Geometry/Topology PhD Qualifying Examination: January 2014

The symbols \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{S}^n denote the natural numbers, the integers, the rational numbers, the real numbers, and the unit sphere in \mathbb{R}^{n+1} , respectively. You are free to use well-known results in your arguments.

1. TOPOLOGY

Problem 1. Let X be a nonempty compact Hausdorff space.

- (a) Prove that X is normal.
- (b) State the Tietze extension theorem.
- (c) Prove that if X is also connected, then either X consists of a single point or X is uncountable.

Problem 2. Give [0,1] the usual topology. Let X be a product of uncountably many copies of [0,1]; view X as the set of tuples (x_{α}) , where α ranges over the nonnegative reals \mathbb{R}^+ and $x_{\alpha} \in [0,1]$ for all $\alpha \in \mathbb{R}^+$. Give X the product topology. Prove that X is not first countable as follows.

- (a) Let $A \subset X$ be the set of tuples (x_{α}) such that $x_{\alpha} = 1/2$ for all but finitely many values of α . Let **0** denote the tuple in X with all entries equal to 0. Prove that $\mathbf{0} \in \overline{A}$.
- (b) Prove that no sequence in A converges to **0**.

Problem 3. The Klein bottle \mathbb{K} is the quotient space obtained by starting with the unit square

$$\left\{(x,y)\in\mathbb{R}^2: 0\leqslant x,y\leqslant 1\right\}$$

and then making the identifications $(0, y) \sim (1, 1 - y)$ for all $y \in [0, 1]$ and $(x, 0) \sim (x, 1)$ for all $x \in [0, 1]$. Use the Seifert/van Kampen theorem to compute the fundamental group of K.

Problem 4. Let $X_1 \supset X_2 \supset X_3 \supset \cdots$ be a nested sequence of nonempty compact connected subsets of \mathbb{R}^n . Prove that the intersection

$$X = \bigcap_{i=1}^{\infty} X_i$$

is nonempty, compact, and connected.

Problem 5. Let p be an odd prime integer. Define $d : \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ as follows. If m = n, set d(m, n) = 0. If $m \neq n$, set d(m, n) = 1/(r+1), where r is the largest nonnegative integer such that p^r divides m-n.

- (a) Prove that d is a metric on \mathbb{Z} .
- (b) With respect to the topology on \mathbb{Z} induced by the metric d, is the set of even integers closed?

Problem 6. Let D^2 denote the closed unit disk in \mathbb{R}^2 . Let $\boldsymbol{v}: D^2 \to \mathbb{R}^2 \setminus \{\mathbf{0}\}$ be a continuous, nonvanishing vector field on D^2 . Prove that there exists a point $z \in \mathbb{S}^1$ at which $\boldsymbol{v}(z)$ points directly inward. Hint: argue by contradiction.

2. Manifold theory

Problem 7. Let $v \in \mathbb{R}^n$ be a nonzero vector. For $c \in \mathbb{R}$, define

$$L_c = \left\{ (\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}^n \times \mathbb{R}^m : \langle \boldsymbol{x}, \boldsymbol{v} \rangle^2 = \| \boldsymbol{y} \|^2 + c \right\}.$$

For $c \neq 0$, show that L_c is an embedded submanifold of $\mathbb{R}^n \times \mathbb{R}^m$ of codimension 1. Here $\|\cdot\|$ denotes the Euclidean norm on \mathbb{R}^m and $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product on \mathbb{R}^n .

Problem 8.

- (a) State the Sard theorem.
- (b) Let $f: \mathbb{S}^1 \to \mathbb{S}^2$ be a smooth map. Prove that f cannot be surjective.

(c) For a plane P in \mathbb{R}^3 , let $\pi_P : \mathbb{R}^3 \to P$ denote orthogonal projection onto P. Suppose that $g: \mathbb{S}^1 \to \mathbb{R}^3$ is a smooth embedding. Prove that there exists a plane P for which $\pi_P \circ g$ is an immersion.

Problem 9. Let (s,t) be coordinates on \mathbb{R}^2 and let (x,y,z) be coordinates on \mathbb{R}^3 . Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by

$$f(s,t) = (\sin(t), st^2, s^3 - 1).$$

- (a) Let X_p be the tangent vector in $T_p \mathbb{R}^2$ defined by $X_p = \frac{\partial}{\partial s} \Big|_p \frac{\partial}{\partial t} \Big|_p$. Compute the push-forward $f_* X_p$.
- (b) Let ω be the smooth 1-form on \mathbb{R}^3 defined by $\omega = dx + xdy + y^2dz$. Compute the pullback $f^*\omega$.

Problem 10. Let θ and γ be smooth 3-forms on \mathbb{S}^7 . Prove that

$$\int_{\mathbb{S}^7} \theta \wedge \mathrm{d}\gamma = \int_{\mathbb{S}^7} \mathrm{d}\theta \wedge \gamma.$$

Hint: recall that if ω is a smooth k-form and η is a smooth l-form, we have

$$\mathbf{d}(\omega \wedge \eta) = \mathbf{d}\omega \wedge \eta + (-1)^k \omega \wedge \mathbf{d}\eta$$