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Abstract. We introduce a notion of conditional memory loss for nonequilibrium open dynamical systems.
We prove that this type of memory loss occurs at an exponential rate for nonequilibrium open systems
generated by one-dimensional piecewise-differentiable expanding Lasota-Yorke maps. This result may be
viewed as a prototype for time-dependent dynamical systems with holes.
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1. Introduction

This paper studies memory loss in nonequilibrium open dynamical systems. By nonequilibrium we mean
that the dynamical model itself may vary with time. By open we mean that the phase space contains holes
through which trajectories may escape. Memory loss in this setting is an analog of decay of correlations.

The memory loss problem has been studied extensively in the contexts of stochastic differential equa-
tions (SDEs), random dynamical systems1, and autonomous (time-independent) deterministic dynamical
systems. An SDE of the form

dxt = a(xt) dt+

n∑
i=1

bi(xt) ◦ dW i
t

gives rise to a stochastic flow of diffeomorphisms in which almost every Brownian path defines a time-
dependent flow (see e.g. [9]). Lyapunov exponents for such flows are known to be well-defined, nonrandom
(they do not depend on the realization of the noise), and constant almost everywhere in phase space if
the system is ergodic. Ergodic systems for which the greatest Lyapunov exponent λmax is negative exhibit
a phenomenon known as random sinks. Under suitable conditions, any ensemble of initial conditions will
coalesce near a unique equilibrium point that evolves in time [10]. This phenomenon occurs in dissipative
systems such as the Navier-Stokes system (see e.g. [14, 15]) and in certain coupled oscillator networks
modeling neuronal activity [12]. Memory loss also occurs when λmax > 0 if one thinks in terms of measures,
for in this case initial distributions will track random SRB measures (see [11]). For further information
about random dynamical systems, see e.g. [1, 2].
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We now introduce nonequilibrium open dynamical systems. Let X be a Riemannian manifold and let
λ denote Riemannian volume (Lebesgue measure) on X. Consider a sequence of maps (f̂i : X → X)∞i=1.

For m ∈ N, define F̂m = f̂m ◦ · · · ◦ f̂1. We call the sequence (F̂m)∞m=1 a nonequilibrium closed dynamical

system. Unlike the random dynamical systems setting, we do not assume that the f̂i are drawn from a
known distribution. Our setting is meant to model scenarios such as dynamical processes with time-varying
parameters or dynamics in time-varying environments.

An open system is produced by introducing holes. For j ∈ N, let Hj ⊂ X. We call Hj the hole at time

j. Informally, we create an open system from (F̂m)∞m=1 by tracking trajectories until they fall into a hole.
Once a trajectory falls into a hole, it is deemed to have escaped. Formally, for m ∈ N define the time-m
survivor set Sm by

Sm = X \
m⋃
i=1

(F̂i)
−1(Hi).

Let Fm denote the restriction F̂m|Sm; that is, Fm is defined on points with trajectories that have not fallen
into a hole after m iterates. We call the pair ((Fm), (Hj)) a nonequilibrium open dynamical system.

We define a notion of memory loss for nonequilibrium open systems that is both statistical and condi-
tional in nature. Let ϕ0 and ψ0 be two initial probability densities defined on X. Let ϕt and ψt denote
the evolved densities under the action of the nonequilibrium open system. Since mass is allowed to es-
cape through the holes, ϕt and ψt will not be probability densities in general: we expect ‖ϕt‖L1(λ) < 1

and ‖ψt‖L1(λ) < 1. We say that a nonequilibrium open system exhibits conditional memory loss in the

statistical sense if for all initial densities ϕ0 and ψ0 chosen from a suitable class, we have

lim
t→∞

∥∥∥∥∥ ϕt
‖ϕt‖L1(λ)

− ψt
‖ψt‖L1(λ)

∥∥∥∥∥
L1(λ)

= 0.

Ideally one explicitly estimates the rate of convergence as well.
In this paper we establish conditional memory loss in the statistical sense for a class of nonequilibrium

open systems generated by one-dimensional piecewise-differentiable expanding Lasota-Yorke maps. We
work in this setting because it is simple enough to allow for a clear development of ideas yet complicated
enough in that it has some of the features of more realistic settings. Using convex cones and a projective
metric known as the Hilbert metric, we show that memory loss occurs at an exponential rate and we
explicitly estimate this rate.

Our work is a synthesis of two areas: nonequilibrium closed systems (no holes, dynamical model changes
in time) and equilibrium open systems (fixed hole, iterates of a single map). Memory loss for nonequilib-
rium closed systems has been established for expanding maps and 1D piecewise-differentiable expanding
maps [16], a class of piecewise-differentiable expanding maps in higher dimension studied by Saussol [8],
topologically transitive Anosov diffeomorphisms on compact two-dimensional Riemannian manifolds [17],
and certain dispersing billiards with moving scatterers [18]. When studying equilibrium open systems,
one is often interested in conditionally invariant measures, escape rates, and related statistical properties.
See [7] for an overview of this area and e.g. [4, 5, 6] for analyses of specific models.

We conclude the introduction with a comment about techniques. When studying memory loss or the
related problem of decay to equilibrium/decay of correlations, one may employ a number of techniques,
including spectral methods, coupling methods, and the use of convex cones and the Hilbert metric. We
believe the latter two are especially useful in nonequilibrium contexts.

2. Setting and statement of results

2.1. Underlying closed dynamical systems. Let [0, 1] be the phase space on which our dynamical
processes act. Let λ denote Lebesgue measure on [0, 1].

Definition 2.1. For s < 1, let M(s,K2) denote the set of maps ĝ : [0, 1]→ [0, 1] that satisfy the following
hypotheses:

(a) there exists a finite partition A(ĝ) of [0, 1] into subintervals such that for each J ∈ A(ĝ), ĝ is C2 on
J and extends to a C2 function on J ;
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(b) maxJ∈A(ĝ) supx∈J |ĝ′(x)|−1 6 s;

(c) maxJ∈A(ĝ) supx∈J |ĝ′′(x)| 6 K2.

We now define δ-perturbations within M(s,K2). Let ĝ ∈M(s,K2). Let Ω(ĝ) = {0 = x1, . . . , xk = 1} be
the set of partition points associated with A(ĝ) and define dΩ(ĝ) = min16i6k−1 xi+1 − xi.

Definition 2.2. We say that f̂ ∈M(s,K2) is a δ-perturbation of ĝ ∈M(s,K2) if

(a) δ < 1
4dΩ(ĝ);

(b) Ω(f̂) = {0 = y1, . . . , yk = 1} where |yi − xi| < δ for every 1 6 i 6 k;

(c) if ξf̂ ĝ maps each interval [xi, xi+1] affinely onto [yi, yi+1], then on every J ∈ A(ĝ), we have∥∥∥f̂ ◦ ξf̂ ĝ − ĝ∥∥∥C2(J)
< δ.

Let N(ĝ, δ; s,K2) denote the set of δ-perturbations of ĝ.

Remark 2.3. The set {
N(ĝ, δ; s,K2) : ĝ ∈M(s,K2), δ <

1

4
dΩ(ĝ)

}
is a basis for a topology on M(s,K2).

Iterates of a single map ĝ ∈ M(s,K2) do not necessarily exhibit memory loss. Indeed, memory loss is
equivalent to measure-theoretic mixing in this context, and a single map ĝ ∈ M(s,K2) may not even be
ergodic. For this reason, we consider suitable subsets of M(s,K2).

Definition 2.4 (class E). Let ζ1 ∈ (0, 1) and ζ2 ∈ (1,∞). We say that ĝ : [0, 1]→ [0, 1] belongs to E(ζ1, ζ2)
if the following hold.

(a) For every partition Q of [0, 1] into subintervals of equal length, there exists a time E(Q, ζ1, ζ2) such
that for every J1, J2 ∈ Q, we have

(1) ζ1 <
λ(J1 ∩ ĝ−i(J2))

λ(J1)λ(J2)
< ζ2

for every i > E(Q, ζ1, ζ2).

(b) For every xj ∈ Ω(ĝ) and every i ∈ N, we have

dist

(
lim
z→x−j

ĝi(z),Ω(ĝ) \ {0, 1}

)
> 0, dist

(
lim
z→x+j

ĝi(z),Ω(ĝ) \ {0, 1}

)
> 0.

For xj = 0 (xj = 1), only the limit from the right (left) is considered.

Definition 2.4(a) is a mixing condition; notice that Q is not the dynamical partition for ĝ in general.
We use the boundary control asserted in Definition 2.4(b) to obtain uniform Lasota-Yorke estimates (see
Proposition 3.1).

2.2. Nonequilibrium open dynamical systems and the main result. Start with a ‘base map’ ĝ ∈
M(s,K2). Let δ > 0 be small and consider a sequence of maps (f̂i)

∞
i=1 in N(ĝ, δ; s,K2). For m ∈ N, let

F̂m = f̂m ◦ · · · ◦ f̂1. We call the sequence (F̂m)∞m=1 a nonequilibrium closed dynamical system.
We now introduce holes. For j ∈ N, let Hj ⊂ [0, 1] denote the hole at time j. We assume that Hj

consists of at most L pairwise-disjoint open subintervals Hj,k of [0, 1]. For m ∈ N, define

Sm = [0, 1] \
m⋃
i=1

(F̂i)
−1(Hi).

We call Sm the time-m survivor set. Let Fm denote the restriction F̂m|Sm. We call the pair ((Fm), (Hj))
a nonequilibrium open dynamical system.
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2.2.1. Densities and transfer operators. Let BV([0, 1],R) denote the space of real-valued functions of
bounded variation on [0, 1]. Let Var(·) denote the variation seminorm on BV([0, 1],R); for ϕ ∈ BV([0, 1],R),
we have

Var(ϕ) = sup
0=x0<···<xn=1

n∑
i=1

|ϕ(xi)− ϕ(xi−1)| ,

or equivalently,

Var(ϕ) = sup
ψ∈C1(I)
‖ψ‖∞61

ψ(0)=ψ(1)=0

∫ 1

0
ϕψ′ dλ.

The evolution of probability densities in BV([0, 1],R) under the action of a nonequilibrium open dynam-
ical system ((Fm), (Hj)) is described by the family (LFm) of transfer operators defined by

LFm(ϕ)(x) =
∑

z:Fm(z)=x

ϕ(z)

|F ′m(z)|

(LFm(ϕ)(x) = 0 if F−1
m (x) = ∅). Of course, we expect to see ‖LFm(ϕ)‖L1(λ) < ‖ϕ‖L1(λ) in general, since

mass will escape through the holes. We define operators RFm by renormalizing:

RFm(ϕ) =
LFm(ϕ)

‖LFm(ϕ)‖L1(λ)

.

Notice that RFm is not linear. We are interested in the action of the sequence (RFm) on the space

D =
{
ϕ ∈ BV([0, 1],R) : ϕ > 0, ‖ϕ‖L1(λ) = 1

}
.

2.2.2. Main theorem.

Theorem 2.5. Let ĝ ∈M(s,K2)∩E(ζ1, ζ2) and let L ∈ N. There exist δ0 > 0, ε0 > 0, and Λ < 1 such that

the following holds. Let (f̂i)
∞
i=1 be any sequence of maps in N(ĝ, δ0; s,K2) and let (Hj)

∞
j=1 be any sequence

of holes such that Hj consists of at most L pairwise-disjoint open intervals and λ(Hj) 6 ε0 for every j ∈ N.
The resultant nonequilibrium open dynamical system ((Fm), (Hj)) exhibits conditional memory loss in the
following sense. There exists a convex cone Ca ⊂ BV([0, 1],R) and a constant C1 > 0 such that for every
ϕ,ψ ∈ D ∩ Ca, we have

(2) ‖RFm(ϕ)−RFm(ψ)‖L1(λ) 6 C1Λm

for all m ∈ N.

Remark 2.6. See Section 3.2 and (14) for the definition of Ca.

Remark 2.7. When proving Theorem 2.5, we use Definition 2.4(a) with respect to ĝ for a suitably fine
equipartition Q and (1) and Definition 2.4(b) with respect to ĝ up to a suitably large time T > E(Q, ζ1, ζ2; ĝ)
(see Section 3.2 on parameter selection.) In particular, given ĝ ∈M(s,K2), a finite amount of information
is needed to determine if Theorem 2.5 applies.

3. Proof of Theorem 2.5

3.1. A Lasota-Yorke inequality. We begin by stating a Lasota-Yorke inequality for the open systems
we consider. The following estimate essentially appears in [13] (see [19] for a variant). We include the
proof for the sake of completeness.

We introduce several useful partitions of [0, 1]. Let Z
(n)
1 = Z

(n)
1 (f̂1, . . . , f̂n) denote the dynamical partition

for F̂n. Let Z
(n)
2 be the coarsest refinement of Z

(n)
1 such that every element of Z

(n)
1 is divided into subintervals

of equal length and we have λ(J) 6 1/K2ns for every J ∈ Z
(n)
2 . For J ∈ Z

(n)
2 , we have

(3) Var(|F̂ ′n|−1, J) =

∫
J

∣∣∣∣∣ F̂ ′′n (x)

(F̂ ′n(x))2

∣∣∣∣∣dx 6 K2ns
n+1λ(J) 6 sn.
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Let Z
(n)
3 be the coarsest refinement of Z

(n)
2 such that for every J ∈ Z

(n)
3 , we have J ⊂ Sn or J ∩ Sn = ∅.

Proposition 3.1. Consider the space of maps M(s,K2) and let (Hj)
∞
j=1 be any sequence of holes such that

Hj consists of at most L pairwise-disjoint open intervals for every j ∈ N. Let θ ∈ (s, 1) and let N1 ∈ N be
such that

(4) θN1 > 6sN1(LN1 + 1).

For every sequence (f̂i)
∞
i=1 in M(s,K2), every k ∈ N, and every nonnegative ϕ ∈ BV([0, 1],R), we have

(5) Var
(
LFkN1

(ϕ), [0, 1]
)
6 θkN1 Var(ϕ, [0, 1]) +

(
(1− θN1)−1 · 5sN1(LN1 + 1) sup

Z̃∈Z(N1)
2

λ(Z̃)−1

)
‖ϕ‖L1(λ) .

Proof of Proposition 3.1. Computing LFn(ϕ), we have

LFn(ϕ) =
∑

Z∈Z(n)
3

Z⊂Sn

LFn(ϕ1Z)

=
∑

Z∈Z(n)
3

Z⊂Sn

(ϕ1Z · |F ′n|−1) ◦ (Fn|Z)−1.

Therefore

(6) Var(LFn(ϕ), [0, 1]) 6
∑

Z∈Z(n)
3

Z⊂Sn

Var
(
(ϕ1Z · |F ′n|−1) ◦ (Fn|Z)−1, [0, 1]

)
.

We estimate each term in the sum on the right side of (6). For Z ⊂ Z
(n)
3 such that Z ⊂ Sn, let Z̃ ∈ Z

(n)
2

be such that Z ⊂ Z̃. For any such Z, we have

Var
(
(ϕ1Z · |F ′n|−1) ◦ (Fn|Z)−1, [0, 1]

)
6 Var

(
ϕ|F ′n|−1, Z̃

)
+ 2 sup

Z̃

ϕ|F ′n|−1

6 3 Var
(
ϕ|F ′n|−1, Z̃

)
+ 2 inf

Z̃
ϕ|F ′n|−1

6 3

[
sn Var(ϕ, Z̃) + (sup

Z̃

ϕ) Var
(
|F ′n|−1, Z̃

)]
+ 2 inf

Z̃
ϕ|F ′n|−1

6 3

[
sn Var(ϕ, Z̃) + sn(sup

Z̃

ϕ)

]
+ 2sn inf

Z̃
ϕ

6 6sn Var(ϕ, Z̃) + 5sn inf
Z̃
ϕ.(7)

Next observe that for every Z̃ ∈ Z
(n)
2 we have

(8) #
{
Z ∈ Z

(n)
3 : Z ⊂ Sn and Z ⊂ Z̃

}
6 Ln+ 1

since F̂−1
i (F̂i(Z̃)∩Hi) consists of at most L intervals for every 1 6 i 6 n. Estimates (6), (7), and (8) imply

(9) Var(LFn(ϕ), [0, 1]) 6 (Ln+ 1)

(
6sn Var(ϕ, [0, 1]) + 5sn( sup

Z̃∈Z(n)
2

λ(Z̃)−1) ‖ϕ‖L1(λ)

)
.

We choose N1 ∈ N such that
θN1 > 6sN1(LN1 + 1)

(see (4)), yielding

(10) Var(LFN1
(ϕ), [0, 1]) 6 θN1 Var(ϕ, [0, 1]) + 5sN1(LN1 + 1)( sup

Z̃∈Z(N1)
2

λ(Z̃)−1) ‖ϕ‖L1(λ) .

We obtain the Lasota-Yorke estimate (5) by iterating (10). �
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3.2. Parameter selection. We prove Theorem 2.5 by studying the action of {LFm} on a suitable convex
cone Ca of functions inside BV([0, 1],R). We choose Q (recall Definition 2.4(a)) and introduce σ, T , and a
such that (P1)–(P3) are simultaneously satisfied. We then choose δ0 and ε0.

(P1) 0 < σ < 1

(P2) T ∈ N: choose such that T is a positive integer multiple of N1, T > E(Q, ζ1, ζ2), and θT < 1. In
view of (5), define

CLY = 2(1− θN1)−1 · 5sN1(LN1 + 1) sup
Z̃∈Z(N1)

2 (ĝ,...,ĝ)

λ(Z̃)−1.

(P3) a > 0: the aperture of the cone Ca. We choose a such that

ζ1 − ζ2a · diam(Q) > 0,

aθT + CLY

ζ1 − ζ2a · diam(Q)
6 σa.

To see that (P1)–(P3) may be satisfied simultaneously, proceed in the following order:

(a) Choose T sufficiently large so that θT /(ζ1/2) < σ.

(b) Choose a sufficiently large so that

aθT + CLY

ζ1/2
6 σa.

(c) Choose diam(Q) sufficiently small so that ζ2a · diam(Q) 6 ζ1/2.

(d) Increase T (if necessary) so that T > E(Q, ζ1, ζ2).

We now choose δ0 and ε0. First, let δ0 be sufficiently small so that

(11) (1− θN1)−1 · 5sN1(LN1 + 1) sup
f̂1,...,f̂N1

∈N(ĝ,δ0;s,K2)

sup
Z̃∈Z(N1)

2

λ(Z̃)−1 6 CLY,

and for every sequence (f̂k)
T
k=1 in N(ĝ, δ0; s,K2) we have

(12) ζ1 <
λ
(
J1 ∩ (F̂T )−1(J2)

)
λ(J1)λ(J2)

< ζ2

for all J1, J2 ∈ Q. Here (11) is valid for δ0 sufficiently small because ĝ satisfies Definition 2.4(b) and (12)
holds for δ0 sufficiently small because for every J1, J2 ∈ Q and for every η > 0, there exists δ > 0 such that∣∣∣∣∣λ

(
J1 ∩ (F̂T )−1(J2)

)
λ(J1)λ(J2)

− λ(J1 ∩ ĝ−T (J2))

λ(J1)λ(J2)

∣∣∣∣∣ < η

for every (f̂k)
T
k=1 in N(ĝ, δ0; s,K2). Second, let ε0 be sufficiently small so that for every sequence (f̂k)

T
k=1

in N(ĝ, δ0; s,K2) we have

(13) ζ1 <
λ
(
J1 ∩ (FT )−1(J2)

)
λ(J1)λ(J2)

< ζ2

for all J1, J2 ∈ Q. This can be done because for every J1, J2 ∈ Q and for every η > 0, there exists ε > 0 such
that for every sequence of holes (Hj)

T
j=1 with complexity bound L and with λ(Hj) 6 ε for all 1 6 j 6 T ,

we have ∣∣∣∣∣λ
(
J1 ∩ (F̂T )−1(J2)

)
λ(J1)λ(J2)

−
λ
(
J1 ∩ (FT )−1(J2)

)
λ(J1)λ(J2)

∣∣∣∣∣ < η

for every (f̂k)
T
k=1 in N(ĝ, δ0; s,K2).
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3.3. Invariance of a suitable convex cone. Define

(14) Ca =
{
ϕ ∈ L1(λ) : ϕ > 0, ϕ 6≡ 0, Var(ϕ) 6 aE[ϕ|Q]

}
.

We study the action of LFm on Ca. For positive integers m > i, define

F̂m,i = f̂m ◦ f̂m−1 ◦ · · · ◦ f̂i, Fm,i = fm ◦ fm−1 ◦ · · · ◦ fi,

where fk is the open system corresponding to f̂k (i 6 k 6 m).

Lemma 3.2. Let δ0 and ε0 be as in Section 3.2. For every ϕ ∈ Ca and i ∈ N we have

(15) (ζ1 − ζ2a · diam(Q))

∫
[0,1]

ϕdλ 6 E[LFi+T−1,i
(ϕ)|Q] 6 ζ2(1 + a · diam(Q))

∫
[0,1]

ϕdλ.

Proof of Lemma 3.2. Write F = Fi+T−1,i. For x ∈ [0, 1], let Q(x) denote the element of Q that contains x.
We have

(16)

E[LF (ϕ)|Q](x) =
1

λ(Q(x))

∫
Q(x)
LF (ϕ) dλ

=
1

λ(Q(x))

∫
F−1(Q(x))

ϕdλ

=
1

λ(Q(x))

∑
Q′∈Q

∫
Q′∩F−1(Q(x))

ϕ(z) dλ(z).

Bounding ϕ from below, for every z ∈ Q′ ∩ F−1(Q(x)) we have

(17)

ϕ(z) > inf
y∈Q′

ϕ(y)

> sup
y∈Q′

ϕ(y)−Var(ϕ,Q′)

>
1

λ(Q′)

∫
Q′
ϕdλ−Var(ϕ,Q′)

=
1

λ(Q′)

(∫
Q′
ϕdλ− λ(Q′) Var(ϕ,Q′)

)
.

Using (16), (17), and (13), we have

(18)

E[LF (ϕ)|Q](x) >
1

λ(Q(x))

∑
Q′∈Q

∫
Q′∩F−1(Q(x))

1

λ(Q′)

(∫
Q′
ϕdλ− λ(Q′) Var(ϕ,Q′)

)
dλ(z)

=
∑
Q′∈Q

λ(Q′ ∩ F−1(Q(x)))

λ(Q(x))λ(Q′)

(∫
Q′
ϕdλ− λ(Q′) Var(ϕ,Q′)

)
> ζ1

∫
[0,1]

ϕdλ− ζ2 · diam(Q) ·Var(ϕ, [0, 1])

> ζ1

∫
[0,1]

ϕdλ− ζ2a · diam(Q) ·
∫

[0,1]
ϕdλ

= (ζ1 − ζ2a · diam(Q))

∫
[0,1]

ϕdλ.

The upper bound

E[LF (ϕ)|Q](x) 6 ζ2(1 + a · diam(Q))

∫
[0,1]

ϕdλ

follows from an analogous line of reasoning. �

Proposition 3.3. In the setting of Lemma 3.2, for every i ∈ N we have

LFi+T−1,i
(Ca) ⊂ Cσa.
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Proof of Proposition 3.3. Write F = Fi+T−1,i and let ϕ ∈ Ca. Using (5) and (15), we have

Var(LF (ϕ), [0, 1]) 6 θT Var(ϕ, [0, 1]) + CLY ‖ϕ‖L1(λ)

6 (aθT + CLY) ‖ϕ‖L1(λ)

6
aθT + CLY

ζ1 − ζ2a · diam(Q)
E[LF (ϕ)|Q]

6 σaE[LF (ϕ)|Q].

�

3.4. Cones, Hilbert metrics, and positive operators. Following [13], we review a theory of cones
developed by Birkhoff [3]. We will use this theory to show that LFi+T−1,i

is a contraction with respect to
a projective metric known as the Hilbert metric.

Definition 3.4. Let V be a vector space. A convex cone is a subset C ⊂ V with the following properties.

(a) C ∩ −C = ∅
(b) γC = C for all γ > 0

(c) C is a convex set

(d) For all ϕ,ψ ∈ C, every c ∈ R, and every sequence (cn) in R such that cn → c, if ϕ− cnψ ∈ C for all
n, then ϕ− cψ ∈ C ∪ {0}.

Definition 3.5. Let C be a convex cone. The Hilbert metric dC is defined on C by

dC(ϕ,ψ) = log

(
inf {c > 0 : cϕ− ψ ∈ C}
sup {r > 0 : ψ − rϕ ∈ C}

)
.

The following result asserts that in the current context, a positive linear operator is a contraction in the
Hilbert metric provided the diameter of the image is finite.

Theorem 3.6 ([3]). Let V1 and V2 be vector spaces containing convex cones C1 and C2, respectively. Let
L : V1 → V2 be a positive linear operator, meaning L(C1) ⊂ C2. Define

∆ = sup
ϕ∗,ψ∗∈L(C1)

dC2(ϕ∗, ψ∗).

Then for all ϕ,ψ ∈ C1, we have

dC2(Lϕ,Lψ) 6 tanh

(
∆

4

)
dC1(ϕ,ψ).

We conclude this review by relating the Hilbert metric to adapted norms on V.

Proposition 3.7. Let C ⊂ V be a convex cone and let ‖·‖ be an adapted norm on V; that is, a norm such
that for all ϕ,ψ ∈ V, if ψ − ϕ ∈ C and ψ + ϕ ∈ C, then ‖ψ‖ 6 ‖ϕ‖. Then for all ϕ,ψ ∈ C, we have

‖ϕ‖ = ‖ψ‖ =⇒ ‖ϕ− ψ‖ 6
(
edC(ϕ,ψ) − 1

)
‖ϕ‖ .

3.5. Completion of the proof of Theorem 2.5.

Proposition 3.8. Assume the setting of Proposition 3.3. For every i ∈ N and for all ϕ,ψ ∈ Ca, we have

(19) dCa(LFi+T−1,i
(ϕ),LFi+T−1,i

(ψ)) 6 ∆0 := 2 log

(
1 + σ

1− σ

)
+ 2 log

(
ζ2(1 + a · diam(Q))

ζ1 − ζ2a · diam(Q)

)
.

Proof of Proposition 3.8. Let ϕ∗, ψ∗ ∈ Cσa. Suppose c > 0. We have

Var(cϕ∗ − ψ∗, [0, 1]) 6 cVar(ϕ∗, [0, 1]) + Var(ψ∗, [0, 1])

6 cσaE[ϕ∗|Q] + σaE[ψ∗|Q].

Therefore cϕ∗ − ψ∗ ∈ Ca if

cσaE[ϕ∗|Q] + σaE[ψ∗|Q] 6 aE[cϕ∗ − ψ∗|Q].



MEMORY LOSS FOR NONEQUILIBRIUM OPEN DYNAMICAL SYSTEMS 9

This is equivalent to

(20)

(
1 + σ

1− σ

)(
E[ψ∗|Q]

E[ϕ∗|Q]

)
6 c.

Arguing analogously, for r > 0 we have ψ∗ − rϕ∗ ∈ Ca if

(21) r 6

(
1− σ
1 + σ

)(
E[ψ∗|Q]

E[ϕ∗|Q]

)
.

Bounds (20) and (21) imply

dCa(ϕ∗, ψ∗) 6 log

((
1 + σ

1− σ

)
sup
x∈[0,1]

E[ψ∗|Q]

E[ϕ∗|Q]

)
− log

((
1− σ
1 + σ

)
inf

x∈[0,1]

E[ψ∗|Q]

E[ϕ∗|Q]

)

6 2 log

(
1 + σ

1− σ

)
+ log

(
sup
x∈[0,1]

E[ψ∗|Q]

E[ϕ∗|Q]

)
− log

(
inf

x∈[0,1]

E[ψ∗|Q]

E[ϕ∗|Q]

)
.(22)

Proposition 3.3 and estimates (15) and (22) imply (19) with

∆0 = 2 log

(
1 + σ

1− σ

)
+ 2 log

(
ζ2(1 + a · diam(Q))

ζ1 − ζ2a · diam(Q)

)
.

�

Corollary 3.9 (corollary of Proposition 3.8). Assume the setting of Proposition 3.8. For every i ∈ N and
for all ϕ,ψ ∈ Ca, we have

(23) dCa(LFi+T−1,i
(ϕ),LFi+T−1,i

(ψ)) 6 tanh

(
∆0

4

)
dCa(ϕ,ψ).

Proof of Corollary 3.9. The result follows directly from Theorem 3.6 and Proposition 3.8. �

We are nearly in position to derive (2). One additional ingredient is needed: a Lipschitz estimate
involving R.

Lemma 3.10. Assume the setting of Corollary 3.9. There exists CLip > 0 such that for all integers n
satisfying 1 6 n < T , for every i ∈ N, and for all ϕ,ψ ∈ D ∩ Ca, we have

(24)
∥∥RFi+n−1,i(ϕ)−RFi+n−1,i(ψ)

∥∥
L1(λ)

6 CLip ‖ϕ− ψ‖L1(λ) .

Proof of Lemma 3.10. Write F = Fi+n−1,i and ‖·‖ = ‖·‖L1(λ). Let ϕ,ψ ∈ D ∩ Ca. We have

‖RF (ϕ)−RF (ψ)‖ =

∥∥∥∥ LF (ϕ)

‖LF (ϕ)‖
− LF (ψ)

‖LF (ψ)‖

∥∥∥∥
=

∥∥∥∥ LF (ϕ)

‖LF (ϕ)‖
− LF (ϕ)

‖LF (ψ)‖
+
LF (ϕ)

‖LF (ψ)‖
− LF (ψ)

‖LF (ψ)‖

∥∥∥∥
6

∣∣ ‖LF (ψ)‖ − ‖LF (ϕ)‖
∣∣

‖LF (ϕ)‖ · ‖LF (ψ)‖
‖LF (ϕ)‖+

1

‖LF (ψ)‖
‖LF (ϕ)− LF (ψ)‖

6 2(ζ1 − ζ2a · diam(Q))−1 ‖LF (ϕ)− LF (ψ)‖
6 2(ζ1 − ζ2a · diam(Q))−1 ‖ϕ− ψ‖

using (15) and the fact that ‖LF (γ)‖ 6 ‖γ‖ for every γ ∈ BV([0, 1],R). Set

CLip = 2(ζ1 − ζ2a · diam(Q))−1.

�
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We now derive (2). Write ‖·‖1 for the L1 norm. Let ϕ,ψ ∈ D ∩ Ca. Let m ∈ Z+ and write m = kT + n
where k ∈ Z+ and 0 6 n < T . If k > 1, we have

‖RFm(ϕ)−RFm(ψ)‖1 6 CLip ‖RFkT
(ϕ)−RFkT

(ψ)‖1 (24)

6 CLip (exp (dCa(RFkT
(ϕ),RFkT

(ψ)))− 1) (P3.7)

= CLip (exp (dCa(LFkT
(ϕ),LFkT

(ψ)))− 1) (projectivity)

6 CLip

(
exp

((
tanh

(
∆0

4

))k−1

dCa(LFT
(ϕ),LFT

(ψ))

)
− 1

)
(23)

6 CLip∆0e
∆0

(
tanh

(
∆0

4

))k−1

(19)

6 CLip∆0e
∆0 tanh−2

(
∆0

4

)((
tanh

(
∆0

4

))1/T
)m

Consequently, for any m ∈ Z+ we have

‖RFm(ϕ)−RFm(ψ)‖1 6 CLip max {∆0, 1} e∆0 tanh−2

(
∆0

4

)((
tanh

(
∆0

4

))1/T
)m

.

This establishes (2) with

C1 = CLip max {∆0, 1} e∆0 tanh−2

(
∆0

4

)
,

Λ =

(
tanh

(
∆0

4

))1/T

.
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