Multiple Integrals

1. Evaluate $\iint_{R} 2y\sqrt{x} \, dx \, dy$ where R is the region in the first quadrant bounded by $y = x^2, \ y = 2 - x^2$, and the y-axis.

Solution: $\frac{32}{21}$

- 2. Evaluate $\int_0^9 \int_{\sqrt{y}}^3 \sin(\pi x^3) \, dx \, dy$ Solution: $\frac{2}{3\pi}$
- 3. Find the volume of the solid in the first octant that is bounded above by the paraboloid z = 8 − x² − y², below by the x, y-plane, and on the sides by the cylinder x² + y² = 4, the plane √3 y = x, and the y, z-plane.
 Solution: 4π
- 4. Given $\iint_{\Omega} (xy^2 2xy) dxdy$ where Ω is the region in the first quadrant bounded by $y = \sqrt{x}, x + y = 2$, and the x-axis.
 - (a) Set up a repeated integral (or integrals) integrating first with respect to x.
 - (b) Set up a repeated integral (or integrals) integrating first with respect to y.

Solution: (a)
$$\int_{0}^{1} \int_{y^{2}}^{2-y} (xy^{2} - 2xy) dx dy$$

(b) $\int_{0}^{1} \int_{0}^{\sqrt{x}} (xy^{2} - 2xy) dy dx + \int_{1}^{2} \int_{0}^{2-x} (xy^{2} - 2xy) dy dx$
5. Evaluate $\int_{-1}^{1} \int_{0}^{x} \int_{0}^{xy} (6z + 3y) dz dy dx$.
Solution: $\frac{2}{5}$

6. Let S be the solid in the first octant bounded by the cylinder $y^2 + z^2 = 1$ and the planes y = x, x = 0, and z = 0. Evaluate $\iiint_S 6z \, dx \, dy \, dz$.

Solution: $\frac{3}{4}$

7. Set up a repeated integral that gives the volume of the solid in the first octant whose top is the plane x - y + 2z = 2, and whose base in the x, y-plane is the region bounded by $y = \frac{1}{4}x^2$, y = 4, and the y-axis.

Solution:

$$\iint_{\Omega} \frac{1}{2} [2 - x + y] \, dx \, dy = \int_{0}^{4} \int_{0}^{2\sqrt{y}} \frac{1}{2} [2 - x + y] \, dx \, dy = \int_{0}^{4} \int_{x^{2}/4}^{4} \frac{1}{2} [2 - x + y] \, dy \, dx.$$

8. Set up a repeated integral in cylindrical coordinates that gives the volume of the solid in the first octant which is bounded above by the surface $z = e^{-x^2-y^2}$, below by the x, y-plane, and on the sides by the cylinder $x^2 + y^2 = 1$.

Solution:
$$\int_0^{\pi/2} \int_0^1 \int_0^{e^{-r^2}} r \, dz \, dr \, d\theta$$

9. A solid is bounded above by the surfaces $z = \sqrt{y}$ and y + z = 2, below by the x, y-plane, and on the sides by the planes x = 0 and x = 2. Find the volume of the solid.

Solution: $\frac{7}{3}$

10. The repeated integral $\int_0^{\pi/4} \int_0^1 \int_0^{\sqrt{1-r^2}} r \, dz \, dr \, d\theta$ gives the volume of a solid T. Sketch T and evaluate the repeated integral.

Solution: $\frac{\pi}{12}$

11. The repeated integral $\int_{\pi/6}^{\pi/2} \int_0^{\pi/2} \int_0^3 \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$ gives the volume of a solid *T*. Sketch *T* and evaluate the repeated integral.

Solution: 3π

Sec. 14.9

- 1. In each of the following, determine whether \mathbf{F} is the gradient of a function f. If it is, find all such functions f.
 - (a) $\mathbf{F}(x,y) = (3x^2y^2 + 3y + x)\mathbf{i} + (2x^3y + 3xy \sqrt{y})\mathbf{j}.$
 - (b) $\mathbf{F}(x,y) = (2xe^y + 4xy + e^{2x})\mathbf{i} + (x^2e^y + 2x^2 + \cos 2y 1)\mathbf{j}.$

Line Integrals

1. Calculate $\int_C \mathbf{h}(\mathbf{r}) \cdot \mathbf{dr}$ where \mathbf{h} is the vector field: $\mathbf{h}(x, y) = (x + 2y)\mathbf{i} + (x - 2y)\mathbf{j}$ and C is the line segment from (1, 1) to (3, -1)

Solution: 0

2. Calculate $\int_C \mathbf{h}(\mathbf{r}) \cdot \mathbf{dr}$ where \mathbf{h} is the vector field: $\mathbf{h}(x, y, z) = xz \mathbf{i} + (y+z) \mathbf{j} + x \mathbf{k}$, and C is the curve: $\mathbf{r}(u) = e^u \mathbf{i} + e^{-u} \mathbf{j} + e^{2u} \mathbf{k}$, $0 \le u \le \ln 2$.

```
Solution: \frac{169}{24}
```

3. Determine whether the given vector function \mathbf{F} is the gradient of a function f. If it is, find all such functions f. (i) $\mathbf{F}(x,y) = (3x^2y^2 + 3y + x) \mathbf{i} + (2x^3y + 3xy - \sqrt{y}) \mathbf{j}$

Solution: not a gradient

(*ii*)
$$\mathbf{F}(x,y) = (2xe^y + e^{2x} - 3) \mathbf{i} + (x^2e^y + \cos 2y + 1) \mathbf{j}$$

Solution: $f(x,y) = x^2 e^y + \frac{1}{2} e^{2x} - 3x + \frac{1}{2} \sin 2y + y + C$

4. Calculate $\int_C \mathbf{h}(\mathbf{r}) \cdot \mathbf{dr}$ where \mathbf{h} is the vector field: $\mathbf{h}(x, y) = (y^2 + 2xy)\mathbf{i} + (x^2 + 2xy)\mathbf{j}$ and C is the line segment from (-1, 2) to (3, 1)

Solution: 14

5. Let $f(x, y, z) = xy^3 + x^2z - x + z$. Calculate $\int_C \nabla f(\mathbf{r}) \cdot \mathbf{dr}$ where *C* is the curve: $\mathbf{r}(u) = 2\cos u \,\mathbf{i} + 3\sin u \,\mathbf{j} + 4 \,\mathbf{k}, \quad 0 \le u \le \pi.$

Solution: 4

6. Find the work done by the force $\mathbf{F}(x, y) = x(y+1)\mathbf{i} - 2xy\mathbf{j}$ applied to an object that moves along the line segments that connect (0, 0), (1, 0), (2, 1) in that order.

Solution: $\frac{7}{6}$

7. Evaluate $\int_C -xy^2 dx + x^2 y dy$ where *C* is the boundary of the triangular region with vertices (0,0), (1,0), (0,2) traversed in the counterclockwise direction.

Solution: $\frac{2}{3}$

8. Evaluate $\int_C (2xe^y - x^2) dx + (x^2e^y + y) dy$ where C is the ellipse $\frac{1}{9}x^2 + \frac{1}{4}y^2 = 1$ oriented counterclockwise.

Solution: 0

9. Evaluate the line integral $\int_C -x^2 y \, dx + xy^2 \, dy$ where C is the boundary of the annular region in the first quadrant bounded by the quarter circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 9$ oriented counterclockwise.

Solution: 10π

10. Use Green's theorem to find the area enclosed by the astroid $x^{2/3} + y^{2/3} = a^{2/3}$ Hint: parametrize the curve by $x = a \cos^3 u$, $y = a \sin^3 u$, $0 \le u \le 2\pi$.

Solution: $A = \frac{3}{8}\pi a^2$