Cartesian Products and Relations

Dr. Philip Walker

æ

▶ < ∃ ▶

Cartesian Productions and Relations

Section 9.1

æ

< Ξ > < Ξ >

Definition. When each of A and B is a set, the Cartesian product of A and B is denoted by

$A \times B$

and is defined to be the set of all ordered pairs (a, b) where the first term a is a member of A and the second term b is a member of B.

Definition. When each of A and B is a set, a **relation from** A **to** B is a subset of $A \times B$.

When R is a relation from A tc B, the notation aRb means $(a, b) \in R$.

The domain of R is $\{a \in A : (a, b) \in R \text{ for some } b \in B\}$. So the domain is the set of **first terms** in the pairs that make up the relation. The domain of R is denoted by Dom(R).

The **range** of *R* is $\{b \in B : (a, b) \in R \text{ for some } a \in A\}$. So the **range** is the set of **second terms** in the pairs that make up the relation. The range of *R* is denoted by Rng(R).

A relation **on** a set A is a relation from A to A.

Dr. Philip Walker ()

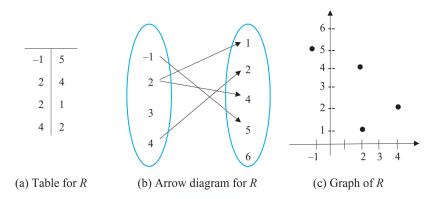
< 注 → < 注 → □ 注

Examples. Let $A = \{-1, 2, 3, 4\}, B = \{1, 2, 4, 5, 6\},\$ $R = \{(-1, 5), (2, 4), (2, 1), (4, 2)\},\$ $S = \{(5, 2), (4, 3), (1, 3)\},\$ and $T = \{(-1, 3), (2, 3), (4, 4)\}.\$ R is a relation from A to B. Dom $(R) = \{-1, 2, 4\},\$ and Rng $(R) = \{1, 2, 4, 5).\$

S is a relation from B to A. $Dom(S) = \{1, 4, 5\}$, and $Rng(S) = \{2, 3\}$.

T is a relation on A (meaning from A to A). $Dom(T) = \{-1, 2, 4\}$, and $Rng(T) = \{3, 4\}$

This slides shows three ways to picture a relation when the domain and range are finite and small.

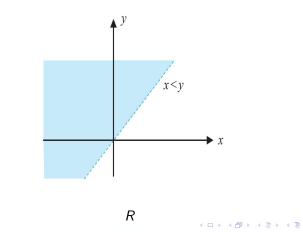


$$R = \{(-1,5), (2,4), (2,1), (4,2)\}$$

Example.

$$R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x < y\}$$

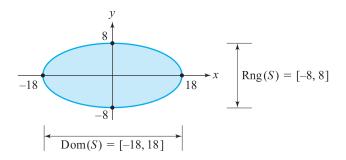
Is a relation on \mathbb{R} . It can be pictured as a region in the Cartesian plane.



Dr. Philip Walker ()

Example

$$S = \{(x, y) \in \mathbb{R} \times \mathbb{R} : \frac{x^2}{18^2} + \frac{y^2}{8^2} \le 1\}$$

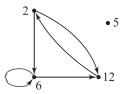


æ

イロト イヨト イヨト イヨト

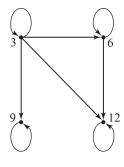
Example. Here is a digraph that shows the relation

 $R = \{(6, 12), (2, 6), (2, 12), (6, 6), (12, 2)\}$ on the set $\{2, 5, 6, 12\}$



R

Example. Let $A = \{3, 6, 9, 12\}$ and let $S = \{(a, b) \in A \times A : a \text{ divides } b\}$. Here is a digraph that shows the relation S.



S

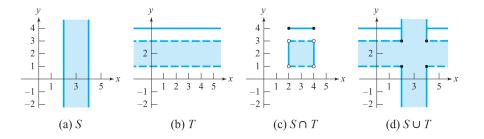
Definition. When A is a set, the identity relation on A is denoted by I_A and is given by

$$I_{\mathcal{A}} = \{(x, y) \in \mathcal{A} \times \mathcal{A} : x = y\}.$$

This relation is also called the identity function on A.

Note. When each of S and T is a relation from A to B, $S \cup T$ is a relation from A to B, and when S and T have a member in common, $S \cap T$ is also a relation from A to B.

Example. Let $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} : 2 \le x \le 4 \text{ and } y \in \mathbb{R}\}$ and let $T = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}$ and 1 < y < 3 or y = 4. Graphs of S, T, $S \cup T$, and $S \cap T$ are shown below.



Definition. If R is a relation from A to B, then R^{-1} (read "*R*-inverse") is the relation from B to A obtained by interchanging the first and second terms in each pair in R.

$$R^{-1} = \{(y, x) : (x, y) \in R\}$$

Note.

$$(R^{-1})^{-1} = R$$

$$\mathsf{Dom}(R^{-1}) = \mathsf{Rng}(R) \text{ and } \mathsf{Rng}(R^{-1}) = \mathsf{Dom}(R)$$

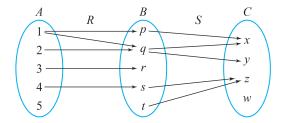
Note. If a relation is represented by a digraph, a diagraph of its inverse can be obtained by reversing the direction of each of the arrows.

If a relation is represented by a graph in \mathbb{R}^2 , the graph of its inverse can be obtained by reflecting across the line consisting of all (x, y) where y = x. (This is the graph of $I_{\mathbb{R}}$.)

Definition. Suppose that *R* is a relation from *A* to *B*, *S* is a relation form *B* to *C*, and for some $b \in B$ there is an $a \in A$ and a $c \in C$ such that $(a, b) \in R$ and $(b, c) \in S$. The **composition** or **composite** of *S* and *R* is denoted by $S \circ R$ and is given by

 $S \circ R = \{(a, c) : (a, b) \in R \text{ and } (b, c) \in S \text{ for some } b \in B\}$

Example. Let R and S be the relations shown here.



Then $S \circ R = \{(1, x), (1, y), (2, x), (2, y), (4, z)\}$

17 / 17