Geometry/Topology PhD Qualifying Examination January 2012

The symbols \mathbb{N} , \mathbb{Z} , \mathbb{Q} , and \mathbb{R} denote the natural numbers, the integers, the rational numbers, and the real numbers, respectively.

1. Topology

Problem 1. Let (X, \mathfrak{T}) be a topological space.

- (a) Let D be a directed set and let $p \in X$. What does it mean for a net $(x_{\beta})_{\beta \in D}$ in X to converge to p?
- (b) Let $A \subset X$. Prove that $q \in \overline{A}$ if and only if there exists a net in A that converges to q.
- (c) Prove that X is Hausdorff if and only if every convergent net in X has a unique limit.

Problem 2. (quotient spaces)

- (a) Let $X = \frac{\mathbb{R}}{\sim}$, where the equivalence relation \sim is defined by $x \sim y$ if $x y \in \mathbb{Z}$. Prove that X (with the quotient topology) is homeomorphic to the unit circle \mathbb{S}^1 .
- (b) Let $Y = \frac{\mathbb{R}}{\sim}$, where the equivalence relation \sim is defined by $x \sim y$ if $x y \in \mathbb{Q}$. Prove that the quotient topology on Y is the indiscrete (trivial) topology.

Problem 3. (extension theorems)

- (a) State the Urysohn lemma and the Tietze extension theorem.
- (b) Let (X, \mathcal{T}) be a connected normal topological space that contains at least two points. Prove that X contains uncountably many points.

Problem 4. (continuous bijections)

- (a) Let X and Y be topological spaces with X compact and Y Hausdorff. Prove that if $f: X \to Y$ is a continuous bijection, then f is a homeomorphism.
- (b) Give an example of two topological spaces X and Y and a continuous one-to-one map $f: X \to Y$ such that X and f(X) are not homeomorphic. (Here f(X) is given the relative topology).

Problem 5. Let $X = [0,1]^{\mathbb{N}}$. View X as the space of sequences $(x_n)_{n=1}^{\infty}$ with $x_n \in [0,1]$ for all $n \in \mathbb{N}$. We define two topologies on X. First, let \mathcal{T}_1 be the smallest topology for which the projection map $\pi_i : X \to [0,1]$ defined by $\pi_i((x_n)) = x_i$ is continuous for every $i \in \mathbb{N}$. Second, let \mathcal{T}_2 be the metric topology on X defined by the metric

$$d((x_n), (y_n)) = \sqrt{\sum_{n=1}^{\infty} 2^{-n} |x_n - y_n|^2}.$$

Let $Id: X \to X$ be the identity map. Prove or disprove the following statements.

- (a) The map $\mathrm{Id}: (X, \mathfrak{T}_1) \to (X, \mathfrak{T}_2)$ is continuous.
- (b) The map Id : $(X, \mathcal{T}_2) \to (X, \mathcal{T}_1)$ is continuous.
- (c) The topological spaces (X, \mathcal{T}_1) and (X, \mathcal{T}_2) are homeomorphic.

Problem 6. Let (X, d) be a compact metric space and let $g: X \to X$ be an isometry (d(g(x), g(y)) = d(x, y) for all $x, y \in X$). Prove that g is onto. (Hint: Suppose that g is not onto and let $z \in X \setminus g(X)$. Show that there exists $\varepsilon > 0$ such that $d(y, z) > \varepsilon$ for every $y \in g(X)$. Since X is compact, it can be covered by finitely many balls of radius $\varepsilon/2$. Let N denote the minimal number of balls of radius $\varepsilon/2$ needed to cover X. Now derive a contradiction to the minimality of N.)

2. Smooth manifolds

Problem 7. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be defined by $f(x, y, z) = (x - 1)^2 - yz$. For what values $t \in \mathbb{R}$ is $f^{-1}(t)$ an embedded submanifold of \mathbb{R}^3 of dimension 2? Justify your answer.

Problem 8. Let (s,t) be coordinates on \mathbb{R}^2 and let (x, y, z) be coordinates on \mathbb{R}^3 . Let $f : \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $f(s,t) = (\sin(t), st^2, s^3 - 1).$

(a) Let X_p be the tangent vector in $T_p \mathbb{R}^2$ defined by $X_p = \frac{\partial}{\partial s}\Big|_p - \frac{\partial}{\partial t}\Big|_p$. Compute the push-forward f_*X_p .

(b) Let ω be the smooth 1-form on \mathbb{R}^3 defined by $\omega = dx + xdy + y^2dz$. Compute the pullback $f^*\omega$.

Problem 9. (injective immersions and embeddings)

- (a) Let M and N be smooth manifolds. Give the definition of an injective immersion $f: M \to N$.
- (b) Let $\mathbb{T}^2 = [0,1) \times [0,1)$ be the 2-torus. Let λ be an irrational real number. Prove that the map $\gamma : \mathbb{R} \to \mathbb{T}^2$ defined by $\gamma(t) = (t, \lambda t) \pmod{1}$ is an injective immersion but not an embedding.

Problem 10. Let X be a topological space and let $A \subset X$. A retraction $r: X \to A$ is a map such that r(x) = x for all $x \in A$.

- (a) State the Stokes theorem for smooth orientable manifolds with boundary.
- (b) Let M be a smooth *n*-dimensional compact connected orientable manifold with boundary. Prove that there exists no smooth retraction $r: M \to \partial M$. Hint: proceed by contradiction and consider a nonvanishing smooth (n-1)-form on ∂M .