Multiple Integrals

1. Evaluate $\iint_{R} 2 y \sqrt{x} d x d y$ where R is the region in the first quadrant bounded by $y=x^{2}, y=2-x^{2}$, and the y-axis.

Solution: $\frac{32}{21}$
2. Evaluate $\int_{0}^{9} \int_{\sqrt{y}}^{3} \sin \left(\pi x^{3}\right) d x d y$

Solution: $\frac{2}{3 \pi}$
3. Find the volume of the solid in the first octant that is bounded above by the paraboloid $z=8-x^{2}-y^{2}$, below by the x, y-plane, and on the sides by the cylinder $x^{2}+y^{2}=4$, the plane $\sqrt{3} y=x$, and the y, z-plane.

Solution: 4π
4. Given $\iint_{\Omega}\left(x y^{2}-2 x y\right) d x d y$ where Ω is the region in the first quadrant bounded by $y=\sqrt{x}, x+y=2$, and the x-axis.
(a) Set up a repeated integral (or integrals) integrating first with respect to x.
(b) Set up a repeated integral (or integrals) integrating first with respect to y.

Solution: (a) $\int_{0}^{1} \int_{y^{2}}^{2-y}\left(x y^{2}-2 x y\right) d x d y$
(b) $\int_{0}^{1} \int_{0}^{\sqrt{x}}\left(x y^{2}-2 x y\right) d y d x+\int_{1}^{2} \int_{0}^{2-x}\left(x y^{2}-2 x y\right) d y d x$
5. Evaluate $\int_{-1}^{1} \int_{0}^{x} \int_{0}^{x y}(6 z+3 y) d z d y d x$.

Solution: $\frac{2}{5}$

6. Let S be the solid in the first octant bounded by the cylinder $y^{2}+z^{2}=1$ and the planes $y=x, x=0$, and $z=0$. Evaluate $\iiint_{S} 6 z d x d y d z$.

Solution: $\frac{3}{4}$
7. Set up a repeated integral that gives the volume of the solid in the first octant whose top is the plane $x-y+2 z=2$, and whose base in the x, y-plane is the region bounded by $y=\frac{1}{4} x^{2}, y=4$, and the y-axis.

Solution:

$\iint_{\Omega} \frac{1}{2}[2-x+y] d x d y=\int_{0}^{4} \int_{0}^{2 \sqrt{y}} \frac{1}{2}[2-x+y] d x d y=\int_{0}^{4} \int_{x^{2} / 4}^{4} \frac{1}{2}[2-x+y] d y d x$.
8. Set up a repeated integral in cylindrical coordinates that gives the volume of the solid in the first octant which is bounded above by the surface $z=e^{-x^{2}-y^{2}}$, below by the x, y-plane, and on the sides by the cylinder $x^{2}+y^{2}=1$.

Solution: $\int_{0}^{\pi / 2} \int_{0}^{1} \int_{0}^{e^{-r^{2}}} r d z d r d \theta$
9. A solid is bounded above by the surfaces $z=\sqrt{y}$ and $y+z=2$, below by the x, y-plane, and on the sides by the planes $x=0$ and $x=2$. Find the volume of the solid.

Solution: $\frac{7}{3}$
10. The repeated integral $\int_{0}^{\pi / 4} \int_{0}^{1} \int_{0}^{\sqrt{1-r^{2}}} r d z d r d \theta$ gives the volume of a solid T. Sketch T and evaluate the repeated integral.

Solution: $\frac{\pi}{12}$
11. The repeated integral $\int_{\pi / 6}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{3} \rho^{2} \sin \phi d \rho d \phi d \theta$ gives the volume of a solid T. Sketch T and evaluate the repeated integral.

Solution: 3π

Sec. 14.9

1. In each of the following, determine whether \mathbf{F} is the gradient of a function f. If it is, find all such functions f.
(a) $\mathbf{F}(x, y)=\left(3 x^{2} y^{2}+3 y+x\right) \mathbf{i}+\left(2 x^{3} y+3 x y-\sqrt{y}\right) \mathbf{j}$.
(b) $\mathbf{F}(x, y)=\left(2 x e^{y}+4 x y+e^{2 x}\right) \mathbf{i}+\left(x^{2} e^{y}+2 x^{2}+\cos 2 y-1\right) \mathbf{j}$.

Line Integrals

1. Calculate $\int_{C} \mathbf{h}(\mathbf{r}) \cdot \mathbf{d r}$ where \mathbf{h} is the vector field: $\mathbf{h}(x, y)=(x+2 y) \mathbf{i}+(x-2 y) \mathbf{j}$ and C is the line segment from $(1,1)$ to $(3,-1)$

Solution: 0
2. Calculate $\int_{C} \mathbf{h}(\mathbf{r}) \cdot \mathbf{d r}$ where \mathbf{h} is the vector field: $\mathbf{h}(x, y, z)=x z \mathbf{i}+(y+z) \mathbf{j}+x \mathbf{k}$, and C is the curve: $\mathbf{r}(u)=e^{u} \mathbf{i}+e^{-u} \mathbf{j}+e^{2 u} \mathbf{k}, \quad 0 \leq u \leq \ln 2$.

Solution: $\frac{169}{24}$
3. Determine whether the given vector function \mathbf{F} is the gradient of a function f. If it is, find all such functions f. (i) $\mathbf{F}(x, y)=\left(3 x^{2} y^{2}+3 y+x\right) \mathbf{i}+\left(2 x^{3} y+3 x y-\sqrt{y}\right) \mathbf{j}$

Solution: not a gradient
(ii) $\mathbf{F}(x, y)=\left(2 x e^{y}+e^{2 x}-3\right) \mathbf{i}+\left(x^{2} e^{y}+\cos 2 y+1\right) \mathbf{j}$

Solution: $f(x, y)=x^{2} e^{y}+\frac{1}{2} e^{2 x}-3 x+\frac{1}{2} \sin 2 y+y+C$
4. Calculate $\int_{C} \mathbf{h}(\mathbf{r}) \cdot \mathbf{d r}$ where \mathbf{h} is the vector field: $\mathbf{h}(x, y)=\left(y^{2}+2 x y\right) \mathbf{i}+\left(x^{2}+2 x y\right) \mathbf{j}$ and C is the line segment from $(-1,2)$ to $(3,1)$

Solution: 14
5. Let $f(x, y, z)=x y^{3}+x^{2} z-x+z$. Calculate $\int_{C} \nabla f(\mathbf{r}) \cdot \mathbf{d r}$ where C is the curve: $\mathbf{r}(u)=2 \cos u \mathbf{i}+3 \sin u \mathbf{j}+4 \mathbf{k}, \quad 0 \leq u \leq \pi$.

Solution: 4
6. Find the work done by the force $\mathbf{F}(x, y)=x(y+1) \mathbf{i}-2 x y \mathbf{j}$ applied to an object that moves along the line segments that connect $(0,0),(1,0),(2,1)$ in that order.

Solution: $\frac{7}{6}$
7. Evaluate $\int_{C}-x y^{2} d x+x^{2} y d y$ where C is the boundary of the triangular region with vertices $(0,0),(1,0),(0,2)$ traversed in the counterclockwise direction.

Solution: $\frac{2}{3}$
8. Evaluate $\int_{C}\left(2 x e^{y}-x^{2}\right) d x+\left(x^{2} e^{y}+y\right) d y$ where C is the ellipse $\frac{1}{9} x^{2}+\frac{1}{4} y^{2}=1$ oriented counterclockwise.

Solution: 0
9. Evaluate the line integral $\int_{C}-x^{2} y d x+x y^{2} d y$ where C is the boundary of the annular region in the first quadrant bounded by the quarter circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=9$ oriented counterclockwise.

Solution: 10π
10. Use Green's theorem to find the area enclosed by the astroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ Hint: parametrize the curve by $x=a \cos ^{3} u, y=a \sin ^{3} u, 0 \leq u \leq 2 \pi$.

Solution: $A=\frac{3}{8} \pi a^{2}$

