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Abstract. We introduce and study the notion of weak product recurrence.
Two sufficient conditions for this type of recurrence are established. We de-
duce that any point with a dense orbit in either the full one-sided shift on a
finite number of symbols or a mixing subshift of finite type is weakly prod-
uct recurrent. This observation implies that distality does not follow from
weak product recurrence. We have therefore answered a question posed by
Auslander and Furstenberg in the negative.

1. Introduction

The notion of recurrence is central in the study of dynamical systems and espe-
cially in topological dynamics. Classically, a topological dynamical system consists
of a topological space X with a one-parameter group {Tn : n ∈ Z} of homeomor-
phisms acting on X. Poincaré’s original nineteenth-century notion of recurrence,
interpreted in the setting of topological dynamics, is that of a point returning to
every neighborhood of itself. A compact dynamical system always contains recur-
rent points. This notion has since been strengthened to various degrees. A point
x is said to be uniformly recurrent (or almost periodic) if for every neighborhood
U of x, the return time set R(x,U) = {n ∈ Z : Tnx ∈ U} of x to U has bounded
gaps. In other words, x returns to U with a bound on the ‘waiting time’. Further
strengthening the notion of recurrence, one may require some form of synchronized
recurrence with other recurrent points. A point x is said to be product recurrent if
given any recurrent point y in any dynamical system and any neighborhoods U of
x and V of y, the return time sets R(x,U) and R(y, V ) intersect nontrivially.

By associating product recurrence with a combinatorial property of sets of return
times (x is product recurrent if and only if R(x,U) is IP* for each neighborhood U
of x), Furstenberg [3] proves that product recurrence implies uniform recurrence.
Furstenberg [3] also shows that for Z-actions, product recurrence and distality are
equivalent (a point x is said to be distal if whenever y is in the orbit closure of x
and a sequence (ni) in Z exists with limi Tnix = limi Tniy, then x = y). Using
algebraic properties of idempotents in the enveloping semigroup, Auslander and
Furstenberg [1] extend the equivalence of product recurrence and distality to more
general semigroup actions.

We study a form of synchronized recurrence that generalizes the notion of prod-
uct recurrence. A point x is said to be weakly product recurrent if given any
uniformly recurrent point y in any dynamical system and any neighborhoods U of
x and V of y, the return time sets R(x,U) and R(y, V ) intersect nontrivially. We
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establish two sufficient conditions for weak product recurrence. The first sufficient
condition is presented in the noninvertible case. Let Γ be a compact metric space
and let τ : Γ → Γ be a continuous map. The point γ ∈ Γ is weakly product
recurrent if γ satisfies the following recurrence property. For every neighborhood
V of γ there exists n = n(V ) ∈ N such that if S ⊂ Z+ = N ∪ {0} is any finite
set satisfying |s − t| > n for all distinct s, t ∈ S, then there exists ` ∈ Z+ such
that τ `+s(γ) ∈ V for all s ∈ S. The proof of this result uses the van der Waerden
theorem [4]. The theorem of van der Waerden states that every subset of N with
bounded gaps contains arithmetic progressions of arbitrary length.

Auslander and Furstenberg [1] ask if weak product recurrence implies distality.
The first sufficient condition for weak product recurrence answers this question in
the negative for actions of N. This first result implies that any point with a dense
orbit in a ‘sufficiently mixing’ system is weakly product recurrent. In particular,
any point with a dense orbit in either the full one-sided shift on a finite number of
symbols or a mixing subshift of finite type is weakly product recurrent. Any point
with a dense orbit in the full shift on a finite number of symbols is proximal to a
fixed point in its orbit closure. Such a point is therefore weakly product recurrent
but not distal.

The second sufficient condition for weak product recurrence is based on the
observation that the return time sets of points in arbitrary dynamical systems are
related to the return time sets of special points in the symbolic dynamical system
(Ω, σ), where Ω = {0, 1}Z and σ denotes the shift map. We prove that for actions
of Z, the point x is weakly product recurrent if (x, ω) is recurrent for all uniformly
recurrent ω ∈ Ω. The shift space is therefore universal in this context. We believe
that this universality may constructively inform the study of recurrence.

The material is organized as follows. In Section 2, we present dynamical prelim-
inaries and we discuss the work of Auslander and Furstenberg. Section 3 contains
the statement and proof of the first sufficient condition for weak product recur-
rence. The universality of the shift space in the context of weak product recurrence
is established in Section 4. We conclude the paper in Section 5 by stating several
open questions and discussing the relationship of weak product recurrence to other
notions of recurrence.

2. Dynamical preliminaries

We present the relevant aspects of the theory of dynamical systems, introduce the
notion of weak product recurrence, and state the Auslander-Furstenberg question.

Definition 2.1. A dynamical system (X, G) consists of a compact metric space
X together with a group or semigroup G acting on X by continuous transforma-
tions.

Recurrence is a form of asymptotic behavior related to the action of sequences of
group elements ‘tending to infinity’. Various notions of recurrence may be defined
for a point x ∈ X either in terms of the elements of the Stone-Čech compactification
βG that fix x or in terms of the ‘size’ of the sets of return times to neighborhoods
of x. We adopt the latter approach, restricting our study to the case G = Z.

Definition 2.2. Let x ∈ X. The orbit of x, denoted O(x), is given by O(x) =
{Tn(x) : n ∈ Z}.
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Definition 2.3. Let U denote a neighborhood of x ∈ X. The return time set
R(x,U) is given by R(x,U) = {n ∈ Z : Tn(x) ∈ U}.

Definition 2.4. A point x ∈ X is said to be recurrent if for every neighborhood
U of x, we have (R(x,U) ∩ Z) \ {0} 6= ∅.

It follows from the definition of recurrence that if x is recurrent, then R(x,U) is
infinite for every neighborhood U of x. One obtains the notion of uniform recurrence
by demanding that the sets R(x,U) be syndetic.

Definition 2.5. A subset S of Z is syndetic if there exists a positive integer M
such that for all z ∈ Z,

{y ∈ Z : z 6 y 6 z + M} ∩ S 6= ∅.
Such a set is said to have bounded gaps.

Definition 2.6. A point x ∈ X is said to be uniformly recurrent (or almost
periodic) if for every neighborhood U of x, the return time set R(x,U) is syndetic.

The notion of recurrence may also be strengthened by requiring that the recur-
rent point x recur in a synchronized way with any other recurrent point.

Definition 2.7. A point x ∈ X is said to be product recurrent if given any
dynamical system (Y, S) and any recurrent point y ∈ Y , the point (x, y) is a
recurrent point of the product dynamical system (X × Y, T × S).

Recurrence shares deep connections with the notions of proximality and distality.

Definition 2.8. Two points x and y in X are said to be proximal if there exists
a sequence (nk) ⊂ Z and a point z ∈ X such that nk → ±∞ and

lim
k→∞

Tnk(x) = lim
k→∞

Tnk(y) = z.

Definition 2.9. A point x ∈ X is said to be distal if x is not proximal to any
point in its orbit closure O(x) other than itself.

In the special case G = Z, product recurrence and distality are equivalent [3,
Theorem 9.11]. This equivalence does not hold in the context of E-semigroup ac-
tions. Distality implies product recurrence, but the converse does not hold in
general. Auslander and Furstenberg [1] formulate conditions under which prod-
uct recurrence implies distality. Their algebraic approach is based on the study of
idempotents in the E-semigroup. Innovations in [1] include the illumination of the
key role played by maximal idempotents and the introduction of the cancellation
semigroup. For a systematic and thorough study of the fine structure of recurrence
for semigroup actions, see the work of Ellis, Ellis, and Nerurkar [2].

Inspired by [1], we introduce the notion of weak product recurrence.

Definition 2.10. Let (X, T ) be a dynamical system. A point x ∈ X is said to be
weakly product recurrent if given any dynamical system (Y, S) and any uniformly
recurrent point y ∈ Y , the point (x, y) is a recurrent point of the product dynamical
system (X × Y, T × S).

With this definition in place, we now state the Auslander-Furstenberg question.

Question 2.11 (Auslander-Furstenberg [1]). Let (X, T ) be a dynamical system.
If x ∈ X is weakly product recurrent, is x necessarily a distal point?
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Since distality and product recurrence are equivalent for Z-actions, the Auslander-
Furstenberg question may be restated as follows. Do the notions of product recur-
rence and weak product recurrence coincide for Z-actions?

3. A sufficient condition for weak product recurrence

We present a sufficient condition for weak product recurrence. We then describe
several situations in which this condition is satisfied. The recurrence result pre-
sented in this section implies the existence of weakly product recurrent points that
are not distal. We have therefore answered the Auslander-Furstenberg question in
the negative. The material in this section is presented in the context of N-actions.

Theorem 3.1. Let Γ be a compact metric space and let τ : Γ → Γ be a continuous
map. The point γ ∈ Γ is weakly product recurrent if γ has the following property:
For every neighborhood V of γ there exists n = n(V ) ∈ N such that if S ⊂ Z+ is
any finite set satisfying |s− t| > n for all distinct s, t ∈ S, then there exists ` ∈ Z+

such that τ `+s(γ) ∈ V for all s ∈ S.

The proof of Theorem 3.1 is based on the deep fact that syndetic subsets of Z
contain arithmetic progressions of arbitrary length. This fact is known as the van
der Waerden theorem [4].

Proof of Theorem 3.1. Suppose that γ has the property described in Theorem 3.1.
Let Λ be a compact metric space and let ρ : Λ → Λ be a continuous map. Suppose
λ ∈ Λ is uniformly recurrent. We must show that (λ, γ) is recurrent. Let U and V
be neighborhoods of λ and γ, respectively. We prove that

(R(λ, U) ∩R(γ, V )) \ {0} 6= ∅.

Choose n = n(V ) such that for any finite set S ⊂ Z+ satisfying |s − t| > n for all
distinct s, t ∈ S, there exists ` ∈ Z+ such that τ `+s(γ) ∈ V for every s ∈ S.

Let A = {a + jd : 0 6 j 6 n} ⊂ N be an arithmetic progression of length
n + 1 such that the common difference d is a multiple of n and ρa+jd(λ) ∈ U
for 0 6 j 6 n. We justify the existence of A as follows. The set R(λ, U) is
syndetic because λ is uniformly recurrent. Therefore, the van der Waerden theorem
implies that R(λ, U) contains arithmetic progressions of arbitrary length. Choose
an arithmetic progression B = {b + kq : 0 6 k 6 n(n + 1)} ⊂ R(λ, U). Now
define A = {(b + nq) + j(nq) : 0 6 j 6 n}. Here a = b + nq and d = nq. Since
ρ is continuous, there exists a neighborhood U1 ⊂ U such that if ξ ∈ U1 then
ρa+jd(ξ) ∈ U for 0 6 j 6 n. The set R(λ, U1) is syndetic and therefore the set

{k : ρk+jd(λ) ∈ U for 0 6 j 6 n}

is syndetic. Choose M ∈ N such that for any ` ∈ Z+ there exists k ∈ [`, `+M −nd]
satisfying ρk+jd(λ) ∈ U for 0 6 j 6 n.

We now define a configuration S to which the hypothesis on γ applies. Choose
r ∈ N such that r(d + 1) > M . Define

S = {x(d + 1) + yn : 0 6 x 6 r, 0 6 y 6 q − 1}.

We show that |s− t| > n for all distinct s, t ∈ S. Suppose s = x1(d + 1) + y1n and
t = x2(d+1)+y2n are distinct elements of S with x2 > x1. We consider two cases.
(1) If x2 = x1, then y1 6= y2 and therefore |s− t| > n.
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(2) If x2 > x1, then x2(d + 1) + y2n > (x1 + 1)(d + 1) and

x1(d + 1) + y1n 6 x1(d + 1) + (q − 1)n

= x1(d + 1) + qn− n

= x1(d + 1) + d− n

= (x1 + 1)(d + 1)− n− 1

< (x1 + 1)(d + 1)− n.

Therefore, we have |s− t| > n in this case.
Since S is an admissible configuration for γ, there exist k ∈ N and ` ∈ Z+ such that

(1) τ `+s(γ) ∈ V for all s ∈ S,
(2) ρk+jd(λ) ∈ U for 0 6 j 6 n,
(3) k ∈ [`, ` + M − nd].

We find j ∈ {0, . . . , n} such that k + jd ∈ ` + S.
Let h be the largest integer such that h(d+1) 6 k− `. Since qn = d, there exist

unique integers i ∈ {0, . . . , q − 1} and j ∈ {0, . . . , n} such that

k − ` = h(d + 1) + in + j.

Note that k− (`+h(d+1)) 6 d. If k− (`+h(d+1)) = d, then i = q−1 and j = n.
If k − (` + h(d + 1)) < d, then j < n. Transforming k + jd, we have

k + jd = ` + (k − `) + jd

= ` + h(d + 1) + in + j + jd

= ` + (h + j)(d + 1) + in.

Since k + jd 6 ` + M , we must have h + j 6 r. We also have i ∈ {0, . . . , q − 1}.
Therefore, (h + j)(d + 1) + in ∈ S and k + jd ∈ ` + S. We conclude that

k + jd ∈ (R(λ, U) ∩R(γ, V )) \ {0}.

Since U and V were chosen arbitrarily, we conclude that (λ, γ) is recurrent. �

We now state conditions under which the hypothesis of Theorem 3.1 is satisfied.
This hypothesis will be satisfied if γ is a point with a dense orbit in a ‘sufficiently
mixing’ system.

Corollary 3.2. Let Γ be a compact metric space and let τ : Γ → Γ be a continuous
map. The point γ ∈ Γ is weakly product recurrent if the following hold.
(1) The orbit of γ is dense in Γ.
(2) For any neighborhood V of γ, there exists N = N(V ) such that for any k ∈ N,

if ni > N for 1 6 i 6 k, then the intersection

V ∩ τ−n1(V ) ∩ · · · ∩ τ−(n1+···+nk)(V )

is nonempty.

Proof of Corollary 3.2. We show that γ satisfies the hypothesis of Theorem 3.1.
Let V be a neighborhood of γ. Using (2), there exists N = N(V ) such that for any
k ∈ N, if ni > N for 1 6 i 6 k, then the intersection

V ∩ τ−n1(V ) ∩ · · · ∩ τ−(n1+···+nk)(V )
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is nonempty. Let S = {si : 1 6 i 6 k} ⊂ Z+ be a finite set such that si+1 − si > N
for 1 6 i 6 k − 1. The intersection

W = V ∩ τ−s1(V ) ∩ · · · ∩ τ−sk(V )

is nonempty and open. Since the orbit of γ is dense in Γ, there exists ` ∈ Z+ such
that τ `(γ) ∈ W . We have τ `+s(γ) ∈ V for all s ∈ S. �

Mixing property (3.2)(2) is satisfied by the full one-sided shift on a finite number
of symbols and by any mixing subshift of finite type. Therefore, Corollary 3.2
implies the following.

Corollary 3.3. Let (Γ, τ) be either the full one-sided shift on a finite number of
symbols or a mixing subshift of finite type. If γ ∈ Γ has a dense orbit, then γ is
weakly product recurrent.

We now address the question posed by Auslander and Furstenberg. Corollary 3.3
implies the existence of weakly product recurrent points that are not distal, thereby
answering the Auslander-Furstenberg question in the negative. In the full shift on
a finite number of symbols, any point with a dense orbit has a fixed point in its
orbit closure and is therefore weakly product recurrent but not distal. For example,
let Σ+ = {0, 1}Z+

and let σ denote the shift map. For m ∈ N, let αm denote the
binary representation of m. We define γ ∈ Σ+ by

γ = lim
m→∞

α1 ∗ α2 ∗ · · · ∗ αm,

where ∗ denotes concatenation. Therefore, γ takes the form

γ = 110 11 100 · · · .

The point γ is the binary Champernowne sequence. Since γ contains every binary
word, the orbit of γ is dense in Σ+ and therefore γ is weakly product recurrent.
However, γ is proximal to the fixed point ρ ∈ Σ+ defined by ρi = 1 for all i ∈ Z+

and ρ ∈ O(γ), so γ is not distal.

4. Universality of the shift space

Let (X, T ) denote a dynamical system and let x ∈ X. A priori, it may be difficult
to determine if x is weakly product recurrent because we must examine the orbit
of the pair (x, y) for every uniformly recurrent point y in every dynamical system
(Y, S). One encounters this difficulty whenever one wishes to verify any notion of
recurrence that requires synchronized recurrence with points of a certain type in
every dynamical system. We show that when establishing weak product recurrence
or product recurrence, it suffices to consider uniformly recurrent points or recurrent
points, respectively, in the shift space Ω = {0, 1}Z. This universal feature of the
shift space follows from a general proposition relating the return time sets of points
in arbitrary dynamical systems to the return time sets of special points in the shift
space.

We begin with notation and definitions. We represent a point ω ∈ Ω as a bi-
infinite sequence (ωn)n∈Z. The shift map σ : Ω → Ω is given by ω 7→ σ(ω), where
(σ(ω))n = ωn+1. For k ∈ Z+ and ω ∈ Ω, define

Vk(ω) = {β ∈ Ω : βj = ωj for |j| 6 k}.
The family of neighborhoods {Vk(ω) : k ∈ Z+} forms a neighborhood basis at ω.
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Let (Y, S) be a dynamical system and let y ∈ Y . Let (γm) be a descending
sequence in (0, 1) such that γm → 0 and d(Sn(y), y) 6= γm for all n ∈ Z and
m ∈ N. Such a sequence exists because the set {Sny : n ∈ Z} is countable. Let
Bm = B(y, γm), where B(y, γm) is the ball of radius γm centered at y. Define
ω(y,m) ∈ Ω by

ω
(y,m)
i =

{
1, if i ∈ R(y, Bm);
0, if i /∈ R(y, Bm).

Think of ω(y,m) as the characteristic function of the set R(y, Bm).

Proposition 4.1. Let (Y, S) be a dynamical system and let y ∈ Y be arbitrary.
Fix m ∈ N and let γm, Bm, and ω(y,m) be as above. For each k ∈ N, there exists
mk such that

R(ω(y,m), Vk(ω(y,m))) ⊃ R(y, Bmk
).

Proof of Proposition 4.1. For each j ∈ {−k, . . . , k}, let εj > 0 be such that either
B(Sjy, εj) ⊂ Bm if Sjy ∈ Bm or B(Sjy, εj) ∩ Bm = ∅ if Sjy /∈ Bm. This may be
done because Sjy /∈ ∂Bm for each j. Since each mapping Sj is uniformly continuous,
there exists δ > 0 such that if d(y, z) < δ, then d(Sjy, Sjz) < εj for all |j| 6 k.
Choose mk such that γmk

< δ. Let n ∈ R(y, Bmk
). Then d(y, Sny) < γmk

< δ, so
d(Sjy, Sn+jy) < εj for all |j| 6 k. This implies that ω

(y,m)
j = ω

(y,m)
n+j for all |j| 6 k.

We conclude that σn(ω(y,m)) ∈ Vk(ω(y,m)), so n ∈ R(ω(y,m), Vk(ω(y,m))). �

Corollary 4.2 (Universality of the shift space). Let (X, T ) be a dynamical system
and let x ∈ X. The following statements hold.

(1) The point x is recurrent if and only if ω(x,m) is recurrent for all m ∈ N.
(2) The point x is uniformly recurrent if and only if ω(x,m) is uniformly recurrent

for all m ∈ N.
(3) If (x, ω) is recurrent in (X ×Ω, T × σ) for all uniformly recurrent ω ∈ Ω, then

x is weakly product recurrent.
(4) If (x, ω) is recurrent in (X×Ω, T ×σ) for all recurrent ω ∈ Ω, then x is product

recurrent.

Proof of Corollary 4.2. Statements (1) and (2) follow immediately from Proposi-
tion 4.1. The proofs of statements (3) and (4) are structurally similar. We prove
statement (3). Assume that (x, ω) is recurrent in (X × Ω, T × σ) for all uniformly
recurrent ω ∈ Ω. Let (Y, S) be a dynamical system and suppose that y ∈ Y is uni-
formly recurrent. Let U and V be neighborhoods of x and y, respectively. Choose
m such that Bm ⊂ V . By statement (2) and the hypothesis on x, (x, ω(y,m)) is
recurrent in (X × Ω, T × σ). Therefore,

(R(x,U) ∩R(ω(y,m), V0(ω(y,m)))) \ {0} 6= ∅.

Since R(y, V ) ⊃ R(y, Bm) = R(ω(y,m), V0(ω(y,m))), we conclude that

(R(x,U) ∩R(y, V )) \ {0} 6= ∅.

Consequently, x is weakly product recurrent. �
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5. Discussion

We have shown that any point with a dense orbit in either the full one-sided shift
on a finite number of symbols or a mixing subshift of finite type is weakly product
recurrent. This result suggests the following questions.

Question 5.1. How ‘large’ is the class of weakly product recurrent points?

Question 5.2. Algebraically, a product recurrent point is characterized by the
fact that it is fixed by all maximal idempotents. Can one establish an algebraic
characterization of weak product recurrence?

We now discuss the relationship of weak product recurrence to other notions of
recurrence. Uniform recurrence does not imply weak product recurrence. We prove
this by constructing uniformly recurrent points α and β in the symbolic dynamical
system Ω+ = {0, 1}Z+

such that α0 = 0, β0 = 1, and αi = βi for i > 1. The points
α and β are constructed as follows. For a word ω, let `(ω) denote the length of ω.
Writing ω = ω0 · · ·ω`(ω)−1, let ω = ω`(ω)−1 · · ·ω0 denote the reflection of ω. Define
a(0) = 0 and b(0) = 10. Inductively, define

a(n+1) = a(n) ∗ b(n) and b(n+1) = b(n) ∗ a(n+1),

where ∗ denotes concatenation. Define

α = lim
n→∞

a(n) and β = lim
n→∞

b(n).

We show inductively that αi = βi for i > 1. The inductive assumptions are as
follows.

(1) We have a
(k)
i = b

(k)
i for 1 6 i 6 `(a(k))− 1.

(2) For 0 6 j 6 k, the subwords b
(j)
0 · · · b(j)

`(a(j))−1
and b

(j)

`(a(j))
· · · b(j)

`(b(j))−1
are

symmetric.

Notice that a(1) = 001 and b(1) = 10100. Inductive assumption (1) holds for k = 1
because a

(1)
1 = b

(1)
1 = 0 and a

(1)
2 = b

(1)
2 = 1. Inductive assumption (2) holds for

k = 1 because the words b
(1)
0 · · · b(1)

2 = 101 and b
(1)
3 b

(1)
4 = 00 are symmetric. We now

show that inductive assumptions (1) and (2) hold at level k +1 if they hold at level
k. Since b

(k)

`(a(k))
· · · b(k)

`(b(k))−1
is symmetric, we have a

(k+1)
i = b

(k+1)
i for `(a(k)) 6

i 6 `(b(k)) − 1. Since b
(k)
0 · · · b(k)

`(a(k))−1
is symmetric, we have a

(k+1)
i = b

(k+1)
i for

`(b(k)) 6 i 6 `(a(k+1))−1. Therefore, inductive assumption (1) holds at level k+1.
We have

b
(k+1)
0 · · · b(k+1)

`(a(k+1))−1
= b

(k)
0 · · · b(k)

`(a(k))−1
∗ b

(k)

`(a(k))
· · · b(k)

`(b(k))−1
∗ b

(k)
0 · · · b(k)

`(a(k))−1
,

b
(k+1)

`(a(k+1))
· · · b(k+1)

`(b(k+1))−1
= a

(k+1)
0 · · · a(k+1)

`(b(k))−1
,

a
(k+1)
0 · · · a(k+1)

`(b(k))−1
= b

(k)

`(a(k))
· · · b(k)

`(b(k))−1
∗

b
(k−1)
0 · · · b(k−1)

`(a(k−1))−1
∗ b

(k)

`(a(k))
· · · b(k)

`(b(k))−1
.

These equalities imply that inductive assumption (2) holds at level k + 1.
We show that α and β are uniformly recurrent. The length of the gap between

any two occurrences of a(n) in α is bounded above by 2`(b(n)). This is so because
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if we choose k > 2 and assume that this bound holds for all a(n+j) with 1 6 j 6 k,
then the equality

a(n+k+1) = a(n+k) ∗
(
a(n+k) ∗ a(n+k−1) ∗ · · · ∗ a(n+2)

)
∗ a(n) ∗ b(n) ∗ b(n)

implies that the bound holds for a(n+k+1) as well. The length of the gap between
any two occurrences of b(n) in β is bounded above by `(a(n)). This is so because if
we choose k > 1 and assume that this bound holds for all b(n+j) with 1 6 j 6 k,
then the equality

b(n+k+1) = b(n+k) ∗
(
b(n+k) ∗ b(n+k−1) ∗ · · · ∗ b(n)

)
∗ a(n)

implies that the bound holds for b(n+k+1) as well. Finally, α is not weakly product
recurrent because (α, β) is clearly not recurrent.

Any point with a dense orbit in the full one-sided shift on a finite number of
symbols is weakly product recurrent but not distal. Such a point is not uniformly
recurrent. This observation suggests the following question.

Question 5.3. Do weak product recurrence and uniform recurrence together imply
product recurrence?
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