ψ)− rPF (ϕ) dµ+ (1− r)

= |PF (ψ)− rPF (ϕ)|α,εLY ε
α
H + 2(1− r).(3.9)

Estimating the oscillation seminorm of PF (ψ)− PF (ϕ), we have

(3.10) |PF (ψ)− PF (ϕ)|α,εLY 6 |PF (ψ)− rPF (ϕ)|α,εLY + (1− r) |PF (ϕ)|α,εLY .
Estimates (3.9) and (3.10) imply

‖PF (ψ)− PF (ϕ)‖α,εLY 6 a(1 + εαH)E[PF (ψ)− rPF (ϕ)|H] + (1− r)(2 + aE[PF (ϕ)|H]).
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Integrating gives

‖PF (ψ)− PF (ϕ)‖α,εLY 6 (1− r)(a(1 + εαH) + (2 + a)).

Finally, since 1− r 6 − log(r) 6 log(s/r) for s > 1, we conclude that

‖PF (ψ)− PF (ϕ)‖α,εLY 6 (a(1 + εαH) + (2 + a)) Θ(PF (ψ),PF (ϕ)).

�

3.4. Completion of the proof of Theorem 2.16. Let ϕ, ψ ∈ D ∩ Ca. Let m ∈ N. Write
m = kT + i, where k ∈ Z+ and 0 6 i < T . Using (3.1), Lemma 3.8, and Proposition 3.7, we have

‖PFm(ϕ)− PFm(ψ)‖α,εLY

6

(
1 +

KLY

1− γLY

)
‖PFkT (ϕ)− PFkT (ψ)‖α,εLY

6

(
1 +

KLY

1− γLY

)
(a(1 + εαH) + (2 + a)) Θ(PFkT (ϕ),PFkT (ψ))

6

(
1 +

KLY

1− γLY

)
(a(1 + εαH) + (2 + a)) ·max {∆, 1} · tanh−2

(
∆

4

)(
tanh

(
∆

4

)1/T
)m

.

For general ϕ, ψ ∈ D, choose ηϕ,ψ > 0 sufficiently large so that

ϕ+ ηϕ,ψ
1 + ηϕ,ψ

∈ D ∩ Ca,
ψ + ηϕ,ψ
1 + ηϕ,ψ

∈ D ∩ Ca.

We have established (2.6) with

Cϕ,ψ = KεLY ,ε0(1 + ηϕ,ψ)

(
1 +

KLY

1− γLY

)
(a(1 + εαH) + (2 + a)) ·max {∆, 1} · tanh−2

(
∆

4

)
Λ = tanh

(
∆

4

)1/T

.

Here the constant KεLY ,ε0 accounts for the equivalence of ‖·‖α,εLY and ‖·‖α,ε0 .

4. Proof of Proposition 3.1

This result is in Saussol [40], for a class of piecewise expanding maps in which (PE5) below
replaces (2.2). We are repeating the proof here to clarify how the constants are determined.

For reference, in Definition 4.1 we describe (using partially his notation) maps considered by
Saussol [40, §2]. In Saussol’s case the family {Ui}i can be countable and the domain of f is a
compact set Ω ⊂ RN that is equal to the closure of its interior. We rewrote the properties for maps
on TN .

Definition 4.1 (Saussol [40]). We say that f : TN → TN is an admissible piecewise expanding map
if there exist a finite collection A1 = A1(f) = {Ui : 1 6 i 6 M} of pairwise disjoint open sets,
0 < ε∗ < 1/2, s < 1, cdetH > 0 such that the following hold.

(PE1) (extension) For every 1 6 i 6M there exists an open set Vi satisfying Vi ⊃ U i such that

(a) f |Ui extends to a map f(i) : Vi → TN

(b) f(i)(Vi) ⊃ Bε∗(f(Ui)).

(PE2) (regularity)

(a) the map f(i) is a C1 diffeomorphism from Vi to f(i)(Vi) and
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(b) the determinant of D[f−1
(i) ] is uniformly α-Hölder in the following sense:11 for 0 < ε 6

sε∗, z ∈ Vi and x ∈ Bε(z) ∩ Vi,∣∣∣∣ 1

detDxf(i)

− 1

detDzf(i)]

∣∣∣∣ 6 cdetH
εα

| detDzf(i)|

(PE3) µ
(
TN \

⋃M
i=1 Ui

)
= 0.

(PE4) (backward contraction) For all 1 6 i 6M and x, y ∈ f(i)(Vi), we have

distTN (x, y) 6 ε∗ =⇒ distTN
(
(f(i))

−1(x), (f(i))
−1(y)

)
< s · distTN (x, y),

where distTN is the standard metric on TN .

(PE5) (cutting versus expansion) For 0 < ε 6 ε∗ introduce the following constants and assume
η(f, ε∗) is finite12

ρ(f, ε, ε∗) := sup
x∈TN

M∑
i=1

µ
((
f(i)

)−1(
Bε(∂f(Ui))

)
∩B(1−s)ε∗(x)

)
µ(B(1−s)ε∗(x))

,

η(f, ε∗) := sα + 2 sup
ε6ε∗

ρ(f, ε, ε∗)

εα
ε∗
α.

Following Saussol, we derive in Section 4.3 the following Lasota-Yorke inequality:

Theorem 4.2 (Saussol [40], Lemma 4.1). Assume f satisfies (PE1)-(PE5). Then

(4.1) |Pf (ϕ)|α,ε∗ 6 γS |ϕ|α,ε∗ +KS‖ϕ‖L1(µ),

where

γS = (1 + cdetHs
αε∗

α) η(f, ε∗),(4.2)

KS = 2cdetHs
α + 2 (1 + cdetHs

αε∗
α)

(
sup
ε6ε∗

ρ(f, ε, ε∗)

εα

)
.(4.3)

Proof. See Section 4.3. �

4.1. Proof of Proposition 3.1. We verify that maps in M∗(s,K, κ, ε0) satisfy the properties
(PE1)-(PE5) and estimate the constants. Let f ∈ M∗(s,K, κ, ε0). For εLY 6 ε0, the properties
that are not clear are (b) in (PE2) and (PE5).

Condition (PE2)(b): Since ‖Dyf(i)‖ 6 K for y ∈ Vi and ‖Df(i)‖Cα(Vi) 6 K, it follows that for
x, z ∈ Vi,

|(detDxf(i))
−1 − (detDzf(i))

−1| =
∣∣detDxf(i) − detDzf(i)

∣∣ | detDxf(i)|−1| detDzf(i)|−1

6 Cdet(N,K, s)‖Df(i)‖Cα | detDzf(i)|−1 distTN (x, z)α

where

Cdet(N,K, s) = sup

{
| detA− detB|
‖A−B‖

| A,B ∈ MatN×N(R), A 6= B, ‖A‖, ‖B‖ 6 K

}
· sup

{
| det

(
A−1

)
| | A ∈ GL(N,R), ‖A−1‖ 6 s < 1

}
<∞.

In conclusion,

(4.4) cdetH 6 Cdet(N,K, s)K.

11Saussol has this stated for |detDu[f−1
(i) ]− detDv[f

−1
(i) ]| with w ∈ f(i)(Vi), u, v ∈ Bε(w) ∩ f(i)(Vi).

12Saussol requires in addition that ηε∗(f) := supγ6ε∗ η(f, γ) < 1.
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Condition (PE5): Saussol [40, Lemma 2.1] shows that (2.2) implies ηε∗(f) < 1 if ε∗ is chosen
sufficiently small. The key estimate are equations (3) and (4) in the proof of Saussol’s Lemma 2.1.
In Lemma 4.3, proven below, we repeat this argument with a more precise statement.

Lemma 4.3. Let Γ ⊂ TN be a compact codimension-one embedded submanifold with C2-norm
bounded by K. Then

sup
x
µ(Bν(Γ) ∩Bω(x)) = 2νωN−1ξN−1(1 + oK(1)) as max{ν, ω} → 0+

where oK(1) means that this asymptotic is determined only by the value K.

To estimate ρ(f, ε, γ), because of the backward contraction, we need Lemma 4.3 with ν = sε < γ
and ω = (1− s)γ, where 0 < ε 6 γ 6 ε0:

(4.5) ρ(f, ε, γ) 6 κ
2(sε)[(1− s)γ]N−1ξN−1(1 + oK(1))

[(1− s)γ]NξN
= κ

2sεξN−1

(1− s)γξN
(1 + oK(1))

hence

sup
ε6γ

ρ(f, ε, γ)

εα
6 κ

2s

1− s
· ξN−1

ξN
· γ−α(1 + oK(1))(4.6)

with

oK(1)→ 0 as γ → 0+.

so (PE5) holds.

Proof of Proposition 3.1. We conclude that one can apply Theorem 4.2 for maps in f ∈M∗(s,K, κ, ε0)
and εLY = ε∗ 6 ε0. Bounds for cdetH, ρ(f, ·, ε∗) and η(f, ε∗) are determined by the dimension N
and s,K, κ, using (4.4), (4.5) and (4.6). We obtain

γLY 6 (1 + cdetHs
αεαLY )

(
sα + 2κ

2sξN−1

(1− s)ξN
(1 + oK(1)

)
,(4.7)

KLY 6 2cdetHs
α + 4κ (1 + cdetHs

αεαLY )
sξN−1

(1− s)ξN
ε−αLY (1 + oK(1))(4.8)

with

oK(1)→ 0 as εLY → 0+.

Then, given (2.2) and taking into account the bound (4.4) for cdetH, there exists εLY sufficiently
small, determined only by the dimension N and s,K, κ, ε0, such that γLY < 1. �

Proof of Lemma 4.3. We only sketch the idea, for more details see [40, Lemma 2.1]. Through a
chart, one can map locally Γ into a hyperplane of RN . Up to a small distortion, we have now to
intersect a ν-neighborhood of the hyperplane by a sphere of radius ω. The largest volume occurs
when the center of the sphere is on the hyperplane, and then the intersection is close to a cylinder
of height 2ν and radius ω. �

4.2. Preliminaries to the Proof of Theorem 4.2. We begin by showing that OSCα continuously
injects into L∞(µ).

Lemma 4.4. Let ϕ ∈ L1(µ). If a, b, c > 0 satisfy a+ b 6 c 6 1/2, then for all x ∈ TN , we have

Esup(ϕ,B(x, a)) 6
1

µ(B(x, b))

∫
B(x,b)

[
ϕ(y) + osc(ϕ,B(y, c))

]
dy.
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Proof of Lemma 4.4. Let x ∈ TN . For y ∈ B(x, b) we have B(x, a) ⊂ B(y, c). Consequently, we
have

Esup(ϕ,B(x, a)) 6 Esup(ϕ,B(y, c)) 6 ϕ(y) + osc(ϕ,B(y, c))

µ almost everywhere. Now average. �

Lemma 4.5 (OSCα continuously injects into L∞(µ)). For all ϕ ∈ OSCα, we have

‖ϕ‖L∞(µ) 6
max{1, ε∗α}
ξNε∗N

‖ϕ‖α,ε∗ .

Proof of Lemma 4.5. Using Lemma 4.4 with a > 0 and b = ε∗ − a gives

‖ϕ‖L∞(µ) 6
max{1, ε∗α}
ξN(ε∗ − a)N

‖ϕ‖α,ε∗ .

Now let a→ 0. �

Proposition 4.6 (Properties of osc). Let ϕ, (ϕi)
M
i=1, and ψ be elements of L∞(µ) such that ψ > 0.

Let S be a Borel subset of TN .

(O1)

osc

(
M∑
i=1

ϕi, S

)
6

M∑
i=1

osc(ϕi, S).

(O2) For all a > 0 and x ∈ TN we have

osc(ϕ1S, B(x, a)) 6 osc(ϕ, S ∩B(x, a)) · 1S\Ba(∂S)(x) + 2 · Esup(|ϕ|, B(x, a) ∩ S) · 1Ba(∂S)(x)

6 osc(ϕ, S ∩B(x, a)) · 1S(x) + 2 · Esup(|ϕ|, B(x, a) ∩ S) · 1Ba(∂S)(x).

(O3) osc(ϕψ, S) 6 osc(ϕ, S) Esup(ψ, S) + osc(ψ, S) Einf(|ϕ|, S).

Proof of Proposition 4.6. (O1) is immediate.
For (O2), we check the first inequality (the second only gives a more convenient expression). It

is easy to see that it holds whether x ∈ S \ Ba(∂S), x ∈ Ba(∂S) or x is in none of these two sets.
For the second case use that osc(ϕ, S) 6 2 Esup(|ϕ|, S).

For (O3), if ϕ is nonnegative µ almost everywhere, then

osc(ϕψ, S) 6 Esup(ϕ, S) Esup(ψ, S)− Einf(ϕ, S) Einf(ψ, S)

= Esup(ψ, S)
(

Esup(ϕ, S)− Einf(ϕ, S)
)

+ Einf(ϕ, S)
(

Esup(ψ, S)− Einf(ψ, S)
)

= Esup(ψ, S) osc(ϕ, S) + Einf(ϕ, S) osc(ψ, S).

If ϕ is nonpositive µ almost everywhere, argue similarly using osc(ϕψ, S) = osc(−ϕψ, S). Otherwise,
we have

Esup(ϕψ, S)− Einf(ϕψ, S) = Esup(ϕψ, S) + Esup(−ϕψ, S)

6 Esup(ψ, S)(Esup(ϕ, S) + Esup(−ϕ, S)) = Esup(ψ, S) osc(ϕ, S),

so (O3) is proven. �

4.3. Proof of Theorem 4.2 (Lasota-Yorke inequality). Recall that in our setting

Pf (ϕ) =
∑
i

ϕ

| detDf |
◦ (f |Ui)

−1 · 1f(Ui) a.e.
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Assume f satisfies (PE1)-(PE5), ϕ ∈ OSCα, and ε 6 ε∗. Using (O1) and (O2), for µ almost
every x ∈ TN , we have

osc(Pfϕ,B(x, ε)) 6
M∑
i=1

osc

((
ϕ

|det(Df)|
◦ (f |Ui)

−1

)
1f(Ui), B(x, ε)

)

6
M∑
i=1

osc

(
ϕ

|det(Df)|
◦ (f |Ui)

−1 , f(Ui) ∩B(x, ε)

)
1f(Ui)(x)

+ 2

(
Esup

(∣∣∣∣ ϕ

|det(Df)|
◦ (f |Ui)

−1

∣∣∣∣ , f(Ui) ∩B(x, ε)

))
1Bε(∂ f(Ui))(x)

6
M∑
i=1

osc

(
ϕ

|det(Df)|
, Ui ∩ (f |Ui)

−1 (B(x, ε))

)
1f(Ui)(x)(4.9)

+ 2

(
Esup

(
|ϕ|

|det(Df)|
, Ui ∩ (f |Ui)

−1 (B(x, ε))

))
1Bε(∂ f(Ui))(x).

We will check that the L1 norm of the right side of (4.9) is bounded by

(4.10) γS |ϕ|α,ε∗ ε
α +KS‖ϕ‖L1(µ)ε

α

with γS and KS as stated in (4.2) and (4.3).
We estimate the two components of the right side of (4.9) separately. For the first component,

define

R
(1)
i (x) := osc

(
ϕ|det(Df)|−1, Ui ∩ (f |Ui)

−1 (B(x, ε))
)
.

For x ∈ f(Ui), setting zi := (f |Ui)
−1 (x) and using (PE4), we have

R
(1)
i (x) 6 osc(ϕ|det(Df)|−1, Ui ∩B(zi, sε)).

(O3) implies that for µ almost every x ∈ TN we have13

R
(1)
i (x) 6 osc(ϕ,Ui ∩B(zi, sε)) Esup(|det(Df)|−1, Ui ∩B(zi, sε))

+ osc(|det(Df)|−1, Ui ∩B(zi, sε)) Einf(|ϕ|, Ui ∩B(zi, sε))

6 (1 + cdetH(sε)α) |det(Df(zi))|−1 osc(ϕ,Ui ∩B(zi, sε))

+ 2cdetH(sε)α|ϕ(zi)| · |det(Df(zi))|−1.

For Lebesgue almost every x ∈ TN the first component of the right side of (4.9) therefore satisfies

M∑
i=1

R
(1)
i 1f(Ui)(x) 6 (1 + cdetH(sε)α)Pf

(
osc(ϕ,B(·, sε))

)
+ 2cdetH(sε)αPf |ϕ|.

Integrating over TN and using (2.5) yields

(4.11)

∫
TN

M∑
i=1

R
(1)
i 1f(Ui) dµ 6 (1 + cdetH(sε)α) |ϕ|α,ε∗ (sε)α + 2cdetH(sε)α‖ϕ‖L1(µ).

For the second component of the right side of (4.9) we use the extensions f(i) to Vi. Define

R
(2)
i (x) = Esup

(
|ϕ|

|det(Df)|
, Ui ∩ (f |Ui)

−1 (B(x, ε))

)
· 1Bε(∂ f(Ui))(x).

13We use that Einf(|ϕ|, Ui ∩B(zi, sε)) 6 |ϕ(zi)| for a.e. x = f(zi), zi ∈ Ui.
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and let 14 zi := f−1
(i) (x) ∈ Vi for x ∈ Bε(∂ f(Ui)). Using the regularity of det(Df(i)), we have

R
(2)
i (x) 6 (1 + cdetH(sε)α) Esup (|ϕ|, B(zi, sε)) |det(Df(i)(zi))|−1 · 1Bε(∂ f(Ui))(x).

Integrating, changing variables zi = f−1
(i) (x) and using Lemma 4.4 with a = sε, b = (1 − s)ε∗, and

c = ε∗ yields

(1 + cdetH(sε)α)−1

∫
TN
R

(2)
i (x) dµ(x)

6
∫
TN

Esup(|ϕ|, B(zi, sε))|det(Df(i)(zi))|−1 · 1Bε(∂ f(Ui)(x) dµ(x)

=

∫
Vi

Esup(|ϕ|, B(zi, sε)) · 1Bε(∂ f(Ui))(f(i)(zi)) dµ(zi)

6
∫
Vi

1Bε(∂ f(Ui)(f(i)(z))×[
1

µ(B(z, (1− s)ε∗))

∫
B(z,(1−s)ε∗)

[
|ϕ(ζ)|+ osc(|ϕ|, B(ζ, ε∗))

]
dµ(ζ)

]
dµ(z)

=

∫
TN

[
|ϕ(ζ)|+ osc(|ϕ|, B(ζ, ε∗))

] [∫
Vi

1f−1
(i)

(Bε(∂f(Ui)))
(z) · 1B(ζ,(1−s)ε∗)(z)

µ(B(z, (1− s)ε∗))
dµ(z)

]
dµ(ζ)

=

∫
TN

[
|ϕ(ζ)|+ osc(|ϕ|, B(ζ, ε∗))

]
×
µ
(
f−1

(i) (Bε(∂f(Ui))) ∩B(ζ, (1− s)ε∗)
)

µ(B(ζ, (1− s)ε∗))
dµ(ζ).

We arrive at the estimate

(4.12) (1 + cdetH(sε)α)−1

∫
TN

M∑
i=1

R
(2)
i (x) dµ(x) 6 ρ(f, ε, ε∗)

(
‖ϕ‖L1(µ) + |ϕ|α,ε∗ ε∗

α
)
.

Combining estimates (4.11) and (4.12), we have∫
TN

osc(Pfϕ,B(x, ε)) dµ(x) 6 (1 + cdetHs
αεα) |ϕ|α,ε∗ s

αεα + 2cdetHs
αεα‖ϕ‖L1(µ)

+ 2 (1 + cdetHs
αεα) ρ(f, ε, ε∗)

(
‖ϕ‖L1(µ) + |ϕ|α,ε∗ ε∗

α
)
.

Then inequality (4.10) holds with

γS = (1 + cdetHs
αε∗

α)

(
sα + 2 · sup

ε6ε∗

ρ(f, ε, ε∗)

εα
ε∗
α

)
= (1 + cdetHs

αε∗
α) η(f, ε∗)

KS = 2cdetHs
α + 2 (1 + cdetHs

αε∗
α)

(
sup
ε6ε∗

ρ(f, ε, ε∗)

εα

)
as claimed. �
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