Abstract: Given a system of n vectors from \mathbb{C}^m, we want to find a subsystem consisting of k vectors so that the expansion of any other vector over this subsystem has the coefficients sufficiently small in modulus. The maximal volume principle allows one to find a subsystem of $k = m$ vectors with a guarantee that all expansions have the coefficients in modulus bounded by 1. If we increase k, then smaller coefficients could be obtained. We present different settings of the problem and some new results and discuss applications to the problem of construction of low-rank approximations to matrices and tensors.