1. Topology

Problem 1. Let X be a nonempty compact Hausdorff space.

(a) Prove that X is normal.

(b) State the Tietze extension theorem.

(c) Prove that if X is also connected, then either X consists of a single point or X is uncountable.

Problem 2. Give $[0, 1]$ the usual topology. Let X be a product of uncountably many copies of $[0, 1]$; view X as the set of tuples (x_α), where α ranges over the nonnegative reals \mathbb{R}^+ and $x_\alpha \in [0, 1]$ for all $\alpha \in \mathbb{R}^+$. Give X the product topology. Prove that X is not first countable as follows.

(a) Let $A \subset X$ be the set of tuples (x_α) such that $x_\alpha = 1/2$ for all but finitely many values of α. Let 0 denote the tuple in X with all entries equal to 0. Prove that $0 \in A$.

(b) Prove that no sequence in A converges to 0.

Problem 3. The Klein bottle K is the quotient space obtained by starting with the unit square $\{(x, y) \in \mathbb{R}^2 : 0 \leq x, y \leq 1\}$ and then making the identifications $(0, y) \sim (1, 1 - y)$ for all $y \in [0, 1]$ and $(x, 0) \sim (x, 1)$ for all $x \in [0, 1]$. Use the Seifert/van Kampen theorem to compute the fundamental group of K.

Problem 4. Let $X_1 \supset X_2 \supset X_3 \supset \cdots$ be a nested sequence of nonempty compact connected subsets of \mathbb{R}^n. Prove that the intersection $X = \bigcap_{i=1}^{\infty} X_i$ is nonempty, compact, and connected.

Problem 5. Let p be an odd prime integer. Define $d : \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ as follows. If $m = n$, set $d(m, n) = 0$. If $m \neq n$, set $d(m, n) = 1/(r+1)$, where r is the largest nonnegative integer such that p^r divides $m - n$.

(a) Prove that d is a metric on \mathbb{Z}.

(b) With respect to the topology on \mathbb{Z} induced by the metric d, is the set of even integers closed?

Problem 6. Let D^2 denote the closed unit disk in \mathbb{R}^2. Let $v : D^2 \to \mathbb{R}^2 \setminus \{0\}$ be a continuous, nonvanishing vector field on D^2. Prove that there exists a point $z \in S^1$ at which $v(z)$ points directly inward. Hint: argue by contradiction.

2. Manifold theory

Problem 7. Let $v \in \mathbb{R}^n$ be a nonzero vector. For $c \in \mathbb{R}$, define

$$L_c = \left\{ (x, y) \in \mathbb{R}^n \times \mathbb{R}^m : \langle x, v \rangle^2 = \|y\|^2 + c \right\}.$$

For $c \neq 0$, show that L_c is an embedded submanifold of $\mathbb{R}^n \times \mathbb{R}^m$ of codimension 1. Here $\|\cdot\|$ denotes the Euclidean norm on \mathbb{R}^m and $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product on \mathbb{R}^n.

Problem 8.

(a) State the Sard theorem.

(b) Let $f : S^1 \to S^2$ be a smooth map. Prove that f cannot be surjective.
(c) For a plane P in \mathbb{R}^3, let $\pi_P : \mathbb{R}^3 \to P$ denote orthogonal projection onto P. Suppose that $g : \mathbb{S}^1 \to \mathbb{R}^3$ is a smooth embedding. Prove that there exists a plane P for which $\pi_P \circ g$ is an immersion.

Problem 9. Let (s, t) be coordinates on \mathbb{R}^2 and let (x, y, z) be coordinates on \mathbb{R}^3. Let $f : \mathbb{R}^2 \to \mathbb{R}^3$ be defined by

$$f(s, t) = (\sin(t), st^2, s^3 - 1).$$

(a) Let X_p be the tangent vector in $T_p \mathbb{R}^2$ defined by $X_p = \frac{\partial}{\partial s}|_p - \frac{\partial}{\partial t}|_p$. Compute the push-forward $f_\ast X_p$.

(b) Let ω be the smooth 1-form on \mathbb{R}^3 defined by $\omega = dx + xdy + y^2dz$. Compute the pullback $f^\ast \omega$.

Problem 10. Let θ and γ be smooth 3-forms on \mathbb{S}^7. Prove that

$$\int_{\mathbb{S}^7} \theta \wedge d\gamma = \int_{\mathbb{S}^7} d\theta \wedge \gamma.$$

Hint: recall that if ω is a smooth k-form and η is a smooth l-form, we have

$$d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta.$$