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Abstract. Many problems in mathematics and science require the use of
infinite-dimensional spaces. Consequently, there is need for an analogue of the
finite-dimensional notions of ‘Lebesgue almost every’ and ‘Lebesgue measure
zero’ in the infinite-dimensional setting. The theory of prevalence addresses
this need and provides a powerful framework for describing generic behavior
in a probabilistic way. We survey the theory and applications of prevalence.
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1. Introduction

A central problem in mathematics is the description of generic behavior. Given a
set of objects, what is the nature of a generic element of the set? This question ap-
plies to diffeomorphisms, Riemannian metrics, algebraic varieties, function spaces,
and linear operators, just to name several examples. The perturbative strategy pro-
vides a powerful method of inquiry. One learns a great deal about a mathematical
object by studying how it behaves under small perturbations. Indeed, the success
of analysis can be attributed in part to its ability to handle the linear problems
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that arise in the study of perturbations. Often the study of perturbations leads to
nonlinear problems, a phenomenon which accounts for many fascinating aspects of
the theory of dynamical systems.

In order to describe generic behavior, the notion of genericity must be made
precise. Lebesgue measure leads to a natural notion in the finite-dimensional case.
A subset G ⊂ Rn is said to be measure-theoretically generic if Rn \ G has zero
Lebesgue measure. The ubiquity of problems involving infinite-dimensional spaces
strongly suggests the need for an analogue of the finite-dimensional notions of
‘Lebesgue almost every’ and ‘Lebesgue measure zero’ in the infinite-dimensional
setting. Mathematicians have long desired such an analogue. We would like to
preserve the following properties of Lebesgue measure zero sets.

(1) A measure zero set has no interior (‘almost every’ implies dense).
(2) Every subset of a measure zero set also has measure zero.
(3) A countable union of measure zero sets also has measure zero.
(4) Every translate of a measure zero set also has measure zero.

Hunt, Sauer, and Yorke [24, 25] formulate the theory of prevalence, a measure-
theoretic notion of genericity for infinite-dimensional vector spaces. Prevalence
provides the needed analogue of ‘Lebesgue almost every’. Lebesgue measure itself
cannot be generalized to infinite-dimensional vector spaces. Consequently, one de-
fines prevalence in terms of the class of compactly supported probability measures.
Let X be a completely metrizable topological vector space. A Borel subset S ⊂ X
is said to be shy if there exists a compactly supported Borel probability measure
µ such that µ(S + x) = 0 for all x ∈ X. The complement of a shy set is called a
prevalent set. One may think of µ as describing a family of perturbations in X. In
this sense, E ⊂ X is prevalent if for all x ∈ X, choosing a perturbation at random
with respect to µ and adding it to x yields a point in E with probability one. Shy
sets satisfy the aforementioned desirable properties of Lebesgue measure zero sets
and shyness is equivalent to Lebesgue measure zero in Rn.

Lacking a measure-theoretic notion of genericity, mathematicians traditionally
invoke the topological notion of genericity based on the category theorem of Baire.
A countable intersection of open, dense sets is said to be a residual, or topo-
logically generic, set. The Baire category theorem asserts that residual subsets of
complete metric spaces (or, more generally, Baire spaces) are dense. Prevalence and
topological genericity do not coincide. This is evident even in Rn, where residual
sets may have zero measure. To see this, let {xk} be a countable dense subset of
Rn and fix ε > 0. For each k, put an open ball around xk of Lebesgue measure
ε/2k. The union of these balls is open and dense in Rn but has total measure at
most ε. Intersecting such sets over a sequence of values of ε tending to zero, we
obtain a residual set with zero Lebesgue measure. We now consider several natural
examples that indicate the importance of a measure-theoretic perspective.

Example 1.1 (Normal Numbers). For each ω ∈ [0, 1], let (dk(ω)) denote the se-
quence of binary digits in the dyadic expansion of ω. In terms of the digit sequence,
ω =

∑
2−kdk(ω). Define fn : [0, 1] → [0, 1] by

fn(ω) =
1
n

#{1 6 k 6 n : dk(ω) = 1}.

The value fn(ω) is the fraction of 1s that appear in the first n digits of the dyadic
expansion of ω. Viewed probabilistically, the digit functions dk are independent,
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identically distributed random variables. Therefore, fn(ω) → 1/2 as n → ∞ for
Lebesgue almost every ω ∈ [0, 1] by the strong law of large numbers. This is the
Borel normal number theorem.

While statistically regular behavior is measure-theoretically generic, irregular
behavior is residual. We now construct a residual set V such that for ω ∈ V ,

lim inf
n→∞

fn(ω) = 0, lim sup
n→∞

fn(ω) = 1.

Let α > 1/2. For each n ∈ Z+, define the sets

Wα,n = {ω ∈ [0, 1] : fi(ω) > α and fj(ω) 6 1− α for some i, j > n},
Vα,n = Interior(Wα,n).

The set Vα,n is open and dense in [0, 1] for each n. Intersecting over n ∈ Z+, we
obtain a residual set Vα such that for ω ∈ Vα,

lim inf
n→∞

fn(ω) 6 1− α, lim sup
n→∞

fn(ω) > α.

Moreover, intersecting the sets Vα over a sequence of values of α converging to 1,
we obtain the required residual set V .

The following example uses the same construction as the above example.

Example 1.2 (A residual set on which the Lyapunov exponent does not exist).
Lyapunov exponents play a crucial role in smooth ergodic theory. Let M be a
compact finite-dimensional Riemannian manifold and let f : M →M be a smooth
map. For (x, v) ∈ TM , ‖v‖ 6= 0, the number

lim
n→∞

1
n

log ‖Dfn(x)v‖

should the limit exist is called the Lyapunov exponent of f at (x, v). We say that
x ∈M is a regular point for f if there are Lyapunov exponents λl(x) > · · · > λ1(x)
and a collection of subspaces

{0} = E0(x) ⊂ E1(x) ⊂ · · · ⊂ El−1(x) ⊂ El(x) = TxM

such that for 1 6 j 6 l and v ∈ Ej(x) \ Ej−1(x),

lim
n→∞

1
n

log ‖Dfn(x)v‖ = λj(x).

From a measure-theoretic point of view, regularity is generic. The multiplicative
ergodic theorem of Oseledec asserts that the set of regular points for f has full
measure with respect to any f -invariant Borel probability measure on M . However,
the set of regular points is frequently quite small in the topological sense.

The following simple example illustrates that Lyapunov exponents may not exist
for a residual set of points. Let p > 1 and q > 1 satisfy (1/p)+(1/q) = 1 and p > q.
Consider the map f : [0, 1] → [0, 1] defined by

f(x) =

{
px, if 0 6 x < 1

p ;
qx− q

p , if 1
p 6 x 6 1.

Lebesgue measure is invariant under f and the transformation is ergodic. Therefore,
the Birkhoff pointwise ergodic theorem implies that for Lebesgue almost every
x ∈ [0, 1],

lim
n→∞

1
n

log(fn)′(x) =
log(p)
p

+
log(q)
q

.
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Nevertheless, there exists a residual set R on which the Lyapunov exponent does
not exist. More precisely, for x ∈ R we have

lim inf
n→∞

1
n

log(fn)′(x) = log(q), lim sup
n→∞

1
n

log(fn)′(x) = log(p).

Example 1.3 (Schrödinger type operators). The presence of a singular continuous
spectrum for a Schrödinger type operator is often considered accidental and even
undesirable. However, Simon [47] shows that this phenomenon is Baire generic.
Let C0(Rn) denote the space of continuous real-valued functions on Rn vanishing
at infinity in the uniform norm. For V ∈ C0(Rn), let S(V ) be the Schrödinger
operator −∆ + V on L2(Rn). Simon proves that for a residual set of functions V ,
the operator S(V ) has purely singular continuous spectrum on all of (0,∞).

Prevalence has been constructed to reflect probabilistic intuition. Rather than
topological notions of genericity, prevalence should be used when one desires a
probabilistic result on the likelihood of a given property in a function space.

In this article, we survey the theory and applications of prevalence. Prevalence
has been formulated for topological vector spaces [24, 25], abelian topological groups
[11], convex subsets of topological vector spaces [2], and nonlinear spaces [26, 27].
We discuss these theoretical developments and examine an interesting collection of
applications. The applications examined here emphasize the role of prevalence in
dynamical systems and analysis.

2. Notation

• Let λ denote Lebesgue measure on R.
• For n > 1, let λn denote Lebesgue measure on Rn.
• For a finite-dimensional subspace V of a topological vector space, let λV

denote Lebesgue measure on V .
• Let B(x, ε) denote the open ball centered at x of radius ε.

3. Prevalence in Linear Spaces

Let X be a topological vector space. A sound theory of genericity for topological
vector spaces should satisfy the following genericity axioms.

Axiom 1. A generic subset of X is dense in X.
Axiom 2. If L ⊃ G and G is generic, then L is generic.
Axiom 3. A countable intersection of generic sets is generic.
Axiom 4. Every translate of a generic set is generic.
Axiom 5. A subset G of Rn is generic if and only if G is a set of full

Lebesgue measure in Rn.
The topological theory of genericity fails to satisfy Axiom 5. One might define a

measure-theoretic notion of genericity on a given topological vector space in terms
of a specific translation-invariant measure. This approach leads to serious difficul-
ties. In an infinite-dimensional, separable Banach space, every translation-invariant
Borel measure which is not identically zero assigns infinite measure to all open sets.
To see this, let B denote an infinite-dimensional, separable Banach space. Suppose
that for some x ∈ B and some ε > 0, the open ball B(x, ε) centered at x of radius ε
has finite measure. Since B is infinite-dimensional, B(x, ε) contains infinitely many
disjoint open balls of radius ε/4. Each of these balls has the same measure and the
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sum of their measures is finite, so the (ε/4)-balls must all have zero measure. The
separable space B may be covered by countably many (ε/4)-balls, and therefore B
has measure zero.

In the absence of a reasonable translation-invariant measure, one might never-
theless hope to define a measure such that the property of having full measure
is preserved by translation; such a measure is called quasi-invariant. In Rn, any
measure that is absolutely continuous with respect to Lebesgue measure and has
a positive density is quasi-invariant. However, for an infinite-dimensional, locally
convex topological vector space, a σ-finite, quasi-invariant measure defined on the
Borel sets must be identically zero.

These difficulties suggest that looking for an analogue of Lebesgue measure on
function spaces will not bear fruit. Hunt, Sauer, and Yorke [24, 25] develop the
theory of prevalence for linear spaces by invoking a characterization of Lebesgue
zero measure that extends to function spaces. This characterization depends upon
the Tonelli theorem. A Borel subset S ⊂ Rn has zero Lebesgue measure if and only
if there exists some compactly supported Borel probability measure µ on Rn such
that µ(S + x) = 0 for every x ∈ Rn.

Constructed to reflect probabilistic intuition, prevalence satisfies Axioms 1-5.
Although we present the theory for linear spaces, it extends naturally to topological
groups. Christensen [11] defines the notion of ‘Haar zero set’ for abelian Polish
groups, topological abelian groups with a complete separable metric. Borwein and
Moors [10] generalize the work of Christensen by treating the nonseparable case.

We motivate the theory by considering how the notion of ‘Lebesgue almost every’
on Rn can be formulated in terms of the same notion on lower-dimensional spaces.
Foliate Rn by k-dimensional planes. These planes may be thought of as translates
of Rk ⊂ Rn by elements of Rn−k. If ‘Lebesgue almost every’ translate of Rk

intersects a Borel set S ⊂ Rn in full k-dimensional Lebesgue measure, then S has
full n-dimensional Lebesgue measure by the Fubini/Tonelli theorem.

If Rn is replaced by an infinite-dimensional space X, we cannot formulate the
same condition because the space of translations of a k-dimensional subspace is
infinite-dimensional. However, we can impose the stronger condition that every
translate of the subspace intersects S in a set of full Lebesgue measure. A pre-
liminary notion of prevalence is obtained by declaring that a Borel set S ⊂ X is
prevalent if there exists some finite k and some k-dimensional subspace V such that
every translate of V intersects S in a set of full k-dimensional Lebesgue measure. In
order to ensure that a countable intersection of prevalent sets is prevalent (Axiom
3), we must enlarge the space of measures under consideration beyond Lebesgue
measure supported on finite-dimensional subspaces.

Definition 3.1. Let X be a completely metrizable topological vector space. A
Borel set E ⊂ X is said to be prevalent if there exists a Borel measure µ on X
such that

(1) 0 < µ(C) <∞ for some compact subset C of X, and
(2) the set E + x has full µ-measure (that is, the complement of E + x has

measure zero) for all x ∈ X.

More generally, a subset F of X is prevalent if F contains a prevalent Borel set.
The complement of a prevalent set is called a shy set. If F ⊂ X is prevalent, we
say that almost every element of X lies in F .
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Condition 1 ensures that it is sufficient to consider compactly supported Borel
probability measures. If X is separable, then all Borel measures which take on a
value other than 0 and ∞ satisfy Condition 1 [41]. The measure µ may be Lebesgue
measure on a finite-dimensional subspace of X. Such measures may be used effec-
tively in many applications. More generally, one may think of µ as describing a
family of perturbations in X. In this sense, E is prevalent if for all x ∈ X, choosing
a perturbation at random with respect to µ and adding it to x yields a point in E
with probability one.

Definition 3.2. Prevalence may be viewed as a form of measure-theoretic transver-
sality. A Borel measure µ is said to be transverse to a Borel set S ⊂ X if

(1) 0 < µ(C) <∞ for some compact subset C of X, and
(2) µ(S + x) = 0 for all x ∈ X.

The Borel set S is therefore shy if there exists a measure transverse to S. Philo-
sophically, the less concentrated a measure is, the more sets it is transverse to. At
one extreme, a point mass is transverse to only the empty set. We now verify that
prevalence satisfies the genericity axioms.

Proposition 3.3 ([24]). The theory of prevalence satisfies Axioms 1-5.

Before proving this proposition, we present an important fact about shy sets.

Proposition 3.4. Every shy Borel set S ⊂ X has a transverse probability measure
with compact support. Furthermore, the support of this measure can be taken to
have arbitrarily small diameter.

Proof. Let µ be a measure transverse to S. Let ε > 0. By Condition 1 of Definition
3.2, µ can be restricted to a compact subset C of finite, positive measure, and this
restriction is also transverse to S. Since C is compact, it can be covered by finitely
many balls of radius ε. At least one of these balls must intersect C in a set of
positive measure. Let B(x, ε) denote one such ball. The restriction of µ to the
compact set C ∩ B(x, ε), normalized so that µ(C ∩ B(x, ε)) = 1, is transverse to
S. �

Proof of Axiom 1. We prove that all prevalent sets are dense. Let S ⊂ X be a shy
set. We will show that S has no interior in X. It suffices to assume that S is Borel.
Suppose by way of contradiction that S contains an open ballB. By Proposition 3.4,
S has a transverse probability measure µ supported on a compact set of diameter
much smaller than the diameter of B. For x ∈ X such that supp(µ) ⊂ B + x,
µ(S + x) = 1. This contradiction completes the proof. �

Proof of Axiom 2. This property follows immediately from the definition of preva-
lence. �

Proof of Axiom 3. We prove that a countable intersection of prevalent sets is preva-
lent. We will show that a countable union of shy sets is shy. First, suppose S and
T are shy Borel subsets of X. We show that S ∪ T is shy by constructing a mea-
sure transverse to S ∪ T . By Proposition 3.4, there exist compactly supported
Borel probability measures µ and ν transverse to S and T , respectively. Define the
convolution µ ∗ ν by

µ ∗ ν(A) = µ× ν(AΣ),



PREVALENCE 7

where AΣ = {(x, y) ∈ X ×X : x + y ∈ A}. The convolution µ ∗ ν is a probability
measure with compact support because its support is contained in the continuous
image of supp(µ) × supp(ν) under the mapping (x, y) 7→ x + y. By the Fubini
theorem, for every x ∈ X we have

µ ∗ ν(S + x) =
∫

X

µ(S + x− y) dν(y) = 0,

µ ∗ ν(T + x) =
∫

X

ν(T + x− y) dµ(y) = 0.

Therefore, µ ∗ ν is transverse to both S and T and hence to their union.
Thus far we have established that the union of two shy sets is shy. It follows

inductively that the union of a finite collection of shy sets is shy. The countable
case requires the theory of infinite product measures. See [13] for a presentation
of this theory. Let {Si : i ∈ Z+} be a collection of shy Borel subsets of X. By
Proposition 3.4, there exist Borel probability measures µi transverse to Si with
compact support Ci such that diam(Ci) 6 2−i. By translating these measures, we
may assume that each Ci contains the origin. We construct the infinite convolution
of the µi and we show that this convolution is transverse to each Si and hence to
their union.

The infinite product CΠ = C1 × C2 × · · · is compact by the Tychonoff theorem
and has a probability measure µΠ = µ1 × µ2 × · · · defined on its Borel subsets.
Since X is complete and each element of Ci lies at most 2−i away from zero, the
summation mapping from CΠ → X defined by

(ci) 7→
∞∑

i=1

ci

is well-defined and continuous. Here we have made use of the fact that the topology
of X is generated by a complete metric for the first time. The image C of CΠ under
the summation mapping is compact, and µΠ induces a measure µ supported on C.
The measure µ is given by µ(A) = µΠ(AΣ), where

AΣ =
{

(ci) ∈ CΠ :
∞∑

i=1

ci ∈ A
}
.

We show that µ is transverse to each Si. Fix i ∈ Z+. Write µΠ = µi × νΠ
i where

νΠ
i = µ1 × · · · × µi−1 × µi+1 × · · · .

Let νi be the compactly supported probability measure induced by νΠ
i under the

summation mapping. We have that µ = µi ∗ νi. Since µi is transverse to Si, µi ∗ νi

is transverse to Si by the Fubini theorem. �

Proof of Axiom 4. The fact that every translate of a prevalent set is prevalent fol-
lows immediately from the definition of prevalence. �

Proof of Axiom 5. We verify that S ⊂ Rn is shy if and only if it has Lebesgue
measure zero. It suffices to assume that S is Borel, because every Lebesgue measure
zero set is contained in a Borel set of measure zero. If S has Lebesgue measure
zero, then λn(S + x) = λn(S) = 0 for each x ∈ Rn, so S is shy. If S is shy, there
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exists a compactly supported Borel probability measure µ such that µ(S + x) = 0
for all x ∈ Rn. Applying the Tonelli theorem, we have

0 =
∫

Rn

µ(S − y) dλn(y) =
∫

Rn

λn(S − x) dµ(x) = λn(S)µ(Rn) = λn(S).

�

In order to prove that a set is prevalent, a measure µ satisfying Conditions 1
and 2 of Definition 3.1 must be found. A good candidate for µ is Lebesgue measure
supported on some finite-dimensional subspace of X.

Definition 3.5. A finite-dimensional subspace P ⊂ X is said to be a probe for a
set F ⊂ X if there exists a Borel set E ⊂ F such that E + x has full λP -measure
for all x ∈ X. The existence of a probe is a sufficient (but not necessary) condition
for a set F to be prevalent. We say that F ⊂ X is k-prevalent if there exists
a k-dimensional probe for F . The set S ⊂ X is said to be k-shy if X \ S is
k-prevalent.

We now examine several examples. In each case, prevalence is established using
a probe.

Example 3.6. Almost every function f ∈ L1[0, 1] satisfies∫ 1

0

f(x) dx 6= 0.

To see this, let P denote the one-dimensional subspace of L1[0, 1] consisting of
the constant functions. Recall that λP denotes Lebesgue measure on P . For any
f ∈ L1[0, 1], ∫ 1

0

(f(x) + α) dx = 0

for one and only one value of α, namely α = −
∫
f(x) dx. Therefore, P is a probe

because

λP

({
α ∈ R :

∫ 1

0

(f(x) + α) dx = 0
})

= 0

for every f ∈ L1[0, 1]. The next example also admits a one-dimensional probe.

Example 3.7. For 1 < p 6 ∞, almost every sequence (ai) ∈ `p has the property
that

∑∞
i=1 ai diverges. To see this, let v be the harmonic sequence (1/i) and let P

be the subspace of `p spanned by v. For any sequence (ai) ∈ `p, the series
∞∑

i=1

ai + `

∞∑
i=1

1
i

converges for at most one value of ` ∈ R. Therefore, P is a probe for each 1 < p 6
∞.

Example 3.8 ([20]). Almost every function in C[0, 1] is nowhere differentiable.

One cannot construct a one-dimensional probe in this case. Suppose there exists
g ∈ C[0, 1] with the property that for each f ∈ C[0, 1], the function f + γg is
nowhere differentiable for almost every γ ∈ R. Setting f(x) = −xg(x), f + γg is
differentiable at x = γ for every γ ∈ [0, 1]. Hunt proves the result by constructing
a two-dimensional probe. The set of nowhere differentiable functions is thus 2-
prevalent in C[0, 1] but not 1-prevalent.
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Example 3.9 ([40]). Let n and m be positive integers and let A ⊂ Rn be an
unbounded set. The image ϕ(A) is unbounded for almost every ϕ ∈ C1(Rn,Rm).

Proof. It suffices to assume m = 1. We show that the set

V =
{
ϕ ∈ C1(Rn,R) : ϕ(A) is bounded

}
is shy. Let P = (Rn)∗, the dual of Rn. We show that P is a probe. For v ∈ Rn,
let v∗ be the element of (Rn)∗ defined by v∗(w) = (v, w). Let {ei : i = 1, . . . , n} be
the standard basis of Rn. For ϕ ∈ C1(Rn,R) and (αi) ∈ Rn, write

ϕα = ϕ+
n∑

i=1

αie
∗
i .

If V is not shy, there exists some g ∈ C1(Rn,R) such that

λn

(
{α ∈ Rn : gα(A) is bounded}

)
> 0.

Without loss of generality, we may assume that g ∈ V ; that is, g(A) ⊂ [−d, d]
for some d > 0. Since {α ∈ Rn : gα(A) is bounded} has positive n-dimensional
measure, there must exist n linearly independent vectors {vi} such that g+v∗i ∈ V ;
that is, there exist scalars ci > 0 such that the functions g+v∗i map A into [−ci, ci].
Thus A is contained in the set

n⋂
i=1

(v∗i )−1
(
[−ci − d, ci + d]

)
,

a bounded solid polygon. This contradiction establishes that V is shy. �

Example 3.10 ([24]). This result establishes the prevalence of hyperbolicity for
periodic orbits of maps. We say that a periodic point x of period p for a map
f : Rn → Rn is hyperbolic if Dfp(x) has no eigenvalues of norm 1. For 1 6 k 6 ∞,
almost every Ck map on Rn has the property that all of its periodic points are
hyperbolic. One establishes this result by first fixing the period p and proving that
almost every Ck map on Rn has the property that all of its periodic points of period
p are hyperbolic. The space of polynomial functions of degree at most 2p−1 serves
as a probe. Intersecting over p ∈ N finishes the argument because the countable
intersection of prevalent sets is prevalent.

4. Relative Prevalence

Suppose that a parameter is constrained to vary over a shy subset of the ambient
vector space. This situation arises freqently in dynamical systems and economics.
In order to remain applicable, the notion of prevalence must be relativized. Let C
be a convex subset of a completely metrizable topological vector space X. We wish
to define shyness and prevalence relative to C. One could relativize the notion of
shyness simply by adding the requirement that the measure µ be supported on C.
However, this relativization does not lead to a theory that satisfies relative versions
of Axioms 1-5. To gain some understanding of the difficulty, consider the proof
that the union of two shy sets is shy. Let S1 and S2 be shy Borel subsets of X.
There exist compactly supported measures µ1 and µ2 such that

µ1(S1 + x) = 0 = µ2(S2 + x)

for every x ∈ X. The convolution µ1 ∗ µ2 has compact support and satisfies

µ1 ∗ µ2

(
(S1 ∪ S2) + x

)
= 0
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for every x ∈ X. Therefore, S1∪S2 is shy. Notice that the convolution is supported
on S1+S2. Consequently, if µ1 and µ2 are supported on C, then µ1∗µ2 is supported
on C + C and not on C.

Anderson and Zame [2] have formulated relative notions of shyness and preva-
lence that satisfy relative versions of Axioms 1-5. The definition is quite subtle due
to the delicate issue of supports.

Definition 4.1 ([2]). Let X be a topological vector space and let C ⊂ X be a
convex subset which is completely metrizable in the relative topology induced from
X. Let c ∈ C. We say that a universally measurable set E ⊂ C is shy in C at c
if for each 1 > δ > 0 and each neighborhood W of 0 in X, there is a regular Borel
probability measure µ on X with compact support such that

suppµ ⊂
(
δ(C − c) + c

)
∩ (W + c)

and µ(E + x) = 0 for every x ∈ X. Notice that by convexity,

δ(C − c) + c = δC + (1− δ)c ⊂ C.

We say that E is shy in C if it is shy at each point c ∈ C. An arbitrary subset
F ⊂ C is shy in C if it is contained in a shy universally measurable set. A subset
Y ⊂ C is prevalent in C if its complement C \ Y is shy in C.

Remark 4.2. Recall that a subset C ⊂ X is universally measurable if it is mea-
surable with respect to the completion of every regular Borel probability measure
on X.

The definition of relative prevalence may seem inadequate because of the ap-
parent special role played by the point c ∈ C. In fact, relative prevalence is a
homogeneous property.

Proposition 4.3 ([2]). If E is shy at some point c ∈ C, then E is shy at every
point of C and therefore E is shy in C.

Relative prevalence satisfies relative versions of the genericity axioms.

Proposition 4.4 ([2]). Let C be a completely metrizable convex subset of a topo-
logical vector space X. The following hold.

(1) No relatively open subset of C is shy in C.
(2) Every subset of a set that is shy in C is shy in C.
(3) The countable union of sets that are shy in C is shy in C.
(4) If E is shy in C, then E + x is shy in C + x for every x ∈ X.
(5) If X = Rn and C has nonempty interior in X, then E ⊂ C is shy in C if

and only if the Lebesgue measure of E is zero.

Relative prevalence generalizes the global notion of Christensen, Hunt, Sauer,
and Yorke. If C = X, then a Borel set E ⊂ C is shy in C if and only if E is shy in
the sense of Christensen, Hunt, Sauer, and Yorke. A useful sufficient condition for
relative shyness may be expressed in terms of finite-dimensional subspaces.

Definition 4.5. A universally measurable subset E ⊂ C is k-shy in C if there
is a k-dimensional subspace P ⊂ X such that λP (C + a) > 0 for some a ∈ X and
λP (E + x) = 0 for every x ∈ X. An arbitrary subset F ⊂ X is k-shy in C if it is
contained in a k-shy universally measurable set. The complement of a k-shy set in
C is said to be k-prevalent in C .
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Proposition 4.6. Every set that is k-shy in C is shy in C.

As mentioned previously, the subtlety in the definition of relative prevalence
arises from the delicate issue of supports. We show that if either of the two require-
ments on the supports of the measures were eliminated from the definition, then
relative shyness would no longer be closed under countable unions. We construct
the examples in the cone L1

+[0, 1] = {f ∈ L1[0, 1] : f > 0, a shy subset of L1[0, 1].
Let λ be Lebesgue measure on [0, 1]. For f ∈ L1[0, 1] and s ∈ [0, 1], let fs be the
translation defined by

fs(t) = f(t− s),
where the subtraction is computed modulo 1. We begin with a preliminary lemma.

Lemma 4.7. Let U ⊂ [0, 1] be a dense open set with λ(U) < 1, and let f = 1−χU

be the characteristic function of the complement of U . If A ⊂ [0, 1] is a set of
positive Lebesgue measure, then ∥∥∥∥ inf

α∈A
fα

∥∥∥∥
1

= 0.

We now weaken the definition of relative shyness in two different ways. Each
alternative defines a notion that is not closed under countable unions.

Definition 4.8. Let X be a topological vector space and let C ⊂ X be a convex
subset that is completely metrizable in the relative topology induced from X. Let
c ∈ C. We say that a universally measurable set E ⊂ C is shy-1 in C at c if for
each neighborhood W of 0 in X, there is a regular Borel probability measure µ on
X with compact support such that

suppµ ⊂ C ∩ (W + c),

and µ(E + x) = 0 for every x ∈ X. If E is shy-1 at some point c ∈ C, then E is
shy-1 at every point of C and we say that E is shy-1 in C.

Definition 4.9. Let X be a topological vector space and let C ⊂ X be a convex
subset that is completely metrizable in the relative topology induced from X. Let
c ∈ C. We say that a universally measurable set E ⊂ C is shy-2 in C at c if for
each 1 > δ > 0, there is a regular Borel probability measure µ on X with compact
support such that

suppµ ⊂
(
δ(C − c) + c

)
,

and µ(E + x) = 0 for every x ∈ X. If E is shy-2 at some point c ∈ C, then E is
shy-2 at every point of C and we say that E is shy-2 in C.

Example 4.10. We define a convex set C ⊂ L1
+ such that C = K ∪ Y where K

and Y are shy-1 in C. Let U ⊂ [0, 1] be an open dense set with λ(U) < 1. Let
f = 1− χU and set

K =
{
fs : s ∈ [0, 1]

}
⊂ L1

+.

Let C be the closed convex hull of K, a compact convex subset of L1. Set Y =
C \ K. We construct probability measures λα and λβ supported on C for which
λα(g+Y ) = 0 and λβ(g+K) = 0 for every g ∈ L1. Define mappings α, β : [0, 1] → C
by

α(s) = fs,

β(s) =
2
3
fs +

1
3
f1−s.
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Let λα and λβ be the image measures λα = α∗(λ) and λβ = β∗(λ).
We show that λα(g + Y ) = 0 for every g ∈ L1. Let g ∈ L1. If g = 0, then there

is nothing to prove because Y is disjoint from K, the support of λα. Suppose by
way of contradiction that g 6= 0 and that λα(g + Y ) > 0. Write

A =
{
s ∈ [0, 1] : fs − g ∈ Y

}
.

By hypothesis, λ(A) = λα(g + Y ) > 0. For each s ∈ A, we have

fs − g = fs − g+ + g− > 0

because Y ⊂ L1
+. Since fs > 0 and min{g+, g−} = 0, it follows that fs > g+ for

each s ∈ A. By Lemma 4.7, ∥∥∥∥ inf
s∈A

fs

∥∥∥∥
1

= 0

and therefore g+ = 0. Consequently, for each s ∈ A we have fs − g = fs + g−. If
fs − g ∈ K for some s ∈ A, then

1− λ(U) = ‖fs − g‖1

= ‖fs‖1 + ‖g−‖1

= 1− λ(U) + ‖g−‖1,

so g− = 0. Therefore g = 0, a contradiction. Similarly, one may show that
λβ(g + K) = 0 for every g ∈ L1. The above arguments may be carried out with
λε

α and λε
β , the normalized images of the restriction of Lebesgue measure to [0, ε],

for any ε > 0. Consequently, by choosing ε sufficiently small, the supports of λε
α

and λε
β can be chosen to reside in translates of arbitrarily small neighborhoods of

0 ∈ L1.

Example 4.11. We define a collection {Cn ⊂ L1
+ : n ∈ N} such that

⋃∞
n=1 Cn =

L1
+ and each Cn is shy-2 in L1

+. For each n ∈ N, let pn = χ[0,1/n] and let

Cn =
{
y ∈ L1

+ : ‖pny‖1 6 1
}
.

It is clear that each Cn is closed in L1
+, that Cn ⊂ Cn+1, and that

⋃∞
n=1 Cn = L1

+.
We construct compactly supported probability measures µn for which µn(Cn+g) =
0 for every g ∈ L1, and for which the supports suppµn all sit in a bounded subset
of L1

+. Setting c = 0, we conclude that each Cn is shy-2 in L1
+ at 0 and therefore

each Cn is shy-2 in L1
+. For fixed n, let Un ⊂ [0, 1] be a dense open set such that

ρn = λ
(
Un ∩ [0, 1/n]

)
<

1
n
,

σn = λ
(
Un ∩ [1/n, 1]

)
<
n− 1
n

.

Define fn ∈ L1
+ by

fn(t) =

{
3n

1−npn
(1− χUn(t)), if t 6 1

n ;
3n

n−1−nσn
(1− χUn(t)), if t > 1

n .

Observe that ‖fn‖1 = 6 and that ‖pnfn‖1 = 3. By the continuity of translation,
there exists 0 < γn < 1/n such that ‖(fn)s‖1 = 6 and ‖pn(fn)s‖1 > 2 for each
s ∈ [0, γn]. Define αn : [0, γn] → L1

+ by αn(s) = (fn)s and let λn = α∗n(λ/γn).
Notice that λn is a probability measure and that suppλn = αn([0, γn]) is a compact
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subset of L1
+. Arguing as in Example 4.10, one may show that λn(Cn + g) = 0 for

every g ∈ L1.

5. Equilibrium in Financial Models

We consider the equilibrium foundations of continuous-time finance. The con-
tinuous in time capital asset pricing model (CAPM) of Breeden is the most funda-
mental model in the field. See [2] and the references contained therein for details.
For this discussion, we shall only need the following properties of the model. The
economy consists of n agents and each agent i is associated with an endowment
ei ∈ L2

+. Araujo and Monteiro [3] prove that the set of endowments (e1, . . . , en) for
which an equilibrium exists is first category in (L2

+)n. Therefore, from the topo-
logical point of view, most endowments lead to an economy for which equilibrium
does not exist. The notion of prevalence leads to a dramatically different conclusion
about generic equilibrium existence.

Duffie and Zame [12] prove that if the aggregate endowment
∑n

i=1 ei is uni-
formly bounded away from zero, then there exists an equilibrium. This scenario is
prevalent, as the following result indicates.

Theorem 5.1 ([2]). The set of endowments

{(e1, . . . , en) ∈ (L2
+)n :

n∑
i=1

ei is uniformly bounded away from zero}

is 1-prevalent in (L2
+)n.

This theorem follows from a result for general Banach lattices.

Theorem 5.2. For every Banach lattice X and every e ∈ X+, the set

P = {x ∈ X+ : x > γe for some γ > 0}

is 1-prevalent in X+.

Proof. The set P is a Borel set. Let E = X+\P . Let V ⊂ X be the one-dimensional
subspace spanned by e, and let x ∈ X. Recall that λV denotes Lebesgue measure
on V . We show that V ∩(E+x) is either empty or a singleton. If this is not the case,
there exist real numbers t1 > t2 and elements w1, w2 ∈ E such that t1e = w1 + x
and t2e = w2 + x. Then

w1 = w2 + (t1 − t2)e > (t1 − t2)e,

so that w1 ∈ P . This contradiction establishes that V ∩ (E + x) is either empty or
a singleton. Therefore, λV (E + x) = 0. Since λV (X+) > 0, we conclude that P is
1-prevalent in X+. �

6. Prevalence in Nonlinear Spaces

Infinite-dimensional spaces may possess no natural linear structure. Kaloshin
[26, 27] has extended the notion of prevalence to the space of smooth mappings
between two manifolds, a fundamental object in dynamical systems and singularity
theory. Kaloshin bases his extension of prevalence on Kolmogorov’s heuristic sug-
gestion that the infinite-dimensional problem may be reduced to a finite-dimensional
one [1]:
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In order to obtain negative results concerning insignificant or ex-
ceptional character of some phenomenon, we shall apply the follow-
ing, somewhat haphazard, technique: If in a class K of functions
f one can introduce a finite number of functionals {F1, F2, . . . , Fr}
which in some sense can naturally be considered as taking generally
arbitrary values (F1(f) = C1, F2(f) = C2, . . . , Fr(f) = Cr) from
some region in the r-dimensional space of points C = (C1, . . . , Cr),
then any phenomenon that can take place only if C belongs to a set
of zero r-dimensional measure will be regarded as exceptional and
subject to neglect.

Let Ck(M,N) denote the space of mappings of a smooth manifold M into a
smooth manifold N of class Ck. Endow Ck(M,N) with the Whitney (strong) Ck

topology. Let Dn ⊂ Rn be the closed unit ball. The space Ck(M × Dn, N) may
be thought of as the space of n-parameter families {fε : ε ∈ Dn} ⊂ Ck(M,N),
Ck-smoothly depending on the parameter.

Definition 6.1. Let n be a positive integer. A set P ⊂ Ck(M,N) is said to be
strictly n-prevalent if there exists an open, dense set of n-parameter families
F (P ) ⊂ Ck(M ×Dn, N) such that the following two conditions hold.

(1) For each n-parameter family {fε : ε ∈ Dn} ∈ F (P ), the set {ε ∈ Dn : fε /∈
P} has Lebesgue measure zero.

(2) For each f ∈ Ck(M,N), there exists a family {fε : ε ∈ Dn} ∈ F (P ) such
that f0 = f .

Definition 6.2. A set P ⊂ Ck(M,N) is said to be n-prevalent if P can be
represented as the intersection of a countable number of strictly n-prevalent sets.

The notion of n-prevalence satisfies analogues of the genericity axioms. In par-
ticular, if P ⊂ RN is an n-prevalent set for some n < N , then P is a set of full
measure in RN . In order to relate n-prevalence to the notion of prevalence in linear
spaces, we introduce a local form of prevalence for linear spaces.

Definition 6.3. Let X be a completely metrizable topological vector space. A set
P ⊂ X is locally shy if each point in X has a neighborhood whose intersection
with P is shy. The complement of a locally shy set is said to be locally prevalent.

All shy sets are locally shy. It is not known if the converse holds in general. Nev-
ertheless, if X is separable then local shyness implies shyness. The space Ck(M,N)
is a separable Banach manifold. Therefore, following Kaloshin, it is natural to de-
fine a nonlinear Christensen-Hunt-Sauer-Yorke (CHSY)-shy set in terms of Banach
charts.

Definition 6.4. The set S ⊂ Ck(M,N) is said to be nonlinear CHSY-shy if for
every mapping f ∈ Ck(M,N), there exists a Banach chart (ψ,U) such that f ∈ U
and ψ(S ∩ U) is shy in the corresponding Banach space. The set P ⊂ Ck(M,N)
is said to be nonlinear CHSY-prevalent if the complement of P is nonlinear
CHSY-shy.

Observe that if Ck(M,N) is a Banach space, then local shyness is equivalent to
nonlinear CHSY-shyness.

Proposition 6.5. If P ⊂ Ck(M,N) is an n-prevalent set, then P is nonlinear
CHSY-prevalent.
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Kaloshin [26, 27] reformulates several classical theorems of singularity theory
and the geometric theory of dynamical systems from the prevalent point of view.
In particular, he establishes prevalent versions of the Whitney embedding theorem,
Mather’s stability theorem, and the Kupka-Smale theorem.

7. Topological Entropy and Periodic Orbit Growth Rate

Let M be a finite-dimensional smooth compact manifold with dim(M) > 2. Let
Diffr(M) be the space of Cr diffeomorphisms of M , an open subset of Cr(M,M).
Topological entropy, denoted h(f), is the most important numerical invariant re-
lated to orbit growth. This quantity describes the total exponential complexity of
the orbit structure. Roughly speaking, it represents the exponential growth rate
for the number of orbit segments distinguishable with arbitrarily fine but finite
precision.

We consider the problem of how fast the number of periodic points with period n
grows as a function of n for a generic diffeomorphism of M . Bowen has conjectured
that generically the growth rate is exponential with exponent given by the topolog-
ical entropy. It turns out that the prevalent behavior for the growth of the number
of periodic points contrasts sharply with the topologically generic behavior. While
for prevalent diffeomorphisms the growth rate is not much faster than exponential,
arbitrarily fast growth is Baire generic.

Let f ∈ Diffr(M). Define

Pn(f) = #{x ∈M : x = fn(x)},
P iso

n (f) = #{x ∈M : x = fn(x) and y 6= fn(y) for y 6= x in some nbd of x}.
The number of isolated points of period n is considered for technical reasons.

Definition 7.1. A diffeomorphism f ∈ Diffr(M) is said to be an Artin-Mazur
diffeomorphism (AM diffeomorphism) if the number of isolated periodic orbits
of f grows at most exponentially fast. That is, there exists C > 0 such that

P iso
n (f) 6 exp(Cn)

for all n ∈ Z+.

Artin and Mazur [4] prove that for 0 6 r 6 ∞, AM diffeomorphisms are dense
in Diffr(M). The theorem of Artin and Mazur may be extended by considering the
hyperbolicity of the periodic orbits. A point x ∈M of period n for f is hyperbolic
if dfn(x) has no eigenvalues of modulus one.

Definition 7.2. A diffeomorphism f ∈ Diffr(M) is said to be a strongly Artin-
Mazur diffeomorphism if all periodic points of f are hyperbolic and if there
exists C > 0 such that

Pn(f) 6 exp(Cn)
for all n ∈ Z+.

Kaloshin [28] demonstrates that for 0 6 r < ∞, strongly AM diffeomorphisms
are dense in Diffr(M). The set of AM diffeomorphisms spectacularly fails to be
topologically generic in Diffr(M).

Definition 7.3. Let (an) be a sequence. We say that f ∈ Diffr(M) has (an)-
growth if there exists a subsequence (ank

) such that

P iso
nk

(f) > ank
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for all k ∈ Z+. We say that G ⊂ Diffr(M) has (an)-growth if every element of G
has (an)-growth.

Theorem 7.4 ([29]). For any 2 6 r < ∞, there exists an open set N ⊂ Diffr(M)
with the following property. For each sequence (an), N has a residual subset R(an)

with (an)-growth.

In particular, arbitrarily fast growth is topologically generic in N. Since the
topological entropy of any Cr (r > 1) diffeomorphism of M is finite, it follows that
the equation

h(f) = lim sup
n→∞

logPn(f)
n

is not topologically generic. Therefore, Bowen’s conjecture is false.
Despite the preceding results, it seems natural that the growth rate of the number

of periodic points for a randomly chosen diffeomorphism should not be superexpo-
nential. This is indeed the case. Hunt and Kaloshin have proven the following
remarkable result.

Theorem 7.5 ([30]). Let 1 < r 6 ∞. There exists a prevalent set S ⊂ Diffr(M)
such that for every f ∈ S, we have the following stretched exponential bound. For
all δ > 0, there exists C = C(δ) > 0 such that

Pn(f) 6 exp(Cn1+δ).

Moreover, it is possible to obtain a bound on the decay of the hyperbolicity of
the periodic points as a function of the period.

Definition 7.6. The hyperbolicity of a linear operator L : RN → RN , denoted
γ(L), is given by

γ(L) = inf
φ∈[0,1)

inf
|v|=1

|Lv − exp(2πiφ)v|.

For a periodic point x = fn(x), its hyperbolicity γn(x, f), is defined as the hyper-
bolicity of the derivative dfn(x). That is, γn(x, f) = γ(dfn(x)).

Minimizing the hyperbolicity over a given period, define

γn(f) = min
{x:x=fn(x)}

γn(x, f).

For a prevalent diffeomorphism f , γn(f) decays at a stretched exponential rate.

Theorem 7.7 ([30]). Let 1 < r 6 ∞. There exists a prevalent set S ⊂ Diffr(M)
such that for every f ∈ S, we have the following stretched exponential bound. For
all δ > 0, there exists C = C(δ) > 0 such that

γn(f) > exp(−Cn1+δ).

Theorem 7.5 provides a partial solution to the following open problem posed by
Arnold.

Problem 7.8. Prove that a prevalent diffeomorphism f ∈ Diffr(M) is an Artin-
Mazur diffeomorphism.
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8. Infinite-Dimensional Dynamical Systems

The theory of dynamical systems has illuminated the nature of the asymptotic
behavior of finite-dimensional systems. Inspired by this success, the methods of
dynamical systems have been brought to bear on the infinite-dimensional systems
generated by dissipative partial differential equations. Surprisingly, these a priori
infinite-dimensional systems often have finite-dimensional global attractors. If a
system possesses a global attractor, the study of the asymptotic behavior of the
system essentially reduces to the analysis of the dynamics on the attractor.

We consider a dissipative partial differential equation written as an evolution
equation

(8.1)
du

dt
= F (u)

on a Hilbert space H. The evolution equation generates a semigroup {S(t) : t > 0}
such that for any initial condition u0 ∈ H, there exists a unique solution to (8.1)
given by u(t, u0) = S(t)u0. Using the dissipative nature of the equation, one can
prove the existence of a compact set A ⊂ H such that S(t)A = A for all t ∈ R and
dist(S(t)D,A) → 0 as t→∞ for all bounded sets D ⊂ H.

A priori, A need not be a finite-dimensional set. Surprisingly, many evolution
equations generate finite-dimensional attractors. The remarkable Sobolev-Lieb-
Thirring inequalities [19, 32] have been used to establish physically relevant upper
bounds on the box-counting and Hausdorff dimensions of the global attractors of
many evolution equations. Examples include nonlinear wave equations, reaction-
diffusion equations, and the two-dimensional Navier-Stokes system.

The existence of a finite-dimensional global attractor A leads to a fundamental
question. In what sense are the dynamics on A finite-dimensional? This question
is of great theoretical and computational importance, the latter because any nu-
merical simulation of a partial differential equation is necessarily finite-dimensional.
Ideally, we would like to construct a finite-dimensional dynamical system that com-
pletely describes the dynamics on A. Approaches to this problem fall into two
general classes.

The dynamics on A may be studied intrinsically by viewing A as a subset of
the ambient phase space H. The theory of inertial manifolds seeks to find a finite-
dimensional Lipschitz manifold containing A that is invariant under the dynamics
and that attracts all trajectories at an exponential rate. The inertial manifold
may be used to reduce the asymptotic dynamics of (8.1) to a finite-dimensional set
of ordinary differential equations, the ‘inertial form’ of (8.1). Unfortunately, the
known conditions that imply the existence of an inertial manifold are very restric-
tive. In particular, the existence of an inertial manifold for the two-dimensional
Navier-Stokes equations remains an open problem.

Although the global attractor is finite-dimensional, estimates of its dimension
may be prohibitively large. Birnir and Grauer [9] suggest that the complexity
of the situation may be reduced by considering only the essential core of A, the
basic attractor. The basic attractor describes the asymptotic behavior of a typical
trajectory. We now make this idea precise.

Definition 8.1. Let M be invariant under the action of the semigroup {S(t)}.
The basin of attraction of M, denoted basin(M), is the set of initial conditions
u0 ∈ H such that S(t) → M.
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By definition, basin(A) = H. We isolate the smallest part of A that attracts a
prevalent set.

Definition 8.2. An invariant set B ⊂ H is a basic attractor if the basin of
attraction of B is prevalent and if B is minimal with respect to this property.
Minimality here means that there exists no strictly smaller B′ ⊂ B with basin(B) ⊂
basin(B′) up to shy sets.

Generalizing a theorem of Milnor [37], Birnir [7, 8] proves that the global attrac-
tor A may be decomposed into a basic attractor and a negligible remainder.

Theorem 8.3. The global attractor A may be written as the union of a basic at-
tractor B and a remainder C such that basin(B) is prevalent and basin(C)\basin(B)
is shy.

In physical experiments or numerical simulations, one expects to see only the
basic attractor after a sufficiently long transient period. For some systems, the
basic attractor is low-dimensional and amenable to analysis. The viscous Moore-
Greitzer equation is an example of such a system. This equation describes the flow
of air through turbomachines such as jet engines. Birnir and Hauksson [6] conduct
a detailed study of the basic attractor associated with the Moore-Greitzer model.

The approaches discussed thus far are intrinsic in the sense that they view A in
its natural setting. Viewing the problem extrinsically, one tries to embed A into
an appropriate Euclidean space Rm and then construct a dynamical system on Rm

that replicates the dynamics on A. The following would be ideal.

Conjecture 8.4 ([43]). For some m, comparable with the dimension of A, there
exists a map ϕ : H → Rm that is injective on A and a smooth ordinary differential
equation on Rm that replicates the dynamics on A. More precisely, the ordinary
differential equation generates a flow {T (t)} and a global attractor X such that

T (t)
∣∣
X

= ϕ ◦ S(t) ◦ ϕ−1.

Currently this conjecture lies beyond reach, although some progress has been made.

The extrinsic approach requires that the attractor A be parametrized by finitely
many coordinates. If ϕ : H → Rm is injective on A, then ϕ−1 provides such
a parametrization. The search for a nice class of parametrizations motivates the
following general questions.

(1) How is the dimension of a set or of a measure affected by a generic projection
into a finite-dimensional Euclidean space?

(2) Given a set, under what conditions is a generic projection one-to-one on
the set? How regular is the inverse?

By projection, we mean simply a (possibly nonlinear) mapping into a finite-
dimensional Euclidean space. These general questions address various aspects of
the accuracy of projections. We now discuss recent progress on these problems.

8.1. The Dimension-Theoretic Perspective. One may define the dimension of
an attractor in many different ways. Setting aside dynamics, the attractor may
be viewed as a compact set of points in a metric space. Viewing the attractor
in this light, the dimension of the attractor may be defined as the box-counting
dimension or the Hausdorff dimension of the attracting set. Measure-dependent
notions of attractor dimension take into account the distribution of points induced



PREVALENCE 19

by the dynamics and are thought to be more accurately measured from numerical or
experimental data. One often analyzes the ‘natural measure,’ the probability mea-
sure induced by the statistics of a typical trajectory that approaches the attractor.
Natural measure is not known to exist for arbitrary systems, but it does exist for
Axiom A attractors and for certain classes of systems satisfying conditions weaker
than uniform hyperbolicity. See [23, 50] for expository discussions of systems that
are known to have natural measures.

The dimension spectrum (Dq spectrum) characterizes the multifractal structure
of an attractor. Given a Borel measure µ with compact support X in some metric
space, for q > 0 and q 6= 1 let

Dq(µ) = lim
ε→0

log
∫

X

[
µ(B(x, ε))

]q−1
dµ(x)

(q − 1) log ε

provided the limit exists, where B(x, ε) is the ball of radius ε centered at x. If
the limit does not exist, define D+

q (µ) and D−
q (µ) to be the lim sup and lim inf,

respectively. Let
D1(µ) = lim

q→1
Dq(µ),

again provided the limit exists. This spectrum includes the box-counting dimension
(D0), the information dimension (D1), and the correlation dimension (D2). The
Hausdorff dimension of a set X may be recovered from the dimension spectrum via
a variational principle. Let M(X) denote the set of Borel probability measures on
X. The Hausdorff dimension of X, denoted dimH(X), may be expressed in terms
of the lower correlation dimension of measures supported on X [14]. We have

dimH(X) = sup
µ∈M(X)

D−
2 (µ).

We first consider the case of a compactly supported measure in Rn. The following
general principles express the character of the finite-dimensional results.

(1) If an (m − ε)-dimensional measure is projected into m-dimensional space,
then generically its dimension is preserved.

(2) If an (m+ε)-dimensional measure is projected tom-dimensional space, then
typically the projected measure is absolutely continuous with a density in
L2.

These principles were first discovered by Marstrand, Kaufman, and Mattila in
the study of orthogonal projections. The following results make these principles
precise.

Theorem 8.5 (Preservation of Hausdorff Dimension [45]). Let X ⊂ Rn be a com-
pact set. For almost every function f ∈ C1(Rn,Rm), one has

dimH(f(X)) = min{m,dimH(X)}.

Theorem 8.6 (Preservation of the Dimension Spectrum [21]). Let µ be a Borel
probability measure on Rn with compact support and let q satisfy 1 < q 6 2. Assume
that Dq(µ) exists. Then for almost every function f ∈ C1(Rn,Rm), Dq(f(µ)) exists
and is given by

Dq(f(µ)) = min{m,Dq(µ)}.

Theorem 8.7 (Smoothness of Projections [42]). Let µ be a Borel probability mea-
sure on Rn with correlation dimension greater than m + 2γ. Then for a prevalent
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set of C1 maps f : Rn → Rm, the image of µ under f has a density with at least γ
fractional derivatives in L2(Rm).

For the preservation results, the space C1(Rn,Rm) can be replaced by any space
that contains the linear functions from Rn to Rm and is contained in the locally
Lipschitz functions. Theorem 8.5 extends to smooth functions a result of Mattila
[35] (generalizing earlier results of Marstrand [34] and Kaufman [31]) that makes
the same conclusion for almost every linear function from Rn to Rm, in the sense of
Lebesgue measure on the space of m-by-n matrices. Theorems 8.5 and 8.6 and their
predecessors follow from a potential-theoretic characterization of the dimensions
involved. Roughly speaking, the dimension is the largest exponent for which a
certain singular integral converges. Precisely speaking, we have the following.

Proposition 8.8 ([21]). If q > 1 and µ is a Borel probability measure, then

(8.2) D−
q (µ) = sup

{
s > 0 :

∫
X

(∫
X

dµ(y)
|x− y|s

)q−1

dµ(x) <∞

}
.

Sauer and Yorke [45] establish (8.2) for q = 2. Proposition 8.8 generalizes the
result of Sauer and Yorke to a significant part of the dimension spectrum.

Suppose now that the ambient space is not finite-dimensional. Many infinite-
dimensional dynamical systems have been shown to have compact finite-dimensional
attractors. Such attractors exist for a variety of the evolution equations of math-
ematical physics, including the Navier-Stokes system, various classes of reaction-
diffusion systems, nonlinear dissipative wave equations, and complex Ginzburg-
Landau equations. The remarkable Sobolev-Lieb-Thirring inequalities [32, 19] have
been invoked to establish physically significant upper bounds on attractor dimen-
sion in a number of cases. Nevertheless, a fundamental question remains. In what
sense are the dynamics on the attractor finite-dimensional? While some progress
has been made in answering this question, the problem remains fundamentally
open.

When the ambient space is not finite-dimensional, one does not expect a dimen-
sion preservation result analogous to Theorem 8.5 or Theorem 8.6 to hold. We
express the extent to which the dimension spectrum is affected by a generic projec-
tion from a Banach space to Rm in terms of the thickness exponent. This exponent
measures how well a compact subset X of a Banach space B can be approximated
by finite-dimensional subspaces of B.

Definition 8.9 (Thickness Exponent). The thickness exponent τ(X) of a com-
pact set X ⊂ B is defined as follows. Let d(X, ε) be the minimum dimension of all
finite-dimensional subspaces V ⊂ B such that every point of X lies within ε of V ;
if no such V exists, then d(X, ε) = ∞. Let

τ(X) = lim sup
ε→0

log d(X, ε)
log(1/ε)

.

There is no general relationship between the thickness exponent and the Haus-
dorff dimension. Finite-dimensional disks have thickness exponent zero but can
have arbitrarily high Hausdorff dimension. A countable set, which necessarily has
Hausdorff dimension zero, can have positive thickness. For example, one can show
that the compact subset {0, e2/ log 2, e3/ log 3, . . .} of the real Hilbert space with ba-
sis {e1, e2, . . .} has an infinite thickness exponent. On the other hand, the thickness
exponent is bounded above by the upper box-counting dimension.
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The following theorem states that generically, the dimension of a projection into
Rm will drop by at most a factor of 1/(1 + τ(X)) provided m is sufficiently large.

Theorem 8.10 (Banach Space Projections [39]). Let B be a Banach space, and let
M be any subspace of the Borel measurable functions from B to Rm that contains the
space of linear functions and is contained in the space of locally Lipschitz functions.
Let X ⊂ B be a compact set with thickness exponent τ(X). Let µ be a Borel
probability measure supported on X. For almost every f ∈M , one has

dimH(f(X)) > min
{
m,

dimH(X)
1 + τ(X)

}
,

and, for 1 < q 6 2,

D−
q (f(µ)) > min

{
m,

D−
q (µ)

1 + τ(X)

}
.

The proof of the Banach space theorem uses only the most general information
about the structure of the dual spaceB′. In specific situations, additional knowledge
about the structure of the dual space may yield improved theorems. This does
indeed happen in the Hilbert space setting.

Theorem 8.11 (Hilbert Space Projections [39]). Let H be a Hilbert space, and let
M be any subspace of the Borel measurable functions from H to Rm that contains the
space of linear functions and is contained in the space of locally Lipschitz functions.
Let X ⊂ H be a compact set with thickness exponent τ(X). Let µ be a Borel
probability measure supported on X. For almost every f ∈M , one has

dimH(f(X)) > min
{
m,

dimH(X)
1 + τ(X)/2

}
,

and, for 1 < q 6 2,

D−
q (f(µ)) > min

{
m,

D−
q (µ)

1 + τ(X)/2

}
.

The Banach and Hilbert space projection theorems are sharp in the following
sense. Given d > 0, 1 6 p 6 ∞, and a positive integer m, there is a compact
subset X of Hausdorff dimension d in `p such that for all bounded linear functions
π : `p → Rm,

dimH(π(X)) 6
d

1 + d/q
,

where q = p/(p − 1) [22]. The cases p = ∞ and p = 2 show that Theorems 8.10
and 8.11 are sharp for bounded linear functions on these particular Banach spaces.

Notice that for sets with thickness zero, the Banach space theorem is a dimen-
sion preservation result. On the other hand, suppose τ(X) > 0. The Hausdorff
dimension of X may be noncomputable in the sense that for every positive in-
teger m and every subspace M of the Borel measurable functions from B to Rm,
dimH(f(X)) < dimH(X) for all f ∈ M . In other words, the Hausdorff dimension
of X cannot be ascertained from any finite-dimensional representation of X. It is
thus natural to consider the following fundamental question. Suppose X represents
the global attractor of a flow on a function space generated by an evolution equa-
tion. Under what hypotheses on the flow does one have τ(X) = 0? If one assumes
that the flow is sufficiently dissipative and smoothing, then X will have finite box-
counting dimension. We conjecture that similar dynamical hypotheses imply that
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τ(X) = 0. Friz and Robinson [17] obtain a result of this type. They prove that
if an attractor is uniformly bounded in the Sobolev space Hs on an appropriate
bounded domain in Rm, then its thickness is at most m/s. This result implies that
certain attractors of the Navier-Stokes equations have thickness exponent zero.

8.2. Parametrization of Finite-Dimensional Sets. As discussed previously,
many infinite-dimensional dynamical systems have been shown to have compact
finite-dimensional attractors. One therefore hopes to investigate the dynamics of
such a system in a finite-dimensional setting. First, the attractor must be rep-
resented by finitely many coordinates. This entails projecting the attractor into
a finite-dimensional space and then studying the regularity of the inverse of the
projection. Hunt and Kaloshin [22] establish the following general result.

Theorem 8.12 ([22]). Let X ⊂ B be a compact subset of the Banach space B with
box-counting dimension d and thickness exponent τ(X). Let m > 2d be an integer,
and let α ∈ R satisfy

0 < α <
m− 2d

m(1 + τ(X))
.

Then for almost every C1 function f : B → Rm, there exists C > 0 such that for
all x, y ∈ X,

C|f(x)− f(y)|α > |x− y|.
If B is a real Hilbert space, then α may be chosen such that

0 < α <
m− 2d

m(1 + τ(X)/2)
.

Substantial work on orthogonal projections preceded this result. Mañé [33]
demonstrates the existence of a dense set of injective projections for a compact
subset of a Banach space. Ben-Artzi, Eden, Foias, and Nicolaenko [5] study the
Hölder continuity of the inverse and establish sharp bounds on the Hölder expo-
nent in the case X ⊂ Rn. Foias and Olson [16] give the first proof that the inverse
is Hölder continuous when X is a subset of an infinite-dimensional space. Sauer,
Yorke, and Casdagli [44] bring the notion of prevalence to bear on the parametriza-
tion problem. Theorem 8.12 has been generalized to metric spaces by Okon [38].

Friz and Robinson [18] use the result of Hunt and Kaloshin to obtain parametriza-
tions of certain global attractors in terms of the physical domain. For example, they
consider the two-dimensional Navier-Stokes equations on the two-torus Ω = T2 with
analytic forcing. Let A denote the global attractor of this system. For m compa-
rable to the box-counting dimension of A, the map from A into R2m given by

Ex : u 7→
(
u(x1), . . . , u(xm)

)
is one-to-one between A and its image for almost every x = (x1, . . . , xm) ∈ Ωm

(with respect to 2m-dimensional Lebesgue measure). Therefore, observations at a
finite number of points in the domain can parametrize the attractor.

9. Platonic Embeddings

The fundamental work of Whitney [49] marks the genesis of embedding theory
and its relation to dimension. Often, the sets of interest in dynamical systems pos-
sess intricate structure and are certainly not manifolds. The Whitney embedding
theorem cannot be applied to such sets. Sauer, Yorke, and Casdagli [44] address
the embedding problem for arbitrary compact sets.
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Theorem 9.1 (Fractal Whitney Embedding Prevalence Theorem [44]). Let A ⊂ Rn

be a compact subset of box-counting dimension d, and let m > 2d be an integer.
For almost every C1 map f : Rn → Rm,

(1) f is injective on A, and
(2) if C is a compact subset of a smooth manifold contained in A, then f is an

immersion on C.

One needs to know the box-counting dimension of A in order to apply this
theorem. For both philosophical and empirical reasons, one would like to have the
ability to deduce that A and f(A) are diffeomorphic by examining the structure
of the image f(A). From this point of view, a priori assumptions on A should be
kept to a minimum, if not eliminated entirely. We reformulate the fractal Whitney
embedding prevalence theorem by transferring the dimension hypothesis onto the
image.

Conjecture 9.2. Let A ⊂ Rn be compact. For almost every C1 map f : Rn → Rm,
if dim(f(A)) < m/2, then f is an injective immersion on A.

In order to make this conjecture precise, the notion of dimension and the defini-
tion of injective immersion must be specified. Choosing the correct dimension char-
acteristic requires a delicate touch because Hausdorff dimension and box-counting
dimension will not work. We invoke the notion of tangent dimension.

Definition 9.3 (Generalized Tangent Space [40, 46]). Let A ⊂ Rn be compact and
fix x ∈ A. The direction set DxA consists of the vectors v in the unit sphere Sn−1

for which there exist sequences (yn) ⊂ A and (zn) ⊂ A such that yn → x, zn → x,
and (zn − yn)/|zn − yn| → v. The tangent space at x relative to A, denoted
TxA, is the smallest linear space containing DxA.

Definition 9.4 (Tangent Dimension [40]). The tangent dimension of A, denoted
dimT A, is given by

dimT A = max
x∈A

dim(TxA).

The relationship of the tangent dimension to the commonly used dimension
characteristics is illuminated by the following extension theorem.

Theorem 9.5 (Manifold Extension Theorem [40]). Let A ⊂ Rn be compact and
fix x ∈ A. There exists a neighborhood N of x and a C1 submanifold M such that
TxA = TxM and M ⊃ N ∩A. In particular, dim(M) = dim(TxA).

From the extension theorem it follows that the tangent dimension bounds the
box-counting dimension from above. This observation leads to a Platonic embed-
ding theorem.

Theorem 9.6 (Platonic Whitney Embedding Theorem [40]). Let A ⊂ Rn be com-
pact. For almost every C1 map f : Rn → Rm, if dimT (f(A)) < m/2, then f
is injective on A. Furthermore, f is an immersion on A in the sense that the
derivative Df maps TxA injectively into Tf(x)f(A) for each x ∈ A.

We conjecture that this theorem remains true under the weaker assumption that
dimT (f(A)) < m.
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10. Absolutely Continuous Invariant Measures

Densities have emerged as a fundamental tool for formulating unifying descrip-
tions of phenomena that appear to be statistical in nature. For example, the intro-
duction of the Maxwellian velocity distribution rapidly led to a unification of dilute
gas theory. The field of human demography grew rapidly after the introduction
of the Gompertzian age distribution. In dynamical systems, one studies the set
of invariant measures associated with a transformation. The regularity of these
invariant measures is of fundamental importance. In particular, the existence of an
invariant measure absolutely continuous with respect to Riemannian volume (an
ACIM) suggests stochastic asymptotic behavior.

Expanding dynamical systems generally admit ergodic ACIM with positive Lya-
punov exponents. Tsujii [48] studies a class of dynamical systems for which the
mechanism of overlap and sliding produces ACIM. Let T : S1 × R → S1 × R be
given by

T (x, y) = (`x, λy + f(x))
where ` > 2 is an integer, 0 < λ < 1 is real, and f is a C2 function on S1. The
map T is a skew product over the expanding map τ : x 7→ `x and T contracts fibers
uniformly. From the ergodic perspective, T is simple. There exists an ergodic
probability measure µ on S1 × R for which

lim
n→∞

1
n

n−1∑
i=0

δT i(x) = µ

for Lebesgue almost every x ∈ S1 × R. The measure µ shall be called the SRB
measure for T . Tsujii studies the regularity of this SRB measure.

Observe that if λ` < 1, then T contracts area so µ must be totally singular
with respect to Lebesgue measure. If λ` > 1, then the SRB measure is absolutely
continuous for almost every f . Let D ⊂ (0, 1)×C2(S1,R) be the set of pairs (λ, f)
for which the SRB measure is absolutely continuous with respect to the Lebesgue
measure on S1 × R. Let D0 ⊂ D denote the interior of D.

Theorem 10.1 ([48]). Let `−1 < λ < 1. There exists a finite collection of C∞

functions ϕi : S1 → R, i = 1, . . . ,m, such that for any f ∈ C2(S1,R), the set{
(t1, . . . , tm) ∈ Rm :

(
λ, f +

m∑
i=1

tiϕi

)
/∈ D0

}
has Lebesgue measure zero on Rm. Therefore, (λ, f) ∈ D0 for almost every f ∈
C2(S1,R).

Tsujii has therefore shown that robust absolute continuity of the SRB measure
is prevalent. The ideas behind the proof may be applied to more general skew
products and partially hyperbolic dynamical systems.

11. Equivariant Dynamical Systems

Symmetric dynamical systems play a crucial role in the analysis of an eclectic
array of phenomena. It is important to understand the extent to which the sym-
metries of an attractor reflect the symmetries of the underlying dynamical system.
Let Γ ⊂ O(n) be a compact Lie group acting on Rn. A mapping f : Rn → Rn

is said to be Γ-equivariant if f(γx) = γf(x) for every γ ∈ Γ and x ∈ Rn. For
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x ∈ Rn, the ω-limit set ω(x) consists of the points y ∈ Rn for which there exists a
sequence (ti) such that ti →∞ and f ti(x) → y.

Suppose that A is an ω-limit set for the Γ-equivariant map f . The symmetry
group of A is the subgroup

ΣA = {γ ∈ Γ : γA = A}.
Since A is closed, ΣA is a closed subgroup of Γ. We consider the following questions.
Which closed subgroups of Γ can be realized as the symmetry group of some ω-limit
set? Given an ω-limit set A, what is the symmetry group ΣA?

If A = {x} is a fixed point for f , then ΣA is the isotropy subgroup {γ ∈ Γ : γx =
x}. If A is a periodic orbit, then ΣA contains the isotropy subgroup of the points in
A and is a cyclic extension of this isotropy subgroup. For more complicated ω-limit
sets, the subgroup may be quite large.

The case of a finite symmetry group Γ is well understood. Generally speaking,
ΣA can be any subgroup of Γ. Each subgroup of Γ can be realized by a structurally
stable attractor [15]. The situation is dramatically different when Γ is infinite.
Melbourne and Stewart [36] consider the Abelian case.

If Γ is Abelian, it is typically the case that the symmetry group of an ω-limit set
contains the connected component of the identity Γ0. Suppose that f : Rn → Rn is
a Ck Γ-equivariant map. Let x0 ∈ Rn and let A = ω(x0). We perturb f by smooth
cocycles.

Definition 11.1. A Γ-cocycle is a map φ : Rn → Γ0 satisfying

φ(γx) = γφ(x)γ−1

for all γ ∈ Γ. The space of compactly supported Ck Γ-cocycles is denoted Zk.

Observe that Zk is a group under pointwise multiplication and Zk is Abelian if
Γ0 is Abelian. For each cocycle φ ∈ Zk, define the perturbation fφ by

fφ(x) = φ(x)f(x)

and let Aφ denote the ω-limit set of x0 under fφ. The mapping fφ is called the
extension of f by the cocycle φ and is Γ-equivariant. Melbourne and Stewart
establish that for a generic perturbation φ, Γ0 ⊂ ΣAφ

.

Theorem 11.2 ([36]). Let Γ ⊂ O(n) be an Abelian compact Lie group, and let
A = ω(x0) be an ω-limit set for the Ck Γ-equivariant map f : Rn → Rn. Define

Z = {φ ∈ Zk : Γ0 ⊂ ΣAφ
}.

Then Z is a residual and prevalent subset of Zk.

The prevalence of Z implies that Z is residual because Z is a countable in-
tersection of open sets. This observation is interesting given that prevalence and
topological genericity are independent notions. Under mild assumptions on the
dynamics, this theorem may be extended to the case in which only Γ0 is assumed
to be Abelian.
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Mañé’s projection, J. Math. Anal. Appl. 178 (1993), no. 1, 22–29. MR 94d:58091
6. B. Birnir and H. A. Hauksson, The basic attractor of the viscous Moore-Greitzer equation, J.

Nonlinear Sci. 11 (2001), no. 3, 169–192. MR MR1852939 (2002e:37132)
7. Björn Birnir, Global attractors and basic turbulence, Nonlinear Coherent Structures in Physics

and Biology (K.M. Spatschek and F.G. Mertens, eds.), NATO ASI, vol. 329, Springer-Verlag,
New York, 1994.

8. , Basic attractors and basic control of nonlinear partial differential equations, Ecmi
lecture notes, Chalmers University of Technology and Göteborg University, 2001.
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