ON THE NUMERICAL SOLUTION OF A NONLINEAR, NON–SMOOTH EIGENVALUE PROBLEM OR WHEN BINGHAM MEETS BRATU:
AN OPERATOR–SPLITTING APPROACH

Abstract

Some years ago, we suggested to a colleague looking for nonlinear saddle-point problems with multiple solutions (in order to test mountain-pass based solution methods) to have a look at the following elliptic one:

\[
\begin{align*}
\text{(BBPV)} & \quad \left\{ \begin{array}{l}
\text{Find } \{ u, \lambda \} \in H^1_0(\Omega) \times \mathbb{R}_+ \text{ such that }
\mu \int_{\Omega} \nabla u \cdot \nabla (v - u) dx + \tau \int_{\Omega} |\nabla v| dx - \int_{\Omega} |\nabla u| dx \geq \lambda \int_{\Omega} e^\sigma (v - u) dx, \forall v \in H^1_0(\Omega), \\
\end{array} \right.
\end{align*}
\]

where \(\Omega \) is a bounded domain of \(\mathbb{R}^2 \), \(\mu \) and \(\tau \) being both \(> 0 \).

(BBPV) is nothing, but the variational formulation of the following nonlinear, non-smooth Dirichlet problem

\[
\text{(BBPE)} \quad \left\{ \begin{array}{l}
- \mu \nabla^2 u + \tau, \partial_j(u) \ni \lambda e^\sigma \text{ in } \Omega, \\
u = 0 \text{ on } \partial \Omega,
\end{array} \right.
\]

where \(\partial_j(u) \) denotes the sub-differential at \(u \) of the convex functional \(j: H^1_0(\Omega) \to \mathbb{R} \) defined by

\(j(v) = \int_{\Omega} |\nabla v| dx \). Suppose that \(\tau \sigma = 0 \) in the above formulations, then the above problem reduces to the celebrated Bratu-Gelfand problem

\[
\left\{ \begin{array}{l}
- \mu \nabla^2 u = \lambda e^\sigma \text{ in } \Omega, \\
u = 0 \text{ on } \partial \Omega.
\end{array} \right.
\]

On the other hand, if, in (BBPV) and (BBPE), one replaces \(\lambda e^\sigma \) by a constant \(\sigma \), the resulting inequalities and equations model the flow of a Bingham visco-plastic medium of viscosity \(\mu \) and plasticity yield \(\tau \), in an infinitely long cylinder of cross-section \(\Omega \), with \(\sigma \), and \(u \) denoting the (algebraic) pressure drop per unit length and the flow axial velocity, respectively.

Problem (BBPV), (BBPE) has clearly the flavor of a non-smooth nonlinear eigenvalue problem for an elliptic operator. The numerical solution of such problems by minimax (mountain-pass) methods has been investigated by our colleagues Xudong Yao and Jianxin Zhou. Our goal in this lecture is to present a conceptually simpler methodology based on operator-splitting: The resulting algorithms are natural generalizations of the inverse power method for symmetric matrix eigenvalue computation.

The results of numerical experiments performed by our collaborator F. Foss will be presented.