
Geometry/Topology PhD Qualifying Examination
August 2013

The symbols N, Z, Q, and R denote the natural numbers, the integers, the rational numbers, and the
real numbers, respectively. You are free to use well-known results in your arguments.

1. Topology

Problem 1. Let X and Y be topological spaces and let f : X → Y be a map. Prove that f is continuous
if and only if for every x ∈ X and every net (zα) such that (zα) converges to x, we have that (f(zα))
converges to f(x).

Problem 2. For n ∈ N, let Sn denote the unit sphere in Rn+1.

(a) Prove that Sn is connected and compact for every n ∈ N.

(b) Let R∞ be the space of sequences (xi)
∞
i=1 of real numbers such that at most finitely many of the

xi are nonzero. Embedding Rn into Rn+1 via (x1, . . . , xn) 7→ (x1, . . . , xn, 0), we may view R∞
as the union of the Rn as n ranges over N. Define a topology on R∞ by declaring that a set
C ⊂ R∞ is closed if and only if C ∩Rn is closed in Rn for every n ∈ N. Now let S∞ be the subset
of R∞ consisting of the union of the Sn as n ranges over N. Prove that S∞ is connected but not
compact in R∞.

Problem 3.

(a) State the Urysohn lemma.

(b) Let X be a normal topological space. Suppose that X = V ∪W , where V and W are open in X.
Prove that there exist open sets V1 and W1 such that V1 ⊂ V , W1 ⊂W , and X = V1 ∪W1.

Problem 4. Let A be an annulus bounded by inner circle C1 and outer circle C2. Define a quotient space
Q by starting with A, identifying antipodal points on C2, and then identifying points on C1 that differ by
2π/3 radians. Use the Seifert/van Kampen theorem to compute the fundamental group π1(Q).

Problem 5.
Recall that a topological space Y is said to be locally compact if for every y ∈ Y , there exists an open

neighborhood Uy of y such that Uy is compact.

(a) Give the definition of a second countable topological space.

(b) Let X be a second countable, locally compact, Hausdorff space. Let X+ = X ∪ {∞} be the
one-point compactification of X. Recall that a set V is open in X+ if and only if V is open in X
or V = X+ \ C for some compact set C ⊂ X. Prove that X+ is second countable.

Problem 6.

(a) Let X be a path connected topological space and let A be a path connected subset of X. Suppose
there exists a continuous map r : X → A such that r(a) = a for every a ∈ A. Prove that
r∗ : π1(X)→ π1(A) is surjective.

(b) Let D2 denote the closed unit disk in R2 and notice that the unit circle S1 forms the boundary of
D2. Prove that there does not exist a continuous map r : D2 → S1 such that r(z) = z for every
z ∈ S1.

2. Manifold theory

Problem 7. Let v ∈ Rn be a nonzero vector. For c ∈ R, define

Lc =
{

(x ,y) ∈ Rn × Rm : 〈x , v〉2 = ‖y‖2 + c
}
.

For c 6= 0, show that Lc is an embedded submanifold of Rn × Rm of codimension 1. Here ‖·‖ denotes the
Euclidean norm on Rm and 〈·, ·〉 denotes the Euclidean inner product on Rn.



2

Problem 8.

(a) State the Sard theorem.

(b) Let f : S1 → S2 be a smooth map. Prove that f cannot be surjective.

Problem 9. Let G be a Lie group with multiplication m : G × G → G defined by m(g, h) = gh and
inversion inv : G→ G defined by inv(g) = g−1. Let e denote the identity element of G.

(a) Show that the push-forward map m∗ : TeG⊕ TeG→ TeG is given by m∗(X,Y ) = X + Y .

(b) Show that the push-forward map inv∗ : TeG→ TeG is given by inv∗(X) = −X.

(c) Show that m : G×G→ G is a submersion.

Problem 10. Let X be a topological space and let A ⊂ X. A retraction r : X → A is a map such that
r(x) = x for all x ∈ A.

(a) State the Stokes theorem for smooth orientable manifolds with boundary.

(b) Let M be a smooth n-dimensional compact connected orientable manifold with boundary. Prove
that there exists no smooth retraction r : M → ∂M . Hint: proceed by contradiction and consider
a nonvanishing smooth (n− 1)-form on ∂M .


