Geometry/Topology PhD Qualifying Examination August 2013

The symbols \mathbb{N} , \mathbb{Z} , \mathbb{Q} , and \mathbb{R} denote the natural numbers, the integers, the rational numbers, and the real numbers, respectively. You are free to use well-known results in your arguments.

1. TOPOLOGY

Problem 1. Let X and Y be topological spaces and let $f : X \to Y$ be a map. Prove that f is continuous if and only if for every $x \in X$ and every net (z_{α}) such that (z_{α}) converges to x, we have that $(f(z_{\alpha}))$ converges to f(x).

Problem 2. For $n \in \mathbb{N}$, let \mathbb{S}^n denote the unit sphere in \mathbb{R}^{n+1} .

- (a) Prove that \mathbb{S}^n is connected and compact for every $n \in \mathbb{N}$.
- (b) Let \mathbb{R}^{∞} be the space of sequences $(x_i)_{i=1}^{\infty}$ of real numbers such that at most finitely many of the x_i are nonzero. Embedding \mathbb{R}^n into \mathbb{R}^{n+1} via $(x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_n, 0)$, we may view \mathbb{R}^{∞} as the union of the \mathbb{R}^n as n ranges over \mathbb{N} . Define a topology on \mathbb{R}^{∞} by declaring that a set $C \subset \mathbb{R}^{\infty}$ is closed if and only if $C \cap \mathbb{R}^n$ is closed in \mathbb{R}^n for every $n \in \mathbb{N}$. Now let \mathbb{S}^{∞} be the subset of \mathbb{R}^{∞} consisting of the union of the \mathbb{S}^n as n ranges over \mathbb{N} . Prove that \mathbb{S}^{∞} is connected but not compact in \mathbb{R}^{∞} .

Problem 3.

- (a) State the Urysohn lemma.
- (b) Let X be a normal topological space. Suppose that $X = V \cup W$, where V and W are open in X. Prove that there exist open sets V_1 and W_1 such that $\overline{V_1} \subset V$, $\overline{W_1} \subset W$, and $X = V_1 \cup W_1$.

Problem 4. Let A be an annulus bounded by inner circle C_1 and outer circle C_2 . Define a quotient space Q by starting with A, identifying antipodal points on C_2 , and then identifying points on C_1 that differ by $2\pi/3$ radians. Use the Seifert/van Kampen theorem to compute the fundamental group $\pi_1(Q)$.

Problem 5.

Recall that a topological space Y is said to be locally compact if for every $y \in Y$, there exists an open neighborhood U_y of y such that $\overline{U_y}$ is compact.

- (a) Give the definition of a *second countable* topological space.
- (b) Let X be a second countable, locally compact, Hausdorff space. Let $X^+ = X \cup \{\infty\}$ be the one-point compactification of X. Recall that a set V is open in X^+ if and only if V is open in X or $V = X^+ \setminus C$ for some compact set $C \subset X$. Prove that X^+ is second countable.

Problem 6.

- (a) Let X be a path connected topological space and let A be a path connected subset of X. Suppose there exists a continuous map $r: X \to A$ such that r(a) = a for every $a \in A$. Prove that $r_*: \pi_1(X) \to \pi_1(A)$ is surjective.
- (b) Let D^2 denote the closed unit disk in \mathbb{R}^2 and notice that the unit circle \mathbb{S}^1 forms the boundary of D^2 . Prove that there does not exist a continuous map $r: D^2 \to \mathbb{S}^1$ such that r(z) = z for every $z \in \mathbb{S}^1$.

2. Manifold theory

Problem 7. Let $v \in \mathbb{R}^n$ be a nonzero vector. For $c \in \mathbb{R}$, define

$$L_c = \left\{ (\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}^n \times \mathbb{R}^m : \langle \boldsymbol{x}, \boldsymbol{v} \rangle^2 = \|\boldsymbol{y}\|^2 + c \right\}.$$

For $c \neq 0$, show that L_c is an embedded submanifold of $\mathbb{R}^n \times \mathbb{R}^m$ of codimension 1. Here $\|\cdot\|$ denotes the Euclidean norm on \mathbb{R}^m and $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product on \mathbb{R}^n .

Problem 8.

- (a) State the Sard theorem.
- (b) Let $f: \mathbb{S}^1 \to \mathbb{S}^2$ be a smooth map. Prove that f cannot be surjective.

Problem 9. Let G be a Lie group with multiplication $m : G \times G \to G$ defined by m(g,h) = gh and inversion inv : $G \to G$ defined by $inv(g) = g^{-1}$. Let e denote the identity element of G.

- (a) Show that the push-forward map $m_*: T_e G \oplus T_e G \to T_e G$ is given by $m_*(X, Y) = X + Y$.
- (b) Show that the push-forward map $\operatorname{inv}_*: T_e G \to T_e G$ is given by $\operatorname{inv}_*(X) = -X$.
- (c) Show that $m: G \times G \to G$ is a submersion.

Problem 10. Let X be a topological space and let $A \subset X$. A retraction $r : X \to A$ is a map such that r(x) = x for all $x \in A$.

- (a) State the Stokes theorem for smooth orientable manifolds with boundary.
- (b) Let M be a smooth *n*-dimensional compact connected orientable manifold with boundary. Prove that there exists no smooth retraction $r: M \to \partial M$. Hint: proceed by contradiction and consider a nonvanishing smooth (n-1)-form on ∂M .