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The exponential function is, without doubt, the most important

function in mathematics and its applications. After a brief introduc-

tion to the exponential function and its inverse, the logarithmic

function, we learn how to differentiate such functions. This lays the

foundation for exploring themany applications involving exponential

functions. For example, we look at the role played by exponential

functions in computing earned interest on a bank account, in study-

ing the growth of a bacteria population in the laboratory, in studying

the way radioactive matter decays, in studying the rate at which a

factory worker learns a certain process, and in studying the rate

at which a communicable disease is spread over time.

How many bacteria will there be in a culture at the end
of a certain period of time? How fast will the bacteria
population be growing at the end of that time? Example
1, page 928, answers these questions.
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13.1 Exponential Funct ions

EXPONENTIAL FUNCTIONS AND THEIR GRAPHS
Suppose you deposit a sum of $1000 in an account earning interest at the rate
of 10% per year compounded continuously (the way most financial institutions
compute interest). Then, the accumulated amount at the end of t years
(0 � t � 20) is described by the function f, whose graph appears in Figure
13.1.* Such a function is called an exponential function.Observe that the graph
of f rises rather slowly at first but very rapidly as time goes by. For purposes
of comparison, we have also shown the graph of the function y � g(t) �
1000(1� 0.10t), giving the accumulated amount for the same principal ($1000)
but earning simple interest at the rate of 10% per year. The moral of the story:
It is never too early to save.

Exponential functions play an important role in many real-world applica-
tions, as you will see throughout this chapter.

Observe that whenever b is a positive number and n is any real number, the
expression bn is a real number. This enables us to define an exponential
function as follows:

Exponent ia l Funct ion The function defined by

f(x) � bx (b � 0, b �/ 1)

is called an exponential function with base b and exponent x. The domain of f
is the set of all real numbers.

* We will derive the rule for f later in this section.
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Under continuous compounding, a sum of
money grows exponentially.
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For example, the exponential function with base 2 is the function

f(x) � 2x

with domain (��, �). The values of f(x) for selected values of x follow:

f(3) � 23 � 8, f �32�� 23/2 � 2 � 21/2 � 2�2, f(0) � 20 � 1,

f(�1) � 2�1 �
1
2
, f ��

2
3�� 2�2/3 �

1
22/3

�
1

�3 4

Computations involving exponentials are facilitated by the laws of expo-
nents. These laws were stated in Section 9.1, and you might want to review
the material there. For convenience, however, we will restate these laws.

Laws of Exponents Let a and b be positive numbers and let x and y be real numbers. Then,

1. bx � by � bx�y 4. (ab)x � axbx

2.
bx

by � bx�y 5. �ab�
x

�
ax

bx

3. (bx)y � bxy

The use of the laws of exponents is illustrated in the next example.

EXAMPLE 1 a. 167/4 � 16�1/2 � 167/4�1/2 � 165/4 � 25 � 32 (Law 1)

b.
85/3

8�1/3 � 85/3�(�1/3) � 82 � 64 (Law 2)

c. (644/3)�1/2 � 64(4/3)(�1/2) � 64�2/3

�
1
642/3

�
1

(641/3)2
�
1
42

�
1
16

(Law 3)

d. (16 � 81)�1/4 � 16�1/4 � 81�1/4 �
1
161/4

�
1
811/4

�
1
2

�
1
3

�
1
6

(Law 4)

e. �31/221/3�4

�
34/2

24/3
�

9
24/3

(Law 5)
� � � �

EXAMPLE 2 Let f(x) � 22x�1. Find the value of x for which f(x) � 16.

S O L U T I O N ✔ We want to solve the equation

22x�1 � 16 � 24

But this equation holds if and only if

2x � 1 � 4 (bm � bn ⇒ m � n)

giving x � �� . � � � �



Exponential functions play an important role in mathematical analysis.
Because of their special characteristics, they are some of the most useful
functions and are found in virtually every field where mathematics is applied.
To mention a few examples: Under ideal conditions the number of bacteria
present at any time t in a culture may be described by an exponential function
of t; radioactive substances decay over time in accordance with an ‘‘exponen-
tial’’ law of decay; money left on fixed deposit and earning compound interest
grows exponentially; and some of the most important distribution functions
encountered in statistics are exponential.

Let’s begin our investigation into the properties of exponential functions
by studying their graphs.

EXAMPLE 3 Sketch the graph of the exponential function y � 2x.

S O L U T I O N ✔ First, as discussed earlier, the domain of the exponential function y � f(x) �
2x is the set of real numbers. Next, putting x � 0 gives y � 20 � 1, the y-
intercept of f. There is no x-intercept since there is no value of x for which
y � 0. To find the range of f, consider the following table of values:

x �5 �4 �3 �2 �1 0 1 2 3 4 5

y 1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32

We see from these computations that 2x decreases and approaches zero as x
decreases without bound and that 2x increases without bound as x increases
without bound. Thus, the range of f is the interval (0, �)—that is, the set of
positive real numbers. Finally, we sketch the graph of y � f(x) � 2x in
Figure 13.2. � � � �

EXAMPLE 4 Sketch the graph of the exponential function y � (1/2)x.

S O L U T I O N ✔ The domain of the exponential function y � (1/2)x is the set of all real numbers.
The y-intercept is (1/2)0 � 1; there is no x-intercept since there is no value
of x for which y � 0. From the following table of values

x �5 �4 �3 �2 �1 0 1 2 3 4 5

y 32 16 8 4 2 1 1/2 1/4 1/8 1/16 1/32

we deduce that (1/2)x � 1/2x increases without bound as x decreases without
bound and that (1/2)x decreases and approaches zero as x increases without
bound. Thus, the range of f is the interval (0, �). The graph of y � f(x) �
(1/2)x is sketched in Figure 13.3. � � � �

The functions y � 2x and y � (1/2)x, whose graphs you studied in Examples
3 and 4, are special cases of the exponential function y � f(x) � bx, obtained
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by setting b � 2 and b � 1/2, respectively. In general, the exponential function
y � bx with b � 1 has a graph similar to y � 2x, whereas the graph of y � bx

for 0 � b � 1 is similar to that of y � (1/2)x (Exercises 27 and 28). When
b � 1, the function y � bx reduces to the constant function y � 1. For
comparison, the graphs of all three functions are sketched in Figure 13.4.

Propert ies of the
Exponent ia l Funct ion

The exponential function y � bx (b � 0, b �/ 1) has the following properties:

1. Its domain is (��, �).

2. Its range is (0, �).

3. Its graph passes through the point (0, 1).

4. It is continuous on (��, �).

5. It is increasing on (��, �) if b � 1 and decreasing on (��, �) if b � 1.

THE BASE e
Exponential functions to the base e, where e is an irrational number whose
value is 2.7182818 . . . , play an important role in both theoretical and applied
problems. It can be shown, although we will not do so here, that

e � lim
m��

�1 �
1
m�m

(1)

However, you may convince yourself of the plausibility of this definition of
the number e by examining Table 13.1, which may be constructed with the
help of a calculator.

Table 13.1
m 10 100 1000 10,000 100,000 1,000,000

�1 �
1
m�m

2.59374 2.70481 2.71692 2.71815 2.71827 2.71828

y

x

y = b x

(0 < b < 1)
y = b x

(b > 1)

y  = 1

FIGURE 13.4
y � bx is an increasing function of x if
b � 1, a constant function if b � 1, and
a decreasing function if 0 � b � 1.



Exploring with Technology

To obtain a visual confirmation of the fact that the expression (1 � 1/m)m approaches
the number e � 2.71828. . . as m increases without bound, plot the graph of f(x) � (1 � 1/x)x

in a suitable viewing rectangle and observe that f(x) approaches 2.71828. . . as x increases without bound.
Use ZOOM and TRACE to find the value of f(x) for large values of x.

EXAMPLE 5 Sketch the graph of the function y � ex.

S O L U T I O N ✔ Since e � 1, it follows from our previous discussion that the graph of y � ex

is similar to the graph of y � 2x (see Figure 13.2). With the aid of a calculator,
we obtain the following table:

x �3 �2 �1 0 1 2 3

y 0.05 0.14 0.37 1 2.72 7.39 20.09

The graph of y � ex is sketched in Figure 13.5.

� � � �

Next, we consider another exponential function to the base e that is closely
related to the previous function and is particularly useful in constructing
models that describe ‘‘exponential decay.’’

EXAMPLE 6 Sketch the graph of the function y � e�x.

S O L U T I O N ✔ Since e � 1, it follows that 0 � 1/e � 1, so f(x) � e�x � 1/ex �
(1/e)x is an exponential function with base less than 1. Therefore, it has a
graph similar to that of the exponential function y � (1/2)x. As before, we
construct the following table of values of y � e�x for selected values of x:

x �3 �2 �1 0 1 2 3

y 20.09 7.39 2.72 1 0.37 0.14 0.05
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Using this table, we sketch the graph of y � e�x in Figure 13.6. � � � �

CONTINUOUS COMPOUNDING OF INTEREST
One question that arises naturally in the study of compound interest is, What
happens to the accumulated amount over a fixed period of time if the interest
is computed more and more frequently? Intuition suggests that the more often
interest is compounded, the larger the accumulated amount will be. This is
confirmed by the results of Example 3, Section 5.1, page 271, where we found
that the accumulated amounts did in fact increase when we increased the
number of conversion periods per year.

This leads us to another question: Does the accumulated amount approach
a limit when the interest is computed more and more frequently over a fixed
period of time? To answer this question, let’s look again at the compound
interest formula:

A � P �1 �
r
m�mt

(2)

Recall that m is the number of conversion periods per year. So to find an
answer to our problem, we should let m approach infinity (get larger and
larger) in (2). But first we rewrite this equation in the form

A � P ��1 �
r
m�m�t

[Since bxy � (bx)y]

Now, letting m � �, we find that

lim
m��

�P �1 �
r
m�m�t

� P �lim
m��

�1 �
r
m�m�t

(Why?)

Next, upon making the substitution u � m/r and observing that u � � as
m � �, we reduce the foregoing expression to

P �lim
u��

�1 �
1
u�ur�t

� P �lim
u��

�1 �
1
u�u�rt
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FIGURE 13.6
The graph of y � e�x



But

lim
u��

�1 �
1
u�u

� e [Using (1)]

so

lim
m��

P ��1 �
r
m�m�t

� Pert

Our computations tell us that as the frequency with which interest is com-
pounded increases without bound, the accumulated amount approaches Pert.
In this situation, we say that interest is compounded continuously. Let’s sum-
marize this important result.

Cont inuous
Compound

Interest Formula

A � Pert (3)

where P � Principal
r �Annual interest rate compounded continuously
t � Time in years

A �Accumulated amount at the end of t years

EXAMPLE 7 Find the accumulated amount after 3 years if $1000 is invested at 8% per year
compounded (a) daily (take the number of days in a year to be 365) and
(b) continuously.

S O L U T I O N ✔ a. Using the compound interest formula with P � 1000, r � 0.08, m � 365,
t � 3, and n � (365)(3) � 1095, we find

A � 1000 �1 �
0.08
365�1095

� 1271.22 �A � P�1�
r
m�n�

or $1271.22.
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In the opening paragraph of Section 13.1, we pointed out that the accumulated amount
of an account earning interest compounded continuously will eventually outgrow by far
the accumulated amount of an account earning interest at the same nominal rate but earning simple interest.
Illustrate this fact using the following example.

Suppose you deposit $1000 in account I, earning interest at the rate of 10% per year compounded
continuously so that the accumulated amount at the end of t years is A1(t) � 1000e0.1t. Suppose you also
deposit $1000 in account II, earning simple interest at the rate of 10% per year so that the accumulated
amount at the end of t years is A2(t) � 1000(1 � 0.1t). Use a graphing utility to sketch the graphs of the
functions A1 and A2 in the viewing rectangle [0, 20] � [0, 10,000] to see the accumulated amounts A1(t) and
A2(t) over a 20-year period.
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b. Here we use Formula (3) with P � 1000, r � 0.08, and t � 3, obtaining

A � 1000e(0.08)(3)

� 1271.25 (Using the ex key)

or $1271.25. � � � �

Observe that the accumulated amounts corresponding to interest com-
pounded daily and interest compounded continuously differ by very little.
The continuous compound interest formula is a very important tool in theoreti-
cal work in financial analysis.

If we solve Formula (3) for P, we obtain

P � Ae�rt (4)

which gives the present value in terms of the future (accumulated) value for
the case of continuous compounding.

EXAMPLE 8 The Blakely Investment Company owns an office building in the commercial
district of a city. As a result of the continued success of an urban renewal
program, local business is booming. The market value of Blakely’s property is

V(t) � 300,000e�t/2

where V(t) is measured in dollars and t is the time in years from the present.
If the expected rate of inflation is 9% compounded continuously for the next
10 years, find an expression for the present value P(t) of the market price of
the property valid for the next 10 years. Compute P(7), P(8), and P(9), and
interpret your results.

S O L U T I O N ✔ Using Formula (4) with A � V(t) and r � 0.09, we find that the present value
of the market price of the property t years from now is

P(t) � V(t)e�0.09t

� 300,000e�0.09t��t/2 (0 � t � 10)

Letting t � 7, 8, and 9, respectively, we find

P(7) � 300,000e�0.09(7)��7/2 � 599,837 or $599,837

P(8) � 300,000e�0.09(8)��8/2 � 600,640 or $600,640

P(9) � 300,000e�0.09(9)��9/2 � 598,115 or $598,115

From the results of these computations, we see that the present value of the
property’s market price seems to decrease after a certain period of growth.
This suggests that there is an optimal time for the owners to sell. Later we
will show that the highest present value of the property’s market price is
$600,779, which occurs at time t � 7.72 years. � � � �
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1. Solve the equation 22x�1 � 2�3 � 2x�1.

2. Sketch the graph of y � e0.4x.

3. a. What is the accumulated amount after 5 yr if $10,000 is invested at an interest
rate of 10%/year compounded continuously?

b. Find the present value of $10,000 due in 5 yr at an interest rate of 10%/year
compounded continuously.

Solutions to Self-Check Exercises 13.1 can be found on page 894.

13.1 Exercises

In Exercises 1–6, evaluate each expression.

1. a. 4�3 � 45 b. 3�3 � 36

2. a. (2�1)3 b. (3�2)3

3. a. 9(9)�1/2 b. 5(5)�1/2

4. a. ���
1
2�3��2

b. ���
1
3�2��3

892 13 � E X P O N E N T I A L A N D L O G A R I T H M I C F U N C T I O N S

Exploring with Technology

The effective rate of interest is given by

reff � �1 �
r
m�m

� 1

where the number of conversion periods per year is m. In Exercise 37 on page 893, you will be asked to
show that the effective rate of interest reff corresponding to a nominal interest rate r per year compounded
continuously is given by

r̂eff � er � 1

To obtain a visual confirmation of this result, consider the special case where r � 0.1 (10% per year).

1. Use a graphing utility to plot the graph of both

y1 � �1 �
0.1
x �x

� 1 and y2 � e0.1 � 1

in the viewing rectangle [0, 3] � [0, 0.12].
2. Does your result seem to imply that

�1 �
r
m�m

� 1

approaches

r̂eff � er � 1

as m increases without bound for the special case r � 0.1?
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5. a.
(�3)4(�3)5

(�3)8
b.

(2�4)(26)
2�1

6. a. 31/4 � (9)�5/8 b. 23/4 � (4)�3/2

In Exercises 7–12, simplify each expression.

7. a. (64x9)1/3 b. (25x3y4)1/2

8. a. (2x3)(�4x�2) b. (4x�2)(�3x5)

9. a.
6a�5

3a�3 b.
4b�4

12b�6

10. a. y�3/2y5/3 b. x�3/5x8/3

11. a. (2x3y2)3 b. (4x2y2z3)2

12. a.
50

(2�3x�3y2)2
b.

(x � y)(x � y)
(x � y)0

In Exercises 13–20, solve the equation for x.

13. 62x � 64 14. 5�x � 53

15. 33x�4 � 35 16. 102x�1 � 10x�3

17. (2.1)x�2 � (2.1)5 18. (�1.3)x�2 � (�1.3)2x�1

20. 3x�x2 �
1
9x19. 8x � � 132�x�2

In Exercises 21–29, sketch the graphs of the
given functions on the same axes. A calculator
is recommended for these exercises.

21. y � 2x, y � 3x, and y � 4x

22. y � �12�x
, y � �13�x

, and y � �14�x

23. y � 2�x, y � 3�x, and y � 4�x

24. y � 40.5x and y � 4�0.5x

25. y � 40.5x, y � 4x, and y � 42x

26. y � ex, y � 2ex, and y � 3ex

27. y � e0.5x, y � ex, and y � e1.5x

28. y � e�0.5x, y � e�x, and y � e�1.5x

29. y � 0.5e�x, y � e�x, and y � 2e�x

30. Find the accumulated amount after 4 yr if $5000 is in-
vested at 8%/year compounded continuously.

31. INVESTMENT OPTIONS Investment A offers a 10% return
compounded semiannually, and investment B offers a
9.75% return compounded continuously. Which invest-
ment has a higher rate of return over a 4-yr period?

32. PRESENT VALUE Find the present value of $59,673 due in
5 yr at an interest rate of 8%/year compounded continu-
ously.

33. SAVING FOR COLLEGE Having received a large inheritance,
a child’s parents wish to establish a trust for the child’s
college education. If they need an estimated $70,000
7 yr from now, how much should they set aside in trust
now, if they invest the money at 10.5% compounded (a)
quarterly? (b) continuously?

34. EFFECT OF INFLATION ON SALARIES Larry’s current annual
salary is $25,000. Ten years from now, how much will
he need to earn in order to retain his present purchasing
power if the rate of inflation over that period is 6%/
year? Assume that inflation is continuously com-
pounded.

35. PENSIONS Carmen, who is now 50 years old, is employed
by a firm that guarantees her a pension of $40,000/year
at age 65. What is the present value of her first year’s
pension if inflation over the next 15 years is (a) 6%? (b)
8%? (c) 12%?Assume that inflation is continuously com-
pounded.

36. REAL ESTATE INVESTMENTS An investor purchased a piece
of waterfront property. Because of the development of
a marina in the vicinity, the market value of the property
is expected to increase according to the rule

V(t) � 80,000e�t/2

where V(t) is measured in dollars and t is the time in
years from the present. If the rate of inflation is expected
to be 9% compounded continuously for the next 8 yr, find
an expression for the present value P(t) of the property’s
market price valid for the next 8 yr.What isP(t) expected
to be in 4 yr?

37. Show that the effective rate of interest r̂eff that corre-
sponds to a nominal interest rate r per year compounded
continuously is given by

r̂eff � er � 1

Hint: From Formula (4) in Section 5.1, page 273, we see that
the effective rate r̂eff corresponding to a nominal interest rate
r per year compounded m times a year is given by

r̂eff � �1�
r
m�m

� 1

Let m tend to infinity in this expression.



38. Refer to Exercise 37. Find the effective rate of interest
that corresponds to a nominal rate of 10%/year com-
pounded (a) quarterly, (b) monthly, and (c) continu-
ously.

S O L U T I O N S T O S E L F - C H E C K E X E R C I S E S 1 3 . 1

1. 22x�1 � 2�3 � 2x�1

22x�1

2x�1 � 2�3 � 1 (Dividing both sides by 2x�1)

2(2x�1)�(x�1)�3 � 1

2x�1 � 1

This is true if and only if x � 1 � 0 or x � 1.

2. We first construct the following table of values:

x �3 �2 �1 0 1 2 3 4

y � e0.4x 0.3 0.5 0.7 1 1.5 2.2 3.3 5

Next, we plot these points and join them by a smooth curve to obtain the graph of
f shown in the accompanying figure:

3. a. Using Formula (3) with P � 10,000, r � 0.1, and t � 5, we find that the required
accumulated amount is given by

A � 10,000e(0.1)(5)

� 16,487.21

or $16,487.21.
b. Using Formula (4) with A � 10,000, r � 0.1, and t � 5, we see that the required

present value is given by

P � 10,000e�(0.1)(5)

� 6065.31

or $6065.31.
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(continued on p. 898)

39. INVESTMENT ANALYSIS Refer to Exercise 37. Bank A pays
interest on deposits at a 7% annual rate compounded
quarterly, and bank B pays interest on deposits at a 7��%
annual rate compounded continuously. Which bank has
the higher effective rate of interest?



Portfolio
MISATO NAKAZAKI

TITLE: Assistant Vice President
INSTITUTION: A large investment corporation

In the securities industry, buying and selling stocks and bonds has
always required a mastery of concepts and formulas that outsiders
find confusing. As a bond seller, Misato Nakazaki routinely uses
terms such as issue, maturity, current yield, callable and convertible
bonds, and so on.

These terms, however, are easily defined. When corporations
issue bonds, they are borrowing money at a fixed rate of interest. The
bonds are scheduled to mature—to be paid back—on a specific date
as much as 30 years into the future. Callable bonds allow the issuer
to pay off the loans prior to their expected maturity, reducing overall
interest payments. In its simplest terms, current yield is the price of a bond
multiplied by the interest rate at which the bond is issued. For example, a
bond with a face value of $1000 and an interest rate of 10% yields $100 per
year in interest payments. When that same bond is resold at a premium on
the secondary market for $1200, its current yield nets only an 8.3% rate of
return based on the higher purchase price.

Bonds attract investors for many reasons. A key variable is the sensitivity
of the bond’s price to future changes in interest rates. If investors get locked
into a low-paying bond when future bonds pay higher yields, they lose money.
Nakazaki stresses that ‘‘no one knows for sure what rates will be over time.’’
Employing differentials allows her to calculate interest-rate sensitivity for
clients as they ponder purchase decisions.

Computerized formulas, ‘‘whose basis is calculus,’’ says Nakazaki, help
her factor the endless stream of numbers flowing across her desk.

On a typical day, Nakazaki might be given a bid on ‘‘10 million, GMAC,
8.5%, January 2003.’’ Translation: Her customer wants her to buy General
Motors Acceptance Corporation bonds with a face value of $10 million and
an interest rate of 8.5%, maturing in January 2003.

After she calls her firm’s trader to find out the yield on the bond in
question, Nakazaki enters the price and other variables, such as the interest
rate and date of maturity, and the computer prints out the answers. Nakazaki
can then relay to her client the bond’s current yield, accrued interest, and so on.
In Nakazaki’s rapid-fire work environment, such speed is essential. Nakazaki
cautions that ‘‘computer users have to understand what’s behind the formu-
las.’’ The software ‘‘relies on the basics of calculus. If people don’t understand
the formula, it’s useless for them to use the calculations.’’

With an MBA from New York University,

Nakazaki typifies the younger generation of

Japanese women who have chosen to succeed

in the business world. Since earning her de-

gree, she has sold bonds for a global securities

firm in New York City.

Nakazaki’s client list reads like a who’s

who of the leading Japanese banks, insurance

companies, mutual funds, and corporations.

As institutional buyers, her clients purchase

large blocks of American corporate bonds and

mortgage-backed securities such as Ginnie

Maes.



Using Technology

Although the proof is outside the scope of this book, it can be proved that
an exponential function of the form f(x) � bx, where b � 1, will ultimately
grow faster than the power function g(x) � xn for any positive real number
n. To give a visual demonstration of this result for the special case of the
exponential function f(x) � ex, we can use a graphing calculator to plot the
graphs of both f and g (for selected values of n) on the same set of axes in
an appropriate viewing rectangle and observe that the graph of f ultimately
lies above that of g.

EXAMPLE 1 Use a graphing utility to plot the graphs of (a) f(x) � ex and g(x) � x3 on
the same set of axes in the viewing rectangle [0, 6] � [0, 250] and (b) f(x) � ex

and g(x) � x5 in the viewing rectangle [0, 20] � [0, 1,000,000].

S O L U T I O N ✔ a. The graphs of f(x) � ex and g(x) � x3 in the viewing rectangle [0, 6] �
[0, 250] are shown in Figure T1a.

b. The graphs of f(x) � ex and g(x) � x5 in the viewing rectangle [0, 20] �
[0, 1,000,000] are shown in Figure T1b.

� � � �

In the exercises that follow, you are asked to use a graphing utility to reveal
the properties of exponential functions.
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FIGURE T1

(a) The graphs of f(x) � ex and g(x) � x3 in
the viewing rectangle [0, 6] � [0, 250]

(b) The graphs of f(x) � ex and g(x) � x5

in the viewing rectangle
[0, 20] � [0, 1,000,000]
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Exercises

In Exercises 1 and 2, use a graphing utility to
plot the graphs of the functions f and g on the
same set of axes in the specified viewing rec-
tangle.

1. f(x) � ex and g(x) � x2; [0, 4] � [0, 30]

2. f(x) � ex and g(x) � x4; [0, 15] � [0, 20,000]

In Exercises 3 and 4, use a graphing utility to
plot the graphs of the functions f and g on the
same set of axes in an appropriate viewing
rectangle to demonstrate that f ultimately
grows faster than g. (Note: Your answer will
not be unique.)

3. f(x) � 2x and g(x) � x2.5

4. f(x) � 3x and g(x) � x3

5. Use a graphing utility to plot the graphs of f(x) � 2x,
g(x) � 3x, and h(x) � 4x on the same set of axes in the
viewing rectangle [0, 5] � [0, 100]. Comment on the
relationship between the base b and the growth of the
function f(x) � bx.

6. Use a graphing utility to plot the graphs of f(x) �
(1/2)x, g(x) � (1/3)x, and h(x) � (1/4)x on the same set

of axes in the viewing rectangle [0, 4] � [0, 1]. Comment
on the relationship between the base b and the growth
of the function f(x) � bx.

7. Use a graphing utility to plot the graphs of f(x) � ex,
g(x) � 2ex, and h(x) � 3ex on the same set of axes in
the viewing rectangle [�3, 3] � [0, 10]. Comment on the
role played by the constant k in the graph of
f(x) � kex.

8. Use a graphing utility to plot the graphs of f(x) � �ex,
g(x) � �2ex, and h(x) � �3ex on the same set of axes
in the viewing rectangle [�3, 3] � [�10, 0]. Comment
on the role played by the constant k in the graph of
f(x) � kex.

9. Use a graphing utility to plot the graphs of f(x) � e0.5x,
g(x) � ex, and h(x) � e1.5x on the same set of axes in
the viewing rectangle [�2, 2] � [0, 4]. Comment on the
role played by the constant k in the graph of f(x) � ekx.

10. Use a graphing utility to plot the graphs of f(x) � e�0.5x,
g(x) � e�x, and h(x) � e�1.5x on the same set of axes in
the viewing rectangle [�2, 2] � [0, 4]. Comment on the
role played by the constant k in the graph of f(x) � ekx.



13.2 Logari thmic Funct ions

LOGARITHMS
You are already familiar with exponential equations of the form

by � x (b � 0, b � 1)

where the variable x is expressed in terms of a real number b and a variable
y. But what about solving this same equation for y? You may recall from your
study of algebra that the number y is called the logarithm of x to the base b
and is denoted by logb x. It is the exponent to which the base b must be raised
in order to obtain the number x.

Logar i thm of
x to the Base b y � logb x if and only if x � by (x � 0)

Observe that the logarithm logb x is defined only for positive values of x.

EXAMPLE 1 a. log10 100 � 2 since 100 � 102

b. log5 125 � 3 since 125 � 53

c. log3
1
27

� �3 since
1
27

�
1
33

� 3�3

d. log20 20 � 1 since 20 � 201 � � � �

EXAMPLE 2 Solve each of the following equations for x.

a. log3 x � 4 b. log16 4 � x c. logx 8 � 3

S O L U T I O N ✔ a. By definition, log3 x � 4 implies x � 34 � 81.
b. log16 4 � x is equivalent to 4 � 16x � (42)x � 42x, or 41 � 42x, from which

we deduce that

2x � 1 (bm � bn ⇒ m � n)

x �
1
2

c. Referring once again to the definition, we see that the equation
logx 8 � 3 is equivalent to

8 � (23) � x3

x � 2 (am � bm ⇒ a � b) � � � �

The two widely used systems of logarithms are the system of common
logarithms, which uses the number 10 as the base, and the system of natural
logarithms, which uses the irrational number e � 2.71828. . . as the base. Also,
it is standard practice to write log for log10 and ln for loge .

898 13 � E X P O N E N T I A L A N D L O G A R I T H M I C F U N C T I O N S



13.2 � L O G A R I T H M I C F U N C T I O N S 899

Logar i thmic Notat ion log x � log10 x (Common logarithm)

ln x � loge x (Natural logarithm)

The system of natural logarithms is widely used in theoretical work. Using
natural logarithms rather than logarithms to other bases often leads to sim-
pler expressions.

LAWS OF LOGARITHMS
Computations involving logarithms are facilitated by the following laws of
logarithms.

Laws of Logar i thms If m and n are positive numbers, then

1. logb mn � logb m � logb n

2. logb
m
n

� logb m � logb n

3. logb m
n � n logb m

4. logb 1 � 0

5. logb b � 1

Do not confuse the expression log m/n (Law 2) with the expression
log m/log n. For example,

log
100
10

� log 100 � log 10 � 2 � 1 � 1 �
log 100
log 10

�
2
1

� 2

You will be asked to prove these laws in Exercises 53–55. Their derivations
are based on the definition of a logarithm and the corresponding laws of
exponents. The following examples illustrate the properties of logarithms.

EXAMPLE 3 a. log(2 � 3) � log 2 � log 3 b. ln
5
3

� ln 5 � ln 3

c. log �7 � log 71/2 �
1
2
log 7 d. log5 1 � 0

e. log45 45 � 1 � � � �

EXAMPLE 4 Given that log 2 � 0.3010, log 3 � 0.4771, and log 5 � 0.6990, use the laws
of logarithms to find

a. log 15 b. log 7.5 c. log 81 d. log 50



S O L U T I O N ✔ a. Note that 15 � 3 � 5, so by Law 1 for logarithms,

log 15 � log 3 � 5

� log 3 � log 5

� 0.4771 � 0.6990

� 1.1761

b. Observing that 7.5 � 15/2 � (3 � 5)/2, we apply Laws 1 and 2, obtaining

log 7.5 � log
(3)(5)
2

� log 3 � log 5 � log 2

� 0.4771 � 0.6990 � 0.3010

� 0.8751

c. Since 81 � 34, we apply Law 3 to obtain

log 81 � log 34

� 4 log 3

� 4(0.4771)

� 1.9084

d. We write 50 � 5 � 10 and find

log 50 � log(5)(10)

� log 5 � log 10

� 0.6990 � 1 (Using Law 5)

� 1.6990 � � � �

EXAMPLE 5 Expand and simplify the following expressions:

a. log3 x2y3 b. log2
x2 � 1
2x c. ln

x2�x2 � 1
ex

S O L U T I O N ✔ a. log3 x2y3 � log3 x2 � log3 y3 (Law 1)

� 2 log3 x � 3 log3 y (Law 3)

b. log2
x2 � 1
2x � log2(x2 � 1) � log2 2x (Law 2)

� log2(x2 � 1) � x log2 2 (Law 3)

� log2(x2 � 1) � x (Law 5)

c. ln
x2�x2 � 1

ex � ln
x2(x2 � 1)1/2

ex (Rewriting)

� ln x2 � ln(x2 � 1)1/2 � ln ex (Laws 1 and 2)

� 2 ln x �
1
2
ln(x2 � 1) � x ln e (Law 3)

� 2 ln x �
1
2
ln(x2 � 1) � x (Law 5)

� � � �
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LOGARITHMIC FUNCTIONS AND THEIR GRAPHS
The definition of the logarithm implies that if b and n are positive numbers
and b is different from 1, then the expression logb n is a real number. This
enables us to define a logarithmic function as follows:

Logar i thmic Funct ion The function defined by

f(x) � logb x (b � 0, b � 1)

is called the logarithmic function with base b. The domain of f is the set of all
positive numbers.

One easy way to obtain the graph of the logarithmic function y � logb x
is to construct a table of values of the logarithm (base b). However, another
method—and a more instructive one—is based on exploiting the intimate
relationship between logarithmic and exponential functions.

If a point (u, v) lies on the graph of y � logb x, then

v � logb u

But we can also write this equation in exponential form as

u � bv

So the point (v, u) also lies on the graph of the function y � bx. Let’s look
at the relationship between the points (u, v) and (v, u) and the line y � x
(Figure 13.7). If we think of the line y � x as a mirror, then the point (v, u)
is the mirror reflection of the point (u, v). Similarly, the point (u, v) is a mirror
reflection of the point (v, u). We can take advantage of this relationship to
help us draw the graph of logarithmic functions. For example, if we wish to
draw the graph of y � logb x, where b � 1, then we need only draw the mirror
reflection of the graph of y � bx with respect to the line y � x (Figure 13.8).

You may discover the following properties of the logarithmic function by
taking the reflection of the graph of an appropriate exponential function
(Exercises 31 and 32).

y

x
1

1

y = x
y = b x

y = logbx

FIGURE 13.8
The graphs of y � bx and y � logb x are
mirror reflections of each other.

FIGURE 13.7
The points (u, v) and (v, u) are mirror re-
flections of each other.

y

x
u

v

u

v

y = x
(u, v)

(v, u )



Propert ies of the
Logar i thmic Funct ion The logarithmic function y � logb x (b � 0, b � 1) has the following properties:

1. Its domain is (0, �).

2. Its range is (��, �).

3. Its graph passes through the point (1, 0).

4. It is continuous on (0, �).

5. It is increasing on (0, �) if b � 1 and decreasing on (0, �) if b � 1.

EXAMPLE 6 Sketch the graph of the function y � ln x.

S O L U T I O N ✔ We first sketch the graph of y � ex. Then, the required graph is obtained by
tracing the mirror reflection of the graph of y � ex with respect to the line
y � x (Figure 13.9).

� � � �

PROPERTIES RELATING THE EXPONENTIAL
AND LOGARITHMIC FUNCTIONS
We made use of the relationship that exists between the exponential function
f(x) � ex and the logarithmic function g(x) � ln x when we sketched the
graph of g in Example 6. This relationship is further described by the following
properties, which are an immediate consequence of the definition of the
logarithm of a number.

Propert ies Re lat ing
e x and ln x eln x � x (x � 0) (5)

ln ex � x (for any real number x) (6)

(Try to verify these properties.)
From Properties 5 and 6, we conclude that the composite function

( f � g)(x) � f [g(x)]

� e ln x � x

(g � f)(x) � g[ f(x)]

� ln ex � x
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y

x
1

1

y = x
y = e x

y = ln x

FIGURE 13.9
The graph of y � ln x is the mirror reflec-
tion of the graph of y � ex.
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Thus,

f [g(x)] � g[ f(x)]

� x

Any two functions f and g that satisfy this relationship are said to be inverses
of each other. Note that the function f undoes what the function g does, and
vice versa, so the composition of the two functions in any order results in the
identity function F(x) � x.

The relationships expressed in Equations (5) and (6) are useful in solving
equations that involve exponentials and logarithms.

EXAMPLE 7 Solve the equation 2ex�2 � 5.

S O L U T I O N ✔ We first divide both sides of the equation by 2 to obtain

e x�2 �
5
2

� 2.5

Next, taking the natural logarithm of each side of the equation and using
Equation (6), we have

ln ex�2 � ln 2.5

x � 2 � ln 2.5

x � �2 � ln 2.5

� �1.08 � � � �

EXAMPLE 8 Solve the equation 5 ln x � 3 � 0.

S O L U T I O N ✔ Adding �3 to both sides of the equation leads to

5 ln x � �3

ln x � �
3
5

� �0.6

and so

e ln x � e�0.6

Exploring with Technology

You can demonstrate the validity of Properties 5 and 6, which state that the exponential
function f(x) � ex and the logarithmic function g(x) � ln x are inverses of each other as follows:

1. Sketch the graph of ( f � g)(x) � e lnx, using the viewing rectangle [0, 10] � [0, 10]. Interpret the result.
2. Sketch the graph of (g � f )(x) � ln ex, using the standard viewing rectangle. Interpret the result.



Using equation (5), we conclude that

x � e�0.6

� 0.55 � � � �

S E L F - C H E C K E X E R C I S E S 1 3 . 2

1. Sketch the graph of y � 3x and y � log3 x on the same set of axes.

2. Solve the equation 3ex�1 � 2 � 4.

Solutions to Self-Check Exercises 13.2 can be found on page 906.

13.2 Exercises

In Exercises 1–10, express the given equation
in logarithmic form.

1. 26 � 64 2. 35 � 243

3. 3�2 �
1
9

4. 5�3 �
1
125

5. �13�1

�
1
3 6. �12��4

� 16

7. 323/5 � 8 8. 813/4 � 27

9. 10�3 � 0.001 10. 16�1/4 � 0.5

In Exercises 11–16, use the facts that log 3 �
0.4771 and log 4 � 0.6021 to find the value of
the given logarithm.

11. log 12 12. log
3
4

13. log 16 14. log�3

16. log
1
300

15. log 48

In Exercises17–26, use the lawsof logarithms
to simplify the given expression.

17. log x(x � 1)4 18. log x(x2 � 1)�1/2

20. ln
ex

1� ex19. log
�x � 1
x2 � 1

21. ln xe�x2 22. ln x(x � 1)(x � 2)

23. ln
x1/2

x2�1� x2
24. ln

x2

�x(1� x)2

25. ln xx 26. ln xx2�1

In Exercises 27–30, sketch the graph of the
given equation.

27. y � log3 x 28. y � log1/3 x

30. y � ln
1
2
x29. y � ln 2x
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Group Discussion
Consider the equation y� y0bkx, where y0 and k are positive constants

and b � 0, b �/ 1. Suppose we want to express y in the form y � y0epx. Use
the laws of logarithms to show that p � k ln b and hence that y � y0e(k lnb)x

is an alternative form of y � y0bkx using the base e.
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In Exercises 31 and 32, sketch the graphs of
the given equations on the same coordinate
axes.

31. y � 2x and y � log2 x

32. y � e3x and y � ln 3x

In Exercises 33–42, use logarithms to solve
the given equation for t.

34.
1
3
e�3t � 0.933. e0.4t � 8

35. 5e�2t � 6 36. 4et�1 � 4

37. 2e�0.2t � 4 � 6 38. 12 � e0.4t � 3

39.
50

1� 4e0.2t
� 20 40.

200
1� 3e�0.3t � 100

42.
A

1� Bet/2 � C41. A � Be�t/2

43. BLOOD PRESSURE Anormal child’s systolic blood pressure
may be approximated by the function

p(x) � m(ln x) � b

where p(x) is measured in millimeters of mercury, x is
measured in pounds, and m and b are constants. Given
that m � 19.4 and b � 18, determine the systolic blood
pressure of a child who weighs 92 lb.

44. MAGNITUDE OF EARTHQUAKES On the Richter scale, the
magnitude R of an earthquake is given by the formula

R � log
I
I0

where I is the intensity of the earthquake beingmeasured
and I0 is the standard reference intensity.
a. Express the intensity I of an earthquake of magnitude
R � 5 in terms of the standard intensity I0 .
b. Express the intensity I of an earthquake of magnitude
R � 8 in terms of the standard intensity I0 . How many
times greater is the intensity of an earthquake of magni-
tude 8 than one of magnitude 5?
c. In modern times the greatest loss of life attributable
to an earthquake occurred in eastern China in 1976.
Known as the Tangshan earthquake, it registered 8.2
on the Richter scale. How does the intensity of this
earthquake compare with the intensity of an earthquake
of magnitude R � 5?

45. SOUND INTENSITY The relative loudness of a sound D of
intensity I is measured in decibels (db), where

D � 10 log
I
I0

and I0 is the standard threshold of audibility.
a. Express the intensity I of a 30-db sound (the sound
level of normal conversation) in terms of I0 .
b. Determine how many times greater the intensity of
an 80-db sound (rock music) is than that of a 30-db
sound.
c. Prolonged noise above 150 db causes immediate and
permanent deafness. How does the intensity of a 150-
db sound compare with the intensity of an 80-db sound?

46. BAROMETRIC PRESSURE Halley’s law states that the baro-
metric pressure (in inches of mercury) at an altitude
of x mi above sea level is approximately given by the
equation

p(x) � 29.92e�0.2x (x 	 0)

If the barometric pressure as measured by a hot-air bal-
loonist is 20 in. of mercury, what is the balloonist’s al-
titude?

47. FORENSIC SCIENCE Forensic scientists use the following
law to determine the time of death of accident or murder
victims. If T denotes the temperature of a body t hr after
death, then

T � T0 � (T1 � T0)(0.97) t

where T0 is the air temperature and T1 is the body tem-
perature at the time of death. John Doe was found mur-
dered at midnight in his house, when the room tempera-
ture was 70
F and his body temperature was 80
F. When
was he killed?Assume that the normal body temperature
is 98.6
F.

In Exercises 48–51, determine whether the
statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

48. (ln x)3 � 3 ln x for all x in (0, �).

49. ln a � ln b � ln(a � b) for all positive real numbers a
and b.

50. The function f(x) � 1/ln x is continuous on (1, �).

51. The function f(x) � ln �x� is continuous for all x � 0.



52. a. Given that 2x � ekx, find k.
b. Show that, in general, if b is a nonnegative real num-
ber, then any equation of the form y � bxmay be written
in the form y � ekx, for some real number k.

53. Use the definition of a logarithm to prove:
a. logb mn � logb m � logb n

b. logb
m
n

� logb m � logb n

Hint: Let logb m � p and logb n � q. Then, bp � m and bq � n.

54. Use the definition of a logarithm to prove

logb mn � n logb m

55. Use the definition of a logarithm to prove:
a. logb 1 � 0
b. logb b � 1

S O L U T I O N S T O S E L F - C H E C K E X E R C I S E S 1 3 . 2

1. First, sketch the graph of y � 3x with the help of the following table of values:

x �3 �2 �1 0 1 2 3

y � 3x 1/27 1/9 1/3 0 3 9 27

Next, take the mirror reflection of this graph with respect to the line y � x to obtain
the graph of y � log3 x.

2. 3ex�1 � 2� 4

3ex�1 � 6

ex�1 � 2

ln ex�1 � ln 2

(x � 1)ln e � ln 2 (Law 3)

x � 1� ln 2 (Law 5)

x � ln 2� 1

� �0.3069
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y = 3x y = x

y = log3
x

13.3 Dif ferent iat ion of Exponent ial Funct ions

THE DERIVATIVE OF THE EXPONENTIAL FUNCTION
To study the effects of budget deficit-reduction plans at different income
levels, it is important to know the income distribution of American families.
Based on data from the House Budget Committee, the House Ways and
Means Committee, and the U.S. Census Bureau, the graph of f shown in
Figure 13.10 gives the number ofAmerican families y (inmillions) as a function
of their annual income x (in thousands of dollars) in 1990.
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Observe that the graph of f rises very quickly and then tapers off. From
the graph of f, you can see that the bulk of American families earned less
than $100,000 per year. In fact, 95% of U.S. families earned less than $102,358
per year in 1990. (We will refer to this model again in Using Technology at
the end of this section.)

To analyze mathematical models involving exponential and logarithmic
functions in greater detail, we need to develop rules for computing the deriva-
tive of these functions. We begin by looking at the rule for computing the
derivative of the exponential function.

Rule 1: Der ivat ive of the
Exponent ia l Funct ion

d
dx

ex � ex

Thus, the derivative of the exponential function with base e is equal to the
function itself. To demonstrate the validity of this rule, we compute

f �(x) � lim
h�0

f(x � h) � f(x)
h

� lim
h�0

ex�h � ex

h

(Writing ex�h � exeh and factoring)� lim
h�0

ex(eh � 1)
h

(Why?)� ex lim
h�0

eh � 1
h
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FIGURE 13.10
The graph of f shows the number of fami-
lies versus their annual income.

Source: House Budget Committee, House
Ways and Means Committee, and U.S. Cen-
sus Bureau



To evaluate

lim
h�0

eh � 1
h

let’s refer to Table 13.2, which is constructed with the aid of a calculator.
From the table, we see that

lim
h�0

eh � 1
h

� 1

(Although a rigorous proof of this fact is possible, it is beyond the scope of
this book. Also see Example 1, Using Technology, page 916.) Using this result,
we conclude that

f �(x) � ex � 1 � ex

as we set out to show.

EXAMPLE 1 Compute the derivative of each of the following functions:

a. f(x) � x2ex b. g(t) � (et � 2)3/2

S O L U T I O N ✔ a. The product rule gives

f �(x) �
d
dx

(x2ex)

� x2 d
dx

(ex) � ex d
dx

(x2)

� x2ex � ex(2x)

� xex(x � 2)

b. Using the general power rule, we find

g�(t) �
3
2
(et � 2)1/2

d
dt
(et � 2)

�
3
2
(et � 2)1/2 et �

3
2
et(et � 2)1/2

� � � �
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Table 13.2
h 0.1 0.01 0.001 �0.1 �0.01 �0.001

eh � 1
h

0.99951.0517 1.0050 1.0005 0.9516 0.9950
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APPLYING THE CHAIN RULE TO EXPONENTIAL FUNCTIONS
To enlarge the class of exponential functions to be differentiated, we appeal
to the chain rule to obtain the following rule for differentiating composite
functions of the form h(x) � e f(x). An example of such a function is h(x) �
ex2�2x. Here, f(x) � x2 � 2x.

Exploring with Technology

Consider the exponential function f(x) � bx (b � 0, b �/ 1).

1. Use the definition of the derivative of a function to show that

f�(x) � bx � lim
h�0

bh � 1
h

2. Use the result of part 1 to show that

d
dx

(2x) � 2x � lim
h�0

2h � 1
h

d
dx

(3x) � 3x � lim
h�0

3h � 1
h

3. Use the technique in Using Technology, page 916, to show that (to two decimal places)

lim
h�0

2h � 1
h

� 0.69 and lim
h�0

3h � 1
h

� 1.10

4. Conclude from the results of parts 2 and 3 that

d
dx

(2x) � (0.69)2x and
d
dx

(3x) � (1.10)3x

Thus,

d
dx

(bx) � k � bx

where k is an appropriate constant.
5. The results of part 4 suggest that, for convenience, we pick the base b, where 2 � b � 3, so that k � 1.

This value of b is e � 2.718281828. . . . Thus,

d
dx

(ex) � ex

This is why we prefer to work with the exponential function f(x) � ex.



Rule 2: Cha in Ru le for
Exponent ia l Funct ions

If f(x) is a differentiable function, then

d
dx

(e f(x))� e f(x)f �(x)

To see this, observe that if h(x) � g[ f(x)], where g(x) � ex, then by virtue
of the chain rule,

h�(x) � g�( f(x)) f �(x) � e f(x)f �(x)

since g�(x) � ex.
As an aid to remembering the chain rule for exponential functions, observe

that it has the following form:

d
dx

(e f(x)) � e f(x) � derivative of exponent
� �Same

EXAMPLE 2 Find the derivative of each of the following functions.

a. f(x) � e2x b. y � e�3x c. g(t) � e2t
2�t

S O L U T I O N ✔ a. f �(x) � e2x
d
dx

(2x) � e2x � 2 � 2e2x

b.
dy
dx

� e�3x d
dx

(�3x) � �3e�3x

c. g�(t) � e2t
2�t �

d
dt
(2t2 � t) � (4t � 1)e2t

2�t

� � � �

EXAMPLE 3 Differentiate the function y � xe�2x.

S O L U T I O N ✔ Using the product rule, followed by the chain rule, we find

dy
dx

� x
d
dx

e�2x � e�2x d
dx

(x)

(Using the chain rule on
� xe�2x d

dx
(�2x) � e�2x

the first term)

� �2xe�2x � e�2x

� e�2x(1 � 2x) � � � �
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EXAMPLE 4 Differentiate the function g(t) �
et

et � e�t .

S O L U T I O N ✔ Using the quotient rule, followed by the chain rule, we find

g�(t) �

(et � e�t)
d
dt
(et) � et d

dt
(et � e�t)

(et � e�t)2

�
(et � e�t)et � et(et � e�t)

(et � e�t)2

�
e2t � 1 � e2t � 1

(et � e�t)2
(e0 � 1)

�
2

(et � e�t)2 � � � �

EXAMPLE 5 In Section 13.5 we will discuss some practical applications of the exponen-
tial function

Q(t) � Q0ekt

whereQ0 and k are positive constants and t � [0, �). A quantityQ(t) growing
according to this law experiences exponential growth. Show that for a quantity
Q(t) experiencing exponential growth, the rate of growth of the quantityQ�(t)
at any time t is directly proportional to the amount of the quantity present.

S O L U T I O N ✔ Using the chain rule for exponential functions, we compute the derivative Q�
of the function Q. Thus,

Q�(t) � Q0ekt d
dt
(kt)

� Q0ekt(k)

� kQ0ekt

� kQ(t) (Q(t)� Q0ekt)

which is the desired conclusion. � � � �

EXAMPLE 6 Find the points of inflection of the function f(x) � e�x2.

S O L U T I O N ✔ The first derivative of f is

f �(x) � �2xe�x2

Differentiating f �(x) with respect to x yields

f �(x) � (�2x)(�2xe�x2) � 2e�x2

� 2e�x2(2x2 � 1)



Setting f �(x) � 0 gives

2e�x2(2x2 � 1) � 0

Since e�x2 never equals zero for any real value of x, we see that x � 
1/�2
are the only candidates for inflection points of f. The sign diagram of f �, shown
in Figure 13.11, tells us that both x � �1/�2 and x � 1/�2 give rise to
inflection points of f.

Next,

f ��
1

�2
�� f � 1

�2
�� e�1/2

and the inflection points of f are (�1/�2, e�1/2) and (1/�2, e�1/2). The graph
of f appears in Figure 13.12.

� � � �

APPLICATION
Our final example involves finding the absolute maximum of an exponen-
tial function.

EXAMPLE 7 Refer to Example 8, Section 13.1. The present value of the market price of
the Blakely Office Building is given by

P(t) � 300,000e�0.09t��t /2 (0 � t � 10)

Find the optimal present value of the building’s market price.

S O L U T I O N ✔ To find the maximum value of P over [0, 10], we compute

P�(t)� 300,000e�0.09t��t /2 d
dt ��0.09t �

1
2
t1/2�

� 300,000e�0.09t��t /2 ��0.09 �
1
4
t�1/2�

Setting P�(t) � 0 gives

�0.09 �
1
4t1/2

� 0
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FIGURE 13.12
The graph of y � e�x2 has two inflection
points.
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since e�0.09t��t /2 is never zero for any value of t. Solving this equation, we find

1
4t1/2

� 0.09

t1/2 �
1

4(0.09)

�
1

0.36

t � 7.72

the sole critical point of the function P. Finally, evaluating P(t) at the critical
point as well as at the end points of [0, 10], we have

t P(t)

0 300,000
7.72 600,779
10 592,838

We conclude, accordingly, that the optimal present value of the property’s
market price is $600,779 and that this will occur 7.72 years from now.

� � � �

S E L F - C H E C K E X E R C I S E S 1 3 . 3

1. Let f(x) � xe�x.
a. Find the first and second derivatives of f.
b. Find the relative extrema of f.
c. Find the inflection points of f.

2. An industrial asset is being depreciated at a rate so that its book value t yr from
now will be

V(t) � 50,000e�0.4t

dollars. How fast will the book value of the asset be changing 3 yr from now?

Solutions to Self-Check Exercises 13.3 can be found on page 918.

13.3 Exercises

In Exercises 1–28, find the derivative of the
function.

1. f(x) � e3x 2. f(x) � 3ex

3. g(t) � e�t 4. f(x) � e�2x

5. f(x) � ex � x 6. f(x) � 2ex � x2

7. f(x) � x3ex 8. f(u) � u2e�u

9. f(x) �
2ex

x
10. f(x) �

x
ex

11. f(x) � 3(ex � e�x) 12. f(x) �
ex � e�x

2



13. f(w) �
ew � 1
ew 14. f(x) �

ex

ex � 1

15. f(x) � 2e3x�1 16. f(t) � 4e3t�2

17. h(x) � e�x2 18. f(x) � ex2�1

19. f(x) � 3e�1/x 20. f(x) � e1/(2x)

21. f(x) � (ex � 1)25 22. f(x) � (4 � e�3x)3

23. f(x) � e�x 24. f(t) � �e��2t

25. f(x) � (x � 1)e3x�2 26. f(s) � (s2 � 1)e�s2

27. f(x) �
ex � 1
ex � 1

28. g(t) �
e�t

1� t2

In Exercises 29–32, find the second derivative
of the function.

29. f(x) � e�4x � 2e3x 30. f(t) � 3e�2t � 5e�t

31. f(x) � 2xe3x 32. f(t) � t2e�2t

33. Find an equation of the tangent line to the graph of
y � e2x�3 at the point ( ��, 1).

34. Find an equation of the tangent line to the graph of
y � e�x2 at the point (1, 1/e).

35. Determine the intervals where the function f(x) �
e�x2/2 is increasing and where it is decreasing.

36. Determine the intervals where the function f(x) � x2e�x

is increasing and where it is decreasing.

37. Determine the intervals of concavity for the function

f(x)�
ex � e�x

2
.

38. Determine the intervals of concavity for the function
f(x) � xex.

39. Find the inflection point of the function f(x) � xe�2x.

40. Find the inflection point(s) of the function f(x)� 2e�x2.

In Exercises 41–44, find the absolute extrema
of the function.

41. f(x) � e�x2 on [�1, 1]

42. h(x) � ex2�4 on [�2, 2]

43. g(x) � (2x � 1)e�x on [0, �)

44. f(x) � xe�x2 on [0, 2]

In Exercises 45–48, use the curve-sketching
guidelines of Chapter 12, page 837, to sketch
the graph of the function.

45. f(t) � et � t 46. h(x) �
ex � e�x

2

47. f(x) � 2 � e�x 48. f(x) �
3

1� e�x

A calculator is recommended for Exercises
49–59.

49. SALES PROMOTION The Lady Bug, a women’s clothing
chain store, found that t days after the end of a sales
promotion the volume of sales was given by

S(t) � 20,000(1 � e�0.5t) (0 � t � 5)

dollars. Find the rate of change of The Lady Bug’s sales
volume when t � 1, t � 2, t � 3, and t � 4.

50. ENERGY CONSUMPTION OF APPLIANCES The average energy
consumption of the typical refrigerator/freezermanufac-
tured by York Industries is approximately

C(t) � 1486e�0.073t � 500 (0 � t � 20)

kilowatt-hours (kWh) per year, where t is measured in
years, with t � 0 corresponding to 1972.
a. What was the average energy consumption of the
York refrigerator/freezer at the beginning of 1972?
b. Prove that the average energy consumption of the
York refrigerator/freezer is decreasing over the years in
question.
c. All refrigerator/freezers manufactured as of January
1, 1990, must meet the 950-kWh/year maximum energy-
consumption standard set by the National Appliance
Conservation Act. Show that the York refrigerator/
freezer satisfies this requirement.

51. POLIO IMMUNIZATION Polio, a once-feared killer, declined
markedly in the United States in the 1950s after Jonas
Salk developed the inactivated polio vaccine and mass
immunization of children took place. The number of
polio cases in the United States from the beginning of
1959 to the beginning of 1963 is approximated by the
function

N(t)� 5.3e0.095t
2
�0.85t (0� t � 4)

where N(t) gives the number of polio cases (in thou-
sands) and t is measured in years, with t � 0 correspond-
ing to the beginning of 1959.
a. Show that the function N is decreasing over the time
interval under consideration.
b. How fast was the number of polio cases decreasing
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(continued on p. 918)

at the beginning of 1959? At the beginning of 1962?
(Comment: Following the introduction of the oral vac-
cine developed by Dr. Albert B. Sabin in 1963, polio in
the United States has, for all practical purposes, been
eliminated.)

52. BLOOD ALCOHOL LEVEL The percentage of alcohol in a
person’s bloodstream t hr after drinking 8 fluid oz of
whiskey is given by

A(t) � 0.23te�0.4t (0 � t � 12)

a. What is the percentage of alcohol in a person’s blood-
stream after �� hr? After 8 hr?
b. How fast is the percentage of alcohol in a person’s
bloodstream changing after �� hr? After 8 hr?
Source: Encyclopedia Britannica

53. PRICE OF PERFUME The monthly demand for a certain
brand of perfume is given by the demand equation

p � 100e�0.0002x � 150

where p denotes the retail unit price (in dollars) and x
denotes the quantity (in 1-oz bottles) demanded.
a. Find the rate of change of the price per bottle when
x � 1000 and when x � 2000.
b. What is the price per bottle when x � 1000? When
x � 2000?

54. PRICE OF WINE The monthly demand for a certain brand
of table wine is given by the demand equation

p � 240 �1�
3

3� e�0.0005x�
where p denotes the wholesale price per case (in dollars)
and x denotes the number of cases demanded.
a. Find the rate of change of the price per case when
x � 1000.
b. What is the price per case when x � 1000?

55. SPREAD OF AN EPIDEMIC During a flu epidemic, the total
number of students on a state university campus who
had contracted influenza by the xth day was given by

N(x)�
3000

1� 99e�x (x 	 0)

a. How many students had influenza initially?
b. Derive an expression for the rate at which the disease
was being spread and prove that the functionN is increas-
ing on the interval (0, �).
c. Sketch the graph of N. What was the total number
of students who contracted influenza during that particu-
lar epidemic?

56. MAXIMUM OIL PRODUCTION It has been estimated that the

total production of oil from a certain oil well is given
by

T(t) � �1000(t � 10)e�0.1t � 10,000

thousand barrels t years after production has begun.
Determine the year when the oil well will be producing
at maximum capacity.

57. OPTIMAL SELL ING T IME Refer to Exercise 36, page 893.
The present value of a piece of waterfront property pur-
chased by an investor is given by the function

P(t) � 80,000e�t/2�0.09t (0 � t � 8)

Determine the optimal time (based on present value) for
the investor to sell the property. What is the property’s
optimal present value?

58. OIL USED TO FUEL PRODUCTIVITY A study on worldwide oil
use was prepared for a major oil company. The study
predicted that the amount of oil used to fuel productivity
in a certain country is given by

f(t) � 1.5 � 1.8te�1.2t (0 � t � 4)

where f(t) denotes the number of barrels per $1000 of
economic output and t is measured in decades (t � 0
corresponds to 1965). Compute f�(0), f�(1), f�(2), and
f�(3) and interpret your results.

59. PERCENTAGE OF POPULATION RELOCATING Based on data ob-
tained from the Census Bureau, the manager of Plym-
outh Van Lines estimates that the percentage of the total
population relocating in year t (t � 0 corresponds to the
year 1960) may be approximated by the formula

P(t) � 20.6e�0.009t (0 � t � 35)

Compute P�(10), P�(20), and P�(30) and interpret
your results.

60. PRICE OF A COMMODITY The price of a certain commodity
in dollars per unit at time t (measured in weeks) is given
by p � 18 � 3e�2t � 6e�t/3.
a. What is the price of the commodity at t � 0?
b. How fast is the price of the commodity changing at
t � 0?
c. Find the equilibrium price of the commodity.
Hint: It is given by lim

t��
p.

61. PRICE OF A COMMODITY The price of a certain commodity
in dollars per unit at time t (measured in weeks) is given
by p � 8 � 4e�2t � te�2t.
a. What is the price of the commodity at t � 0?
b. How fast is the price of the commodity changing at
t � 0?
c. Find the equilibrium price of the commodity.
Hint: It’s given by lim

t��
p. Also, use the fact that lim

t��
te�2t � 0.



Using Technology

EXAMPLE 1 At the beginning of Section 13.3, we demonstrated via a table of values of
(eh � 1)/h for selected values of h the plausibility of the result

lim
h�0

eh � 1
h

� 1

To obtain a visual confirmation of this result, we plot the graph of

f(x) �
ex � 1

x

in the viewing rectangle [�1, 1] � [0, 2] (Figure T1). From the graph of f, we
see that f(x) appears to approach 1 as x approaches 0.

� � � �

The numerical derivative function of a graphing utility will yield the
derivative of an exponential or logarithmic function for any value of x, just
as it did for algebraic functions.*

Exercises

In Exercises 1–6, use the numerical derivative
operation of a graphing utility to find the rate
of change of f(x) at the given value of x. Give
your answer accurate to four decimal places.

1. f(x) � x3e�1/x; x � �1

2. f(x) � (�x � 1)3/2e�x; x � 0.5

3. f(x) � x3�ln x; x � 2

4. f(x) �
�x ln x
x � 1

; x � 3.2

5. f(x) � e�x ln(2x � 1); x � 0.5

6. f(x) �
e��x

ln(x2 � 1)
; x � 1

7. AN EXTINCTION S ITUATION The number of saltwater croco-
diles in a certain area of northern Australia is given by

P(t)�
300e�0.024t

5e�0.024t � 1

a. Howmany crocodiles were in the population initially?
b. Show that lim

t��
P(t) � 0.

c. Use a graphing calculator to plot the graph of P in
the viewing rectangle [0, 200] � [0, 70].
(Comment: This phenomenon is referred to as an extinc-
tion situation.)

8. INCOME OF AMERICAN FAMIL IES Based on data compiled
by the House Budget Committee, the House Ways and
Means Committee, and the U.S. Census Bureau, it is

* The rules for differentiating logarithmic functions will be covered in Section 13.4. However, the exercises
given here can be done without using these rules.

916

FIGURE T1
The graph of f in the viewing rectangle
[�1, 1] � [0, 2]
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estimated that the number of American families y (in
millions) who earned x thousand dollars in 1990 is related
by the equation

y � 0.1584xe�0.0000016x3�0.00011x2�0.04491x (x � 0)

a. Use a graphing utility to plot the graph of the equation
in the viewing rectangle [0, 150] � [0, 2].
b. How fast is y changing with respect to x when x �
10? When x � 50? Interpret your results.
Source: House Budget Committee, House Ways and
Means Committee, and U.S. Census Bureau

9. WORLD POPULATION GROWTH According to a study con-
ducted by the United Nations Population Division, the
world population (in billions) is approximated by the
function

f(t)�
12

1� 3.74914e�1.42804t (0� t � 4)

where t is measured in half-centuries, with t � 0 corre-
sponding to the beginning of 1950.
a. Use a graphing utility to plot the graph of f in the
viewing rectangle [0, 5] � [0, 14].
b. How fast was the world population expected to in-
crease at the beginning of the year 2000?
Source: United Nations Population Division

10. LOAN AMORTIZATION The Sotos plan to secure a loan of
$160,000 to purchase a house. They are considering a
conventional 30-yr home mortgage at 9%/year on the
unpaid balance. It can be shown that the Sotos will have
an outstanding principal of

B(x)�
160,000(1.0075360 � 1.0075x)

1.0075360 � 1

dollars after making x monthly payments of $1287.40.
a. Use a graphing utility to plot the graph of B(x), using
the viewing rectangle [0, 360] � [0, 160,000].
b. Compute B(0) and B�(0) and interpret your results;
compute B(180) and B�(180) and interpret your results.

11. INCREASE IN JUVENILE OFFENDERS The number of youths
aged 15 to 19 will increase by 21% between 1994 and
2005, pushing up the crime rate. According to the Na-
tional Council on Crime and Delinquency, the number
of violent crime arrests of juveniles under age 18 in year
t is given by

f(t) � �0.438t2 � 9.002t � 107 (0 � t � 13)

where f(t) is measured in thousands and t in years, with
t � 0 corresponding to 1989. According to the same
source, if trends like inner-city drug use and wider avail-

ability of guns continues, then the number of violent
crime arrests of juveniles under age 18 in year t will be
given by

g(t)� 
�0.438t2 � 9.002t � 107 if 0� t � 4

99.456e0.07824t if 4� t � 13

where g(t) is measured in thousands and t � 0 corre-
sponds to 1989.
a. Compute f(11) and g(11) and interpret your results.
b. Compute f�(11) and g�(11) and interpret your results.
Source: National Council on Crime and Delinquency

12. INCREASING CROP Y IELDS If left untreated on bean stems,
aphids (small insects that suck plant juices) will multiply
at an increasing rate during the summer months and
reduce productivity and crop yield of cultivated crops.
But if the aphids are treated in mid-June, the numbers
decrease sharply to less than 100/bean stem, allowing
for steep rises in crop yield. The function

F(t)� 
62e1.152t if 0� t � 1.5

349e�1.324(t�1.5) if 1.5� t � 3

gives the number of aphids in a typical bean stem at
time t, where t is measured in months, with t � 0 corre-
sponding to the beginning of May.
a. How many aphids are there on a typical bean stem
at the beginning of June (t � 1)? At the beginning of
July (t � 2)?
b. How fast is the population of aphids changing at the
beginning of June? At the beginning of July?
Source: The Random House Encyclopedia

13. PERCENTAGE OF FEMALES IN THE LABOR FORCE Based on data
from the U.S. Census Bureau, the chief economist of
Manpower, Inc., constructed the following formula
giving the percentage of the total female population in
the civilian labor force, P(t), at the beginning of the tth
decade (t � 0 corresponds to the year 1900):

P(t)�
74

1� 2.6e�0.166t�0.04536t2�0.0066t3
(0� t � 11)

Assume this trend continued for the rest of the twentieth
century.
a. What was the percentage of the total female popula-
tion in the civilian labor force at the beginning of the
year 2000?
b. What was the growth rate of the percentage of the
total female population in the civilian labor force at the
beginning of the year 2000?
Source: U.S. Census Bureau



62. ABSORPTION OF DRUGS A liquid carries a drug into an
organ of volumeV cm3 at the rate of a cm3/sec and leaves
at the same rate. The concentration of the drug in the
entering liquid is c g/cm3. Letting x(t) denote the concen-
tration of the drug in the organ at any time t, we have
x(t) � c(1 � e�at/V).
a. Show that x is an increasing function on (0, �).
b. Sketch the graph of x.

63. ABSORPTION OF DRUGS Refer to Exercise 62. Suppose the
maximum concentration of the drug in the organ must
not exceed m g/cm3, where m � c. Show that the liquid
must not be allowed to enter the organ for a time longer
than

T � �Va� ln � c
c � m�

minutes.

In Exercises 64–67, determine whether the
statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

64. If f(x) � 3x, then f�(x) � x � 3x�1.

65. If f(x) � e�, then f�(x) � e�.

66. If f(x) � �x, then f�(x) � �x.

67. If x2 � ey � 10, then y � �
�2x
ey .

S O L U T I O N S T O S E L F - C H E C K E X E R C I S E S 1 3 . 3

1. a. Using the product rule, we obtain

f�(x)� x
d
dx

e�x � e�x d
dx

x

� �xe�x � e�x � (1� x)e�x

Using the product rule once again, we obtain

f �(x)� (1� x)
d
dx

e�x � e�x d
dx

(1� x)

� (1� x)(�e�x)� e�x(�1)

� �e�x � xe�x � e�x � (x � 2)e�x

b. Setting f�(x) � 0 gives

(1 � x)e�x � 0

Since e�x � 0, we see that 1 � x � 0, and this gives x � 1 as the only critical point
of f. The sign diagram of f� shown in the accompanying figure tells us that the point
(1, e�1) is a relative maximum of f.

c. Setting f �(x) � 0 gives x � 2 � 0, so x � 2 is a candidate for an inflection point
of f. The sign diagram of f � (accompanying figure) shows that (2, 2e�2) is an inflection
point of f.
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2. The rate of change of the book value of the asset t yr from now is

V�(t)� 50,000
d
dt

e�0.4t

� 50,000(�0.4)e�0.4t � �20,000e�0.4t

Therefore, 3 yr from now the book value of the asset will be changing at the rate
of

V�(3) � �20,000e�0.4(3) � �20,000e�1.2 � �6023.88

—that is, decreasing at the rate of approximately $6024/year.

13.4 Dif ferent iat ion of Logari thmic Funct ions

THE DERIVATIVE OF ln x
Let’s now turn our attention to the differentiation of logarithmic functions.

Rule 3: Der ivat ive of ln x
d
dx

ln �x � �
1
x

(x � 0)

To deriveRule 3, suppose x� 0 andwrite f(x)� ln x in the equivalent form

x � e f (x)

Differentiating both sides of the equation with respect to x, we find, using
the chain rule,

1 � e f (x) � f�(x)

from which we see that f�(x) �
1

e f (x)

or, since e f (x) � x,

f�(x) �
1
x

as we set out to show. You are asked to prove the rule for the case x � 0 in
Exercise 61.

EXAMPLE 1 Compute the derivative of each of the following functions:

a. f(x) � x ln x b. g (x) �
ln x
x



S O L U T I O N ✔ a. Using the product rule, we obtain

f�(x) �
d
dx

(x ln x) � x
d
dx

(ln x) � (ln x)
d
dx

(x)

� x �1x�� ln x � 1 � ln x

b. Using the quotient rule, we obtain

g�(x) �

x
d
dx

(ln x) � (ln x)
d
dx

(x)

x2 �

x �1x�� ln x

x2 �
1 � ln x

x2 � � � �

THE CHAIN RULE FOR LOGARITHMIC FUNCTIONS
To enlarge the class of logarithmic functions to be differentiated, we appeal
once more to the chain rule to obtain the following rule for differentiating
composite functions of the form h(x) � ln f(x), where f(x) is assumed to be
a positive differentiable function.

Rule 4: Cha in Ru le for
Logar i thmic Funct ions If f(x) is a differentiable function, then

d
dx

[ln f(x)]�
f�(x)
f(x)

[ f(x)� 0]

Group Discussion
You can derive the formula for the derivative of f(x) � ln x directly

from the definition of the derivative, as follows.

1. Show that

f�(x) � lim
h�0

f(x � h) � f(x)
h

� lim
h�0

ln �1 �
h
x�1/h

2. Put m � x/h and note that m � � as h � 0. Furthermore, f�(x) can be
written in the form

f�(x) � lim
m��

ln �1 �
1
m�m/x

3. Finally, use both the fact that the natural logarithmic function is continu-
ous and the definition of the number e to show that

f�(x) �
1
x
ln �lim

m��
�1 �

1
m�m��

1
x
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To see this, observe that h(x) � g[ f(x)], where g(x) � ln x (x � 0). Since
g�(x) � 1/x, we have, using the chain rule,

h�(x) � g�( f(x)) f�(x)

�
1

f(x)
f�(x) �

f�(x)
f(x)

Observe that in the special case f(x) � x, h(x) � ln x, so the derivative of h
is, by Rule 3, given by h�(x) � 1/x.

EXAMPLE 2 Find the derivative of the function f(x) � ln(x2 � 1).

S O L U T I O N ✔ Using Rule 4, we see immediately that

f�(x) �

d
dx

(x2 � 1)

x2 � 1
�

2x
x2 � 1 � � � �

When differentiating functions involving logarithms, the rules of loga-
rithms may be used to advantage, as shown in Examples 3 and 4.

EXAMPLE 3 Differentiate the function y � ln[(x2 � 1)(x3 � 2)6].

S O L U T I O N ✔ We first rewrite the given function using the properties of logarithms:

y � ln[(x2 � 1)(x3 � 2)6]

� ln(x2 � 1) � ln(x3 � 2)6 (lnmn � lnm � ln n)

� ln(x2 � 1) � 6 ln(x3 � 2) (lnmn � n lnm)

Differentiating and using Rule 4, we obtain

y� �

d
dx

(x2 � 1)

x2 � 1
�

6
d
dx

(x3 � 2)

x3 � 2

�
2x

x2 � 1
�
6(3x2)
x3 � 2

�
2x

x2 � 1
�

18x2

x3 � 2 � � � �

Exploring with Technology

Use a graphing utility to plot the graphs of f(x) � ln x; its first derivative function, f�(x) �
1/x; and its second derivative function, f �(x) � �1/x2, using the same viewing rectangle [0, 4] � [�3, 3].

1. Describe the properties of the graph of f revealed by studying the graph of f�(x). What can you say about
the rate of increase of f for large values of x?

2. Describe the properties of the graph of f revealed by studying the graph of f �(x). What can you say
about the concavity of f for large values of x?



EXAMPLE 4 Find the derivative of the function g(t) � ln(t2e�t2).

S O L U T I O N ✔ Here again, to save a lot of work, we first simplify the given expression using
the properties of logarithms. We have

g(t) � ln(t2e�t2)

� ln t2 � ln e�t2 (lnmn � lnm � ln n)

� 2 ln t � t2 (lnmn � n lnm and ln e � 1)

Therefore,

g�(t) �
2
t

� 2t �
2(1 � t2)

t � � � �

LOGARITHMIC D IFFERENTIATION
As we saw in the last two examples, the task of finding the derivative of a
given function can be made easier by first applying the laws of logarithms to
simplify the function. We now illustrate a process called logarithmic differenti-
ation, which not only simplifies the calculation of the derivatives of certain
functions but also enables us to compute the derivatives of functions we could
not otherwise differentiate using the techniques developed thus far.

EXAMPLE 5 Differentiate y � x(x � 1)(x2 � 1), using logarithmic differentiation.

S O L U T I O N ✔ First, we take the natural logarithm on both sides of the given equation,
obtaining

ln y � ln x(x � 1)(x2 � 1)

Next, we use the properties of logarithms to rewrite the right-hand side of
this equation, obtaining

ln y � ln x � ln(x � 1) � ln(x2 � 1)

If we differentiate both sides of this equation, we have

d
dx

ln y �
d
dx

[ln x � ln(x � 1) � ln(x2 � 1)]

�
1
x

�
1

x � 1
�

2x
x2 � 1

(Using Rule 4)
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To evaluate the expression on the left-hand side, note that y is a function of
x. Therefore, writing y � f(x) to remind us of this fact, we have

d
dx

ln y �
d
dx

ln[ f(x)] [Writing y � f(x)]

�
f�(x)
f(x)

(Using Rule 4)

�
y�

y
[Returning to using y instead of f(x)]

Therefore, we have

y�

y
�
1
x

�
1

x � 1
�

2x
x2 � 1

Finally, solving for y�, we have

y� � y�1x �
1

x � 1
�

2x
x2 � 1�

� x(x � 1)(x2 � 1)�1x �
1

x � 1
�

2x
x2 � 1� � � � �

Before considering other examples, let’s summarize the important steps
involved in logarithmic differentiation.

F ind ing
dy
dx

by Logar i thmic

D i f ferent ia t ion

1. Take the natural logarithm on both sides of the equation and use the
properties of logarithms to write any ‘‘complicated expression’’ as a sum of
simpler terms.

2. Differentiate both sides of the equation with respect to x.

3. Solve the resulting equation for
dy
dx
.

EXAMPLE 6 Differentiate y � x2(x � 1)(x2 � 4)3.

S O L U T I O N ✔ Taking the natural logarithm on both sides of the given equation and using
the laws of logarithms, we obtain

ln y � ln x2(x � 1)(x2 � 4)3

� ln x2 � ln(x � 1) � ln(x2 � 4)3

� 2 ln x � ln(x � 1) � 3 ln(x2 � 4)

Differentiating both sides of the equation with respect to x, we have

d
dx

ln y �
y�

y
�
2
x

�
1

x � 1
� 3 �

2x
x2 � 4



Finally, solving for y�, we have

y� � y �2x �
1

x � 1
�

6x
x2 � 4�

� x2(x � 1)(x2 � 4)3 �2x �
1

x � 1
�

6x
x2 � 4� � � � �

EXAMPLE 7 Find the derivative of f(x) � xx(x � 0).

S O L U T I O N ✔ Aword of caution! This function is neither a power function nor an exponential
function. Taking the natural logarithm on both sides of the equation gives

ln f(x) � ln xx � x ln x

Differentiating both sides of the equation with respect to x, we obtain

f�(x)
f(x)

� x
d
dx

ln x � (ln x)
d
dx

x

� x�1x�� ln x

� 1 � ln x

Therefore,

f�(x) � f(x)(1 � ln x) � xx(1 � ln x) � � � �

S E L F - C H E C K E X E R C I S E S 1 3 . 4

1. Find an equation of the tangent line to the graph of f(x) � x ln(2x � 3) at the
point (�1, 0).

2. Use logarithmic differentiation to compute y�, given y � (2x � 1)3(3x � 4)5.

Solutions to Self-Check Exercises 13.4 can be found on page 926.

Exploring with Technology

Refer to Example 7.

1. Use a graphing utility to plot the graph of f(x) � xx, using the viewing rectangle [0, 2] � [0, 2]. Then
use ZOOM and TRACE to show that

lim
x�0�

f(x) � 1

2. Use the results of part 1 and Example 7 to show that lim
x�0�

f�(x) � ��. Justify your answer.
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13.4 Exercises

In Exercises 1–32, find the derivative of the
function.

1. f(x) � 5 ln x 2. f(x) � ln 5x

3. f(x) � ln(x � 1) 4. g(x) � ln(2x � 1)

5. f(x) � ln x8 6. h(t) � 2 ln t5

7. f(x) � ln �x 8. f(x) � ln(�x � 1)

9. f(x) � ln
1
x2 10. f(x) � ln

1
2x3

11. f(x) � ln(4x2 � 6x � 3)

12. f(x) � ln(3x2 � 2x � 1)

13. f(x) � ln
2x

x � 1
14. f(x) � ln

x � 1
x � 1

15. f(x) � x2 ln x 16. f(x) � 3x2 ln 2x

17. f(x) �
2 ln x
x

18. f(x) �
3 ln x
x2

19. f(u) � ln(u � 2)3 20. f(x) � ln(x3 � 3)4

21. f(x) � �ln x 22. f(x) � �ln x � x

23. f(x) � (ln x)3 24. f(x) � 2(ln x)3/2

25. f(x) � ln(x3 � 1) 26. f(x) � ln�x2 � 4

27. f(x) � ex ln x 28. f(x) � ex ln�x � 3

29. f(t) � e2t ln(t � 1) 30. g(t) � t2 ln(e2t � 1)

31. f(x) �
ln x
x

32. g(t) �
t
ln t

In Exercises 33–36, find the second derivative
of the function.

33. f(x) � ln 2x 34. f(x) � ln(x � 5)

35. f(x) � ln(x2 � 2) 36. f(x) � (ln x)2

InExercises37–46,use logarithmicdifferenti-
ation to find the derivative of the function.

37. y � (x � 1)2(x � 2)3 38. y � (3x � 2)4(5x � 1)2

39. y � (x � 1)2(x � 1)3(x � 3)4

40. y � �3x � 5(2x � 3)4

41. y �
(2x2 � 1)5

�x � 1
42. y �

�4� 3x2

�3 x2 � 1

43. y � 3x 44. y � xx�2

45. y � (x2 � 1)x 46. y � x ln x

47. Find an equation of the tangent line to the graph of
y � x ln x at the point (1, 0).

48. Find an equation of the tangent line to the graph of
y � ln x2 at the point (2, ln 4).

49. Determine the intervals where the function f(x) � ln x2

is increasing and where it is decreasing.

50. Determine the intervals where the function f(x)�
ln x
x

is increasing and where it is decreasing.

51. Determine the intervals of concavity for the function
f(x) � x2 � ln x2.

52. Determine the intervals of concavity for the function

f(x)�
ln x
x
.

53. Find the inflection points of the function f(x) �
ln(x2 � 1).

54. Find the inflection points of the function f(x) � x2 ln x.

55. Find the absolute extrema of the function f(x) � x � ln x
on [ ��, 3].

56. Find the absolute extrema of the function g(x)�
x
ln x

on

[2, �).

In Exercises 57 and 58, use the guidelines on
page 893 to sketch the graph of the given
function.

57. f(x) � ln(x � 1) 58. f(x) � 2x � ln x

In Exercises59and60, determinewhether the
statement is true or false. If it is true, explain
why it is true. If it is false, give an example to
show why it is false.

59. If f(x) � ln 5, then f�(x) � 1/5.

60. If f(x) � ln ax, then f�(x) � ln a.

61. Prove that
d
dx

ln �x � �
1
x
(x � 0) for the case x � 0.

62. Use the definition of the derivative to show that

lim
x�0

ln(x � 1)
x

� 1



S O L U T I O N S T O S E L F - C H E C K E X E R C I S E S 1 3 . 4

1. The slope of the tangent line to the graph of f at any point (x, f(x)) lying on the
graph of f is given by f�(x). Using the product rule, we find

f�(x)�
d
dx

[x ln(2x � 3)]

� x
d
dx

ln(2x � 3)� ln(2x � 3) �
d
dx

(x)

� x � 2
2x � 3�� ln(2x � 3) � 1

�
2x

2x � 3
� ln(2x � 3)

In particular, the slope of the tangent line to the graph of f at the point (�1, 0) is

f�(�1)�
�2

�2� 3
� ln 1� �2

Therefore, using the point-slope form of the equation of a line, we see that a
required equation is

y � 0� �2(x � 1)

y � �2x � 2

2. Taking the logarithm on both sides of the equation gives

ln y � ln(2x � 1)3(3x � 4)5

� ln(2x � 1)3 � ln(3x � 4)5

� 3 ln(2x � 1)� 5 ln(3x � 4)

Differentiating both sides of the equation with respect to x, keeping in mind that
y is a function of x, we obtain

d
dx

(ln y)�
y�

y
� 3 �

2
2x � 1

� 5 �
3

3x � 4

� 3 � 2
2x � 1

�
5

3x � 4�
� � 6

2x � 1
�

15
3x � 4�

and

y� � (2x � 1)3(3x � 4)5 � � 6
2x � 1

�
15

3x � 4�
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13.5 Exponential Funct ions as Mathematical Models

EXPONENTIAL GROWTH
Many problems arising from practical situations can be described mathemati-
cally in terms of exponential functions or functions closely related to the
exponential function. In this section we look at some applications involving
exponential functions from the fields of the life and social sciences.

In Section 13.1 we saw that the exponential function f(x) � bx is an
increasing function when b � 1. In particular, the function f(x) � ex shares
this property. From this result one may deduce that the function Q(t) � Q0ekt,
where Q0 and k are positive constants, has the following properties:

1. Q(0) � Q0

2. Q(t) increases ‘‘rapidly’’ without bound as t increases without bound (Fig-
ure 13.13).

Property 1 follows from the computation

Q(0) � Q0e0 � Q0

Next, to study the rate of change of the function Q(t), we differentiate it with
respect to t, obtaining

Q�(t) �
d
dt
(Q0ekt)

� Q0
d
dt
(ekt)

� kQ0ekt

� kQ(t) (7)

Since Q(t) � 0 (because Q0 is assumed to be positive) and k � 0, we see that
Q�(t) � 0 and so Q(t) is an increasing function of t. Our computation has in
fact shed more light on an important property of the function Q(t). Equation
(7) says that the rate of increase of the function Q(t) is proportional to the
amount Q(t) of the quantity present at time t. The implication is that as Q(t)
increases, so does the rate of increase ofQ(t), resulting in a very rapid increase
in Q(t) as t increases without bound.

Thus, the exponential function

Q(t) � Q0ekt (0 � t � �) (8)

provides us with a mathematical model of a quantity Q(t) that is initially
present in the amount of Q(0) � Q0 and whose rate of growth at any time t
is directly proportional to the amount of the quantity present at time t. Such
a quantity is said to exhibit exponential growth, and the constant k is called
the growth constant. Interest earned on a fixed deposit when compounded
continuously exhibits exponential growth. Other examples of exponential
growth follow.

Q

t

Q0

Q = Q0e
k t

FIGURE 13.13
Exponential growth



EXAMPLE 1 Under ideal laboratory conditions, the number of bacteria in a culture grows
in accordance with the law Q(t) � Q0ekt, where Q0 denotes the number of
bacteria initially present in the culture, k is some constant determined by the
strain of bacteria under consideration, and t is the elapsed time measured in
hours. Suppose 10,000 bacteria are present initially in the culture and 60,000
present 2 hours later.

a. How many bacteria will there be in the culture at the end of 4 hours?
b. What is the rate of growth of the population after 4 hours?

S O L U T I O N ✔ a. We are given that Q(0) � Q0 � 10,000, so Q(t) � 10,000ekt. Next, the
fact that 60,000 bacteria are present 2 hours later translates into Q(2) �
60,000. Thus,

60,000 � 10,000e2k

e2k � 6

Taking the natural logarithm on both sides of the equation, we obtain

ln e2k � ln 6

2k � ln 6 (Since ln e � 1)

k � 0.8959

Thus, the number of bacteria present at any time t is given by

Q(t) � 10,000e0.8959t

In particular, the number of bacteria present in the culture at the end of 4
hours is given by

Q(4) � 10,000e0.8959(4)

� 360,029

b. The rate of growth of the bacteria population at any time t is given by

Q�(t) � kQ(t)

Thus, using the result from part (a), we find that the rate at which the popula-
tion is growing at the end of 4 hours is

Q�(4) � kQ(4)

� (0.8959)(360,029)

� 322,550

or approximately 322,550 bacteria per hour. � � � �

EXPONENTIAL DECAY
In contrast to exponential growth, a quantity exhibits exponential decay if it
decreases at a rate that is directly proportional to its size. Such a quantity
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may be described by the exponential function

Q(t) � Q0e�kt [t � [0, �)] (9)

where the positive constant Q0 measures the amount present initially (t � 0)
and k is some suitable positive number, called the decay constant. The choice
of this number is determined by the nature of the substance under consider-
ation. The graph of this function is sketched in Figure 13.14.

To verify the properties ascribed to the function Q(t), we simply compute

Q(0) � Q0e0 � Q0

Q�(t) �
d
dt
(Q0e�kt)

� Q0
d
dt
(e�kt)

� �kQ0e�kt � �kQ(t)

EXAMPLE 2 Radioactive substances decay exponentially. For example, the amount of ra-
dium present at any time t obeys the law Q(t) � Q0e�kt, where Q0 is the
initial amount present and k is a suitable positive constant. The half-life of a
radioactive substance is the time required for a given amount to be reduced
by one-half. Now, it is known that the half-life of radium is approximately
1600 years. Suppose initially there are 200 milligrams of pure radium. Find
the amount left after t years. What is the amount left after 800 years?

S O L U T I O N ✔ The initial amount of radium present is 200 milligrams, so Q(0) � Q0 � 200.
Thus, Q(t) � 200e�kt. Next, the datum concerning the half-life of radium
implies that Q(1600) � 100, and this gives

100 � 200e�1600k

e�1600k �
1
2

Taking the natural logarithm on both sides of this equation yields

�1600k ln e � ln
1
2

�1600k � ln
1
2

(ln e � 1)

k � �
1

1600
ln �12�� 0.0004332

Q

t

Q0

Q = Q0e–kt
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FIGURE 13.14
Exponential decay



Therefore, the amount of radium left after t years is

Q(t) � 200e�0.0004332t

In particular, the amount of radium left after 800 years is

Q(800) � 200e�0.0004332(800) � 141.42

or approximately 141 milligrams. � � � �

EXAMPLE 3 Carbon 14, a radioactive isotope of carbon, has a half-life of 5770 years. What
is its decay constant?

S O L U T I O N ✔ We have Q(t) � Q0e�kt. Since the half-life of the element is 5770 years, half
of the substance is left at the end of that period. That is,

Q(5770) � Q0e�5770k �
1
2
Q0

e�5770k �
1
2

Taking the natural logarithm on both sides of this equation, we have

ln e�5770k � ln
1
2

�5770k � �0.693147

k � 0.00012 � � � �

Carbon-14 dating is a well-known method used by anthropologists to
establish the age of animal and plant fossils. This method assumes that the
proportion of carbon 14 (C-14) present in the atmosphere has remained con-
stant over the past 50,000 years. Professor Willard Libby, recipient of the
Nobel Prize in chemistry in 1960, proposed this theory.

The amount of C-14 in the tissues of a living plant or animal is constant.
However, when an organism dies, it stops absorbing new quantities of C-14,
and the amount of C-14 in the remains diminishes because of the natural
decay of the radioactive substance. Thus, the approximate age of a plant or
animal fossil can be determined by measuring the amount of C-14 present in
the remains.

EXAMPLE 4 A skull from an archeological site has one-tenth the amount of C-14 that it
originally contained. Determine the approximate age of the skull.

S O L U T I O N ✔ Here,

Q(t) � Q0e�kt

� Q0e�0.00012t
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where Q0 is the amount of C-14 present originally and k, the decay constant,
is equal to 0.00012 (see Example 3). Since Q(t) � (1/10)Q0 , we have

1
10

Q0 � Q0e�0.00012t

ln
1
10

� �0.00012t (Taking the natural
logarithm on both sides)

t �

ln
1
10

�0.00012

� 19,200

or approximately 19,200 years. � � � �

LEARNING CURVES
The next example shows how the exponential function may be applied to
describe certain types of learning processes. Consider the function

Q(t) � C � Ae�kt

where C, A, and k are positive constants. To sketch the graph of the function
Q, observe that its y-intercept is given by Q(0) � C � A. Next, we compute

Q�(t) � kAe�kt

Since both k and A are positive, we see that Q�(t) � 0 for all values of t.
Thus, Q(t) is an increasing function of t. Also,

lim
t��

Q(t) � lim
t��

(C � Ae�kt)

� lim
t��

C � lim
t��

Ae�kt

� C

so y � C is a horizontal asymptote of Q. Thus, Q(t) increases and approaches
the number C as t increases without bound. The graph of the function Q is
shown in Figure 13.15, where that part of the graph corresponding to the
negative values of t is drawn with a gray line since, in practice, one normally
restricts the domain of the function to the interval [0, �).

Observe that Q(t) (t � 0) increases rather rapidly initially but that the
rate of increase slows down considerably after a while. To see this, we compute

lim
t��

Q�(t) � lim
t��

kAe�kt � 0

This behavior of the graph of the function Q closely resembles the learning
pattern experienced by workers engaged in highly repetitive work. For exam-
ple, the productivity of an assembly-line worker increases very rapidly in the
early stages of the training period. This productivity increase is a direct result

y

t

C – A

Q(t) = C – Ae–kt

y = C

FIGURE 13.15
A learning curve



of the worker’s training and accumulated experience. But the rate of increase
of productivity slows as time goes by, and the worker’s productivity level
approaches some fixed level due to the limitations of the worker and the
machine. Because of this characteristic, the graph of the function Q(t) �
C � Ae�kt is often called a learning curve.

EXAMPLE 5 The Camera Division of the Eastman Optical Company produces a 35-mm
single-lens reflex camera. Eastman’s training department determines that after
completing the basic training program, a new, previously inexperienced em-
ployee will be able to assemble

Q(t) � 50 � 30e�0.5t

model F cameras per day, t months after the employee starts work on the
assembly line.

a. How many model F cameras can a new employee assemble per day after
basic training?

b. How many model F cameras can an employee with 1 month of experience
assemble per day?An employeewith 2months of experience?An employee
with 6 months of experience?

c. Howmany model F cameras can the average experienced employee assem-
ble per day?

S O L U T I O N ✔ a. The number of model F cameras a new employee can assemble is given by

Q(0) � 50 � 30 � 20

b. The number of model F cameras that an employee with 1 month of experi-
ence, 2 months of experience, and 6 months of experience can assemble
per day is given by

Q(1) � 50 � 30e�0.5 � 31.80

Q(2) � 50 � 30e�1 � 38.96

Q(6) � 50 � 30e�3 � 48.51

or approximately 32, 39, and 49, respectively.
c. As t increases without bound, Q(t) approaches 50. Hence, the average
experienced employee can ultimately be expected to assemble 50 model F
cameras per day. � � � �

Other applications of the learning curve are found in models that describe
the dissemination of information about a product or the velocity of an object
dropped into a viscous medium.

LOGISTIC GROWTH FUNCTIONS
Our last example of an application of exponential functions to the description
of natural phenomena involves the logistic (also called theS-shaped, or sigmoi-
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dal) curve, which is the graph of the function

Q(t) �
A

1 � Be�kt

where A, B, and k are positive constants. The function Q is called a logistic
growth function, and the graph of the function Q is sketched in Figure 13.16.

Observe that Q(t) increases rather rapidly for small values of t. In fact,
for small values of t, the logistic curve resembles an exponential growth curve.
However, the rate of growth of Q(t) decreases quite rapidly as t increases and
Q(t) approaches the number A as t increases without bound.

Thus, the logistic curve exhibits both the property of rapid growth of the
exponential growth curve as well as the ‘‘saturation’’ property of the learning
curve. Because of these characteristics, the logistic curve serves as a suitable
mathematical model for describing many natural phenomena. For example,
if a small number of rabbits were introduced to a tiny island in the South
Pacific, the rabbit population might be expected to grow very rapidly at first,
but the growth rate would decrease quickly as overcrowding, scarcity of food,
and other environmental factors affected it. The population would eventually
stabilize at a level compatible with the life-support capacity of the environ-
ment. Models describing the spread of rumors and epidemics are other exam-
ples of the application of the logistic curve.

EXAMPLE 6 The number of soldiers at Fort MacArthur who contracted influenza after t
days during a flu epidemic is approximated by the exponential model

Q(t) �
5000

1 � 1249e�kt

If 40 soldiers contracted the flu by day 7, find how many soldiers contracted
the flu by day 15.

S O L U T I O N ✔ The given information implies that

Q(7) � 40 and Q(7) �
5000

1 � 1249e�7k � 40

Thus,

40(1 � 1249e�7k) � 5000

1 � 1249e�7k �
5000
40

� 125

e�7k �
124
1249

�7k � ln
124
1249

k � �

ln
124
1249
7

� 0.33

y

t

y = A

1 + B
A

1 + Be–kty =        
A

FIGURE 13.16
A logistic curve



Therefore, the number of soldiers who contracted the flu after t days is given by

Q(t) �
5000

1 � 1249e�0.33t

In particular, the number of soldiers who contracted the flu by day 15 is given by

Q(15) �
5000

1 � 1249e�15(0.33)

� 508

or approximately 508 soldiers. � � � �

S E L F - C H E C K E X E R C I S E 1 3 . 5

Suppose that the population (in millions) of a country at any time t grows in accordance
with the rule

P � �P0 �
I
k� ekt �

I
k

where P denotes the population at any time t, k is a constant reflecting the natural
growth rate of the population, I is a constant giving the (constant) rate of immigration
into the country, and P0 is the total population of the country at time t � 0. The
population of the United States in the year 1980 (t � 0) was 226.5 million. If the
natural growth rate is 0.8% annually (k � 0.008) and net immigration is allowed at
the rate of half a million people per year (I � 0.5) until the end of the century, what
is the population of the United States expected to be in the year 2005?

Solutions to Self-Check Exercise 13.5 can be found on page 938.
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Exploring with Technology

Refer to Example 6.

1. Use a graphing utility to plot the graph of the function Q, using the viewing rectangle [0, 40] � [0, 5000].
2. Find how long it takes for the first 1000 soldiers to contract the flu.
Hint: Plot the graphs of y1 � Q(t) and y2 � 1000 and find the point of intersection of the two graphs.
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13.5 Exercises

A calculator is recommended for this exer-
cise set.

1. EXPONENTIAL GROWTH Given that a quantity Q(t) is de-
scribed by the exponential growth function

Q(t) � 400e0.05t

where t is measured in minutes, answer the following
questions.
a. What is the growth constant?
b. What quantity is present initially?
c. Using a calculator, complete the following table of
values:

t 0 10 20 100 1000

Q

2. EXPONENTIAL DECAY Given that a quantityQ(t) exhibiting
exponential decay is described by the function

Q(t) � 2000e�0.06t

where t is measured in years, answer the following ques-
tions.
a. What is the decay constant?
b. What quantity is present initially?
c. Using a calculator, complete the following table of
values:

t 0 5 10 20 100

Q

3. GROWTH OF BACTERIA The growth rate of the bacterium
Escherichia coli, a common bacterium found in the hu-
man intestine, is proportional to its size. Under ideal
laboratory conditions, when this bacterium is grown in
a nutrient broth medium, the number of cells in a culture
doubles approximately every 20 min.
a. If the initial cell population is 100, determine the
function Q(t) that expresses the exponential growth of
the number of cells of this bacterium as a function of
time t (in minutes).
b. How long will it take for a colony of 100 cells to
increase to a population of 1 million?
c. If the initial cell population were 1000, how would
this alter our model?

4. WORLD POPULATION The world population at the begin-
ning of 1990 was 5.3 billion. Assume that the population
continues to grow at its present rate of approximately
2%/year and find the function Q(t) that expresses the
world population (in billions) as a function of time t (in
years) where t � 0 corresponds to the beginning of 1990.
a. Using this function, complete the following table of
values and sketch the graph of the function Q.

Year 1990 1995 2000 2005

World
Population

Year 2010 2015 2020 2025

World
Population

b. Find the estimated rate of growth in the year 2000.

5. WORLD POPULATION Refer to Exercise 4.
a. If the world population continues to grow at its present
rate of approximately 2%/year, find the length of time t0
required for the world population to triple in size.
b. Using the time t0 found in part (a), what would be the
world population if the growth rate were reduced to 1.8%?

6. RESALE VALUE A certain piece of machinery was pur-
chased 3 yr ago by the Garland Mills Company for
$500,000. Its present resale value is $320,000. Assuming
that the machine’s resale value decreases exponentially,
what will it be 4 yr from now?

7. ATMOSPHERIC PRESSURE If the temperature is constant,
then the atmospheric pressure P (in pounds per square
inch) varies with the altitude above sea level h in accor-
dance with the law

P � p0e�kh

where p0 is the atmospheric pressure at sea level and k
is a constant. If the atmospheric pressure is 15 lb/in.2 at
sea level and 12.5 lb/in.2 at 4000 ft, find the atmospheric
pressure at an altitude of 12,000 ft. How fast is the atmo-
spheric pressure changing with respect to altitude at an
altitude of 12,000 ft?



8. RADIOACTIVE DECAY The radioactive element polonium
decays according to the law

Q(t) � Q0 � 2�(t/140)

whereQ0 is the initial amount and the time t is measured
in days. If the amount of polonium left after 280 days
is 20 mg, what was the initial amount present?

9. RADIOACTIVE DECAY Phosphorus 32 has a half-life of 14.2
days. If 100 g of this substance are present initially, find
the amount present after t days. What amount will be
left after 7.1 days? How fast is the phosphorus 32 de-
caying when t � 7.1?

10. NUCLEAR FALLOUT Strontium 90, a radioactive isotope of
strontium, is present in the fallout resulting from nuclear
explosions. It is especially hazardous to animal life, in-
cluding humans, because, upon ingestion of contami-
nated food, it is absorbed into the bone structure. Its
half-life is 27 yr. If the amount of strontium 90 in a
certain area is found to be four times the ‘‘safe’’ level,
find how much time must elapse before an ‘‘acceptable
level’’ is reached.

11. CARBON-14 DATING Wood deposits recovered from an
archeological site contain 20% of the carbon 14 they
originally contained. How long ago did the tree from
which the wood was obtained die?

12. CARBON-14 DATING Skeletal remains of the so-called
‘‘Pittsburgh Man,’’ unearthed in Pennsylvania, had lost
82% of the carbon 14 they originally contained. Deter-
mine the approximate age of the bones.

13. LEARNING CURVES The American Court Reporting Insti-
tute finds that the average student taking Advanced Ma-
chine Shorthand, an intensive 20-wk course, progresses
according to the function

Q(t) � 120(1 � e�0.05t) � 60 (0 � t � 20)

where Q(t) measures the number of words (per minute)
of dictation that the student can take in machine short-
hand after t wk in the course. Sketch the graph of the
function Q and answer the following questions.
a. What is the beginning shorthand speed for the aver-
age student in this course?
b. What shorthand speed does the average student at-
tain halfway through the course?
c. How many words per minute can the average student
take after completing this course?

14. EFFECT OF ADVERTIS ING ON SALES The Metro Department
Store found that t wk after the end of a sales promo-

tion the volume of sales was given by a function of the
form

S(t) � B � Ae�kt (0 � t � 4)

where B � 50,000 and is equal to the average weekly
volume of sales before the promotion. The sales volumes
at the end of the first and third weeks were $83,515 and
$65,055, respectively. Assume that the sales volume is
decreasing exponentially.
a. Find the decay constant k.
b. Find the sales volume at the end of the fourth week.
c. How fast is the sales volume dropping at the end of
the fourth week?

15. DEMAND FOR COMPUTERS TheUniversal Instruments Com-
pany found that the monthly demand for its new line of
Galaxy Home Computers t mo after placing the line on
the market was given by

D(t) � 2000 � 1500e�0.05t (t � 0)

Graph this function and answer the following questions.
a. What is the demand after 1 mo? After 1 yr?
After 2 yr? After 5 yr?
b. At what level is the demand expected to stabilize?
c. Find the rate of growth of the demand after the
tenth month.

16. NEWTON’S LAW OF COOLING Newton’s law of cooling states
that the rate at which the temperature of an object
changes is proportional to the difference in temperature
between the object and that of the surrounding medium.
Thus, the temperature F(t) of an object that is greater
than the temperature of its surrounding medium is given
by

F(t) � T � Ae�kt

where t is the time expressed in minutes, T is the temper-
ature of the surrounding medium, and A and k are
constants. Suppose a cup of instant coffee is prepared
with boiling water (212
F) and left to cool on the counter
in a room where the temperature is 72
F. If k �
0.1865, determine when the coffee will be cool enough
to drink (say, 110
F).

17. SPREAD OF AN EPIDEMIC During a flu epidemic, the number
of children in the Woodbridge Community School Sys-
tem who contracted influenza after t days was given by

Q(t)�
1000

1� 199e�0.8t

a. How many children were stricken by the flu after the
first day?
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b. How many children had the flu after 10 days?
c. How many children eventually contracted the
disease?

18. GROWTH OF A FRUIT-F LY POPULATION On the basis of data
collected during an experiment, a biologist found that
the growth of the fruit fly (Drosophila) with a limited
food supply could be approximated by the exponential
model

N(t)�
400

1� 39e�0.16t

where t denotes the number of days since the beginning
of the experiment.
a. What was the initial fruit-fly population in the experi-
ment?
b. What was the maximum fruit-fly population that
could be expected under this laboratory condition?
c. What was the population of the fruit-fly colony on
the 20th day?
d. How fast was the population changing on the 20th
day?

19. PERCENTAGE OF HOUSEHOLDS WITH VCRS According to esti-
mates by Paul Kroger Associates, the percentage of
households that own videocassette recorders (VCRs) is
given by

P(t)�
68

1� 21.67e�0.62t (0� t � 12)

where t is measured in years, with t � 0 corresponding
to the beginning of 1985.What percentage of households
owned VCRs at the beginning of 1985? At the beginning
of 1995?

20. POPULATION GROWTH IN THE TWENTY-F IRST CENTURY TheU.S.
population is approximated by the function

P(t)�
616.5

1� 4.02e�0.5t

where P(t) is measured in millions of people and t is
measured in 30-yr intervals, with t � 0 corresponding to
1930. What is the expected population of the United
States in 2020 (t � 3)?

21. SPREAD OF A RUMOR Three hundred students attended
the dedication ceremony of a new building on a college
campus. The president of the traditionally female college
announced a new expansion program, which included
plans to make the college coeducational. The number
of students who learned of the new program t hr later

is given by the function

f(t)�
3000

1� Be�kt

If 600 students on campus had heard about the new
program 2 hr after the ceremony, how many students
had heard about the policy after 4 hr? How fast was the
rumor spreading 4 hr after the ceremony?

22. CHEMICAL MIXTURES Two chemicals react to form another
chemical. Suppose the amount of the chemical formed
in time t (in hours) is given by

x(t)�

15 �1� �23�3t�
1�

1
4 �23�3t

where x(t) is measured in pounds. How many pounds
of the chemical are formed eventually?
Hint: You need to evaluate lim

t��
x(t).

23. CONCENTRATION OF GLUCOSE IN THE BLOODSTREAM A glucose
solution is administered intravenously into the blood-
stream at a constant rate of r mg/hr. As the glucose is
being administered, it is converted into other substances
and removed from the bloodstream. Suppose the con-
centration of the glucose solution at time t is given by

C(t)�
r
k

� ��rk�� C0� e�kt

where C0 is the concentration at time t � 0 and k is a
constant.
a. Assuming that C0 � r/k, evaluate

lim
t��

C(t)

and interpret your result.
b. Sketch the graph of the function C.

24. GOMPERTZ GROWTH CURVE Consider the function

Q(t)� Ce�Ae�kt

where Q(t) is the size of a quantity at time t and A, C,
and k are positive constants. The graph of this function,
called the Gompertz growth curve, is used by biologists
to describe restricted population growth.
a. Show that the function Q is always increasing.
b. Find the time t at which the growth rate Q�(t) is
increasing most rapidly.
Hint: Find the inflection point of Q.
c. Show that lim

t��
Q(t) � C and interpret your result.
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We are given that P0 � 226.5, k � 0.008, and I � 0.5. So

P � �226.5�
0.5
0.008� e0.008t �

0.5
0.008

� 289e0.008t � 62.5

Therefore, the population in the year 2005 will be given by

P(25)� 289e0.2 � 62.5

� 290.5

or approximately 290.5 million.

CHAPTER 13 Summary of Principal Formulas and Terms

Formulas

1. Exponential function with base b y � bx

2. The number e e � lim
m��

�1�
1
m�m

� 2.71828

3. Exponential function with base e y � ex

4. Logarithmic function with base b y � logb x

5. Logarithmic function with base e y � ln x

6. Inverse properties of ln x and e ln ex � x and e ln x � x

7. Continuous compound interest A � Pert

8. Derivative of the exponential d
dx

(ex)� ex

function

9. Chain rule for exponential d
dx

(eu)� eu du
dxfunctions

10. Derivative of the logarithmic d
dx

ln �x� �
1
xfunction

11. Chain rule for logarithmic d
dx

(ln u)�
1
u
du
dxfunctions

Terms

common logarithm exponential decay

natural logarithm decay constant

logarithmic differentiation half-life of a radioactive element

exponential growth logistic growth function

growth constant
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C H A P T E R 1 3 R E V I E W E X E R C I S E S

1. Sketch on the same set of coordinate axes the graphs of
the exponential functions defined by the equations.

a. y � 2�x b. y � �12�x

In Exercises 2 and 3, express each in logarith-
mic form.

2. �23��3

�
27
8

3. 16�3/4 � 0.125

In Exercises 4 and5, solve each equation for x.

4. log4(2x � 1) � 2
5. ln(x � 1) � ln 4 � ln(2x � 4) � ln 2

In Exercises6–8, given that ln2 = x, ln3 = y, and
ln 5 = z, express each of the given logarithmic
values in terms of x, y, and z.

6. ln 30 7. ln 3.6 8. ln 75
9. Sketch the graph of the function y � log2(x � 3).
10. Sketch the graph of the function y � log3(x � 1).

In Exercises 11–28, find the derivative of the
function.

11. f(x) � xe2x 12. f(t) � �tet � t

13. g(t) � �te�2t 14. g(x) � ex�1� x 2

15. y �
e2x

1� e�2x 16. f(x) � e2x
2
�1

17. f(x) � xe�x2 18. g(x) � (1 � e2x)3/2

19. f(x) � x 2ex � ex 20. g(t) � t ln t

22. f(x) �
x
ln x

21. f(x) � ln(ex2 � 1)

23. f(x) �
ln x
x � 1

24. y � (x � 1)ex

26. f(r) �
rer

1� r 2
25. y � ln(e4x � 3)

27. f(x) �
ln x
1� ex 28. g(x) �

ex2

1� ln x

29. Find the second derivative of the function y � ln(3x� 1).
30. Find the second derivative of the function y � x ln x.
31. Find h�(0) if h(x) � g( f(x)), g(x) � x � (1/x), and

f(x) � ex.

32. Find h�(1) if h(x) � g( f(x)), g(x) �
x � 1
x � 1

, and f(x) �

ln x.

33. Use logarithmic differentiation to find the derivative of
f(x) � (2x 3 � 1)(x 2 � 2)3.

34. Use logarithmic differentiation to find the derivative of

f(x) �
x(x 2 � 2)2

(x � 1)
.

35. Find an equation of the tangent line to the graph of
y � e�2x at the point (1, e�2).

36. Find an equation of the tangent line to the graph of
y � xe�x at the point (1, e�1).

37. Sketch the graph of the function f(x) � xe�2x.

38. Sketch the graph of the function f(x) � x 2 � ln x.

39. Find the absolute extrema of the function f(t) � te�t.

40. Find the absolute extrema of the function

g(t)�
ln t
t

on [1, 2].

41. Ahotel was purchased by a conglomerate for $4.5million
and sold 5 yr later for $8.2 million. Find the annual rate
of return (compounded continuously).

42. Find the present value of $119,346 due in 4 yr at an
interest rate of 10%/year compounded continuously.

43. A culture of bacteria that initially contained 2000 bacte-
ria has a count of 18,000 bacteria after 2 hr.
a. Determine the functionQ(t) that expresses the expo-
nential growth of the number of cells of this bacterium
as a function of time t (in minutes).
b. Find the number of bacteria present after 4 hr.

44. The radioactive element radium has a half-life of 1600
yr. What is its decay constant?

45. The VCA Television Company found that the monthly
demand for its new line of video disc players t mo after
placing the players on the market is given by

D(t) � 4000 � 3000e�0.06t (t 	 0)

Graph this function and answer the following questions.
a. What was the demand after 1 mo? After 1 yr? After
2 yr?
b. At what level is the demand expected to stabilize?

46. During a flu epidemic, the number of students at a certain
university who contracted influenza after t days could
be approximated by the exponential model

Q(t)�
3000

1� 499e�kt

If 90 students contracted the flu by day 10, how many
students contracted the flu by day 20?




